Главная » Условно-съедобные грибы » Где синтезируются белки системы комплемента. Активация системы комплемента

Где синтезируются белки системы комплемента. Активация системы комплемента

Структура системы комплемента:

1. белки – активаторы(начальные компоненты) – C1qrs, C2, C3, C4.

2. белки конечной последовательности(терминальные компоненты) – С5, С6, С7, С8, С9.

3. факторы альтернативного пути активации – D i , B i , P.

4. белки ингибиторы и активаторы:

· имеющие ферментативную активность – фактор I, C3b – инактиватор, карбоксипептидазы.

· Связывающие и конкурирующие белки – С4вр(С4 – связывающий протеин), витронектин или S – белок, C1 – INH (C1 - ингибитор), фактор Н, DAF(CD55 – фактор, усиливающий гниение), CD59, MCP(CD46).

C2b инактивируется C4BP and DAF, C3b инактивируется CR1 b фактор Н.

5. рецепторы к белкам комплемента. Обозначаются CR – complement receptor.

· CR3(CD11b, CD18)

· CR4(CD11c, CD18)

Система комплемента представляет собой около сорока связанных функционально плазменных белков: компонентов, факторов регуляторных белков и рецепторов. Они способны к последовательной активации по форме каскада с конечным неспецифическим цитотоксическим эффектом по отношению к бактериям, грибам, вирусам, опухолевым клеткам, клеткам трансплантанта и другим.

Комплемент входит в состав мегасистемы Хагемана , наряду со свертывающей системой крови, фибринолитической и кинин – калликреиновой системой.

Фрагменты – это продукты расщепления компонентов: C3a, C3b и т. д. Если фрагмент инактивируется, то добавляют букву I: С3ai; белки с ферментативной активностью обозначаются линией над буквой Д - , С4α, С4β – это отдельные цепи в молекулах пептидов.

Биосинтез белков комплемента идет в печени, эпителии тонкого кишечника, костном мозге, селезенке и макрофагах.

Синтез и потребление, активация и ингибирование находятся в лабильном равновесии и жестко регулируются. В некоторых случаях полипептидные цепи одного компонента С1, С8 синтезируются отдельно и собираются непосредственно перед секрецией как бинарное оружие. Синтез комплемента в эмбриональный период начинается с 6 недели развития, а на 10 неделе уже регистрируется цитотоксическая активность.

Механизмы активации комплемента:

1. классический путь – зависимый от иммунных комплексов

2. лектиновый – близок к классическому

3. альтернативный – зависимый от фактора Р

4. протеазный – близок к альтернативному, но не зависит от фактора Р.

Классический путь активации.

Запускается комплексом антиген + антитело(иммунный комплекс - ИК), то есть требует наличия в данный момент специфического иммунного процесса. Он может запускаться комплексом антиген + С – реактивный белок, либо маннозосвязывающим лектином(лектиновый путь) – MBL. Прикрепляясь к поверхности клетки – мишени(*: бактерия), антитело первоначально меняет то, что должно быть уничтожено впоследствии комплементом. Соединение антитела с антигеном приводит к изменению пространственной конфигурации антитела, что делает возможным дальнейшую фиксацию на нем С1q.


Однако для прочной фиксации необходима 1 молекулаIgM или 2 молекулы IgG. Другие классы Ig не активируют комплемент.

С1 компонент комплемента состоит из трех компонентов: C1q, C1r, C1s.

C1q - мономер, C1r – димер(препротеаза C1s), C1s – димер(препротеаза для С2 и С4).

Внешне молекула C1qrs имеет форму тюльпана.

Физиологические и патологические эффекты фрагментов активированного комплемента.

С2а – кининоподобная субстанция, которая раздражает болевые рецепторы.

С4а – вызывает сильное расширение капилляров и сильный отек ткани

С3b – стимуляция адгезии и опсонизации

С3а, С5а – анафилотоксины 1 и 2 соответственно, они стимулируют хемотаксис клеток в очаг воспаления, вызывая спазм гладких мышц, повышение проницаемости капилляров, дегрануляцию тучных клеток(например за счет гистамина). С5а более агрессивный фрагмент, чем С3а. С5а обладает потенциальной способностью к цитолизу(образуется много кислородзависимых радикалов).

С5b6789…9 – вещество, имеющее форму полого цилиндра, с липидсвязывающими центрами, это мембранатакующий комплекс. Цилиндр с диаметром отверстия 10 нм, которое за счет липидсвязывающих центров способен фиксироваться на мембране клетки – мишени, пробуравливать ее, вследствие чего содержимое клетки вытекает наружу(точнее в клетку входят ионы натрия и вода).

Основные функции комплемента.

1. микробицидная – направлена против бактерий, вирусов, грибов

2. цитолитическая – против опухолевых клеток трансплантантов, при патологии – против собственных(при дефектах регуляции и укусах насекомых или рептилий).

3. участие в воспалении – С2а, С3а, С4а, С5а

4. активация фагоцитарной реакции: хемотаксиса, опсонизации, адгезии и поглощения. Главный фрагмент –C3b, но хемотаксис стимулируется также С3а иС5а.

5. взаимодействие с другими частями мегасистемы Хагемана: 12 фактор свертываемости – способен активировать систему комплемента по альтернативному пути.

Калликреин, плазмин, тромбин – активируют С3, С4, С5, В.

6. участие в регуляции иммунного ответа

7. участие в аллергических реакциях – анафилотоксины.

СЛАЙД 1

Лекция №4. Гуморальные факторы врожденного иммунитета

1. Система комплемента

2. Белки острой фазы воспаления

3. Биогенные амимны

4. Липидные медиаторы

5. Цитокины

6. Интерфероны

СЛАЙД 2

Гуморальная составляющая врожденного иммунитета представлена несколькими взаимосвязанными системами - системой комплемента, цитокиновой сетью, бактерицидными пептидами, а также гуморальными системами, связанными с воспалением.

Действие большинства этих систем подчиняется одному из двух принципов - каскада и сети. По каскадному принципу функционирует система комплемента, при активации которой происходит последовательное вовлечение факторов. При этом эффекты каскадных реакций проявляются не только в конце активационного пути, но и на промежуточных стадиях.

Принцип сети характерен для системы цитокинов и предполагает возможность одновременного функционирования различных компонентов системы. Основа функционирования такой системы - тесная взаимосвязь, взаимное влияние и значительная степень взаимозаменяемости компонентов сети.

СЛАЙД 3

Комплемент – сложный белковый комплекс сыворотки крови.

Система комплемента состоит из 30 белков (компонентов, или фракций , системы комплемента).

Активируется система комплемента за счет каскадного процесса: продукт предыдущей реакции исполняет роль катализатора последующей реакции. Причем при активации фракции компонента происходит, у первых пяти компонентов, ее расщепление. Продукты этого расщепления и обозначаются как активные фракции системы комплемента .

1. Больший из фрагментов (обозначаемый буквой b), образовавшихся при расщеплении неактивной фракции, остается на поверхности клетки – активация комплемента всегда происходит на поверхности микробной клетки, но не собственных эукариотических клеток. Этот фрагмент приобретает свойства фермента и способность воздействовать на последующий компонент, активируя его

2. Меньший фрагмент (обозначается буквой a) является растворимым и «уходит» в жидкую фазу, т.е. в сыворотку крови.

Фракции системы комплемента обозначаются по-разному.

1. Девять – открытых первыми – белков системы комплемента обозначаются буквой С (от английского слова complement) с соответствующей цифрой.

2. Остальные фракции системы комплемента обозначаются другими латинскими буквами или их сочетаниями.

СЛАЙД 4

Пути активации комплемента

Существуют три пути активации комплемента: классический, лектиновый и альтернативный.

СЛАЙД 5

1. Классический путь активации комплемента является основным. Участие в этом пути активации комплемента – главная функция антител.

Активацию комплемента по классическому пути запускает иммунный комплекс : комплекс антигена с иммуноглобулином (класса G или М). Место антитела может «занять» С-реактивный белок – такой комплекс также активирует комплемент по классическому пути.

Классический путь активации комплемента осуществляется следующим образом.

а. Сначала активируется фракция С1 : она собирается из трех субфракций (C1q, C1r, C1s) и превращается в фермент С1-эстеразу (С1qrs).

б. С1-эстераза расщепляет фракцию С4 .

в. Активная фракция С4b ковалентно связывается с поверхностью микробных клеток - здесь присоединяет к себе фракцию С2 .

г. Фракция С2 в комплексе с фракцией С4b расщепляется С1-эстеразой с образованием активной фракции С2b .

д. Активные фракции С4b и С2b в один комплекс – С4bС2b – обладающий ферментативной активностью. Это так называемая С3-конвертаза классического пути .

е. С3-конвертаза расщепляет фракцию С3 , нарабатываю большие количества активной фракции С3b.

ж. Активная фракция С3b присоединяется к комплексу С4bС2b и превращает его в С5-конвертазу (С4bС2bС3b ).

з. С5-конвертаза расщепляет фракцию С5 .

и. Появившаяся в результате этого активная фракция С5b присоединяет фракцию С6 .

к. Комплекс С5bС6 присоединяет фракцию С7 .

л. Комплекс С5bС6С7 встраивается в фосфолипидный бислой мембраны микробной клетки .

м. К этому комплексу присоединяется белок С8 и белок С9 . Данный полимер формирует в мембране микробной клетки пору диаметром около 10 нм, что приводит к лизису микроба (так как на его поверхности образуется множество таких пор – «деятельность» одной единицы С3-конвертазы приводит к появлению около 1000 пор). Комплекс С5bС6С7С8С9, образующийся в результате активации комплемента, называется мемранатакующим комплексом (МАК).

СЛАЙД 6

2. Лектиновый путь активации комплемента запускается комплексом нормального белка сыворотки крови – маннансвязывающего лектина (МСЛ) – с углеводами поверхностных структур микробных клеток (с остатками маннозы).

СЛАЙД 7

3. Альтернативный путь активации комплемента начинается с ковалентного связывания активной фракции С3b – которая всегда присутствует в сыворотке крови в результате постоянно протекающего здесь спонтанного расщепления фракции С3 – с поверхностными молекулами не всех, но некоторых микроорганизмов.

1. Дальнейшие события развиваются следующим образом.

а. С3b связывает фактор В , образуя комплекс С3bВ.

б. В связанном с С3b виде фактор В выступает в качестве субстрата для фактора D (сывороточной сериновой протеазы), которая расщепляет его с образованием активного комплекса С3bВb . Этот комплекс обладает ферментативной активностью, структурно и функционально гомологичен С3-конвертазе классического пути (С4bС2b) и называется С3-конвертазой альтернативного пути .

в. Сама по себе С3-конвертаза альтернативного пути нестабильна. Чтобы альтернативный путь активации комплемента успешно продолжался этот фермент стабилизируется фактором Р (пропердином).

2. Основное функциональное отличие альтернативного пути активации комплемента, по сравнению с классическим, заключается в быстроте ответа на патоген: так как не требуется время для накопления специфических антител и образования иммунных комплексов.

Важно понимать, что и классический и альтернативный пути активации комплемента действуют параллельно , еще и амплифицируя (т.е. усиливая) друг друга. Другими словами комплемент активируется не «или по классическому или по альтернативному», а «и по классическому и по альтернативному» путям активации. Это, еще и с добавлением лектинового пути активации, – единый процесс, разные составляющие которого могут просто проявляться в разной степени.

СЛАЙД 8

Функции системы комплемента

Система комплемента играет очень важную роль в защите макроорганизма от патогенов.

1. Система комплемента участвует в инактивации микроорганизмов , в т.ч. опосредует действие на микробы антител.

2. Активные фракции системы комплемента активируют фагоцитоз (опсонины - С3b и C5b) .

3. Активные фракции системы комплемента принимают участие в формировании воспалительной реакции .

СЛАЙД 9

Активные фракции комплемента С3а и С5а называются анафилотоксинами , так как участвуют, помимо прочего, в аллергической реакции, называемой анафилаксия. Наиболее сильным анафилотоксином является С5а. Анафилотоксины действуют на разные клетки и ткани макроорганизма.

1. Действие их на тучные клетки вызывает дегрануляцию последних.

2. Анафилотоксины действуют также на гладкие мышцы , вызывая их сокращение.

3. Действуют они и на стенку сосуда : вызывают активацию эндотелия и повышение его проницаемости, что создает условия для экстравазации (выхода) из сосудистого русла жидкости и клеток крови в ходе развития воспалительной реакции.

Корме того, анафилотоксины являются иммуномодуляторами , т.е. они выступают в роли регуляторов иммунного ответа.

1. С3а выступает в роли иммуносупрессора (т.е. подавляет иммунный ответ).

2. С5а является иммуностимулятором (т.е. усиливает иммунный ответ).

СЛАЙД 10

Белки острой фазы

Некоторые гуморальные реакции врожденного иммунитета по своему назначению аналогичны реакциям адаптивного иммунитета и могут рассматриваться как их эволюционные предшественники. Такие реакции врожденного иммунитета имеют преимущество перед адаптивным иммунитетом в быстроте развития, однако недостаток их заключается в отсутствии специфичности в отношении антигенов. Пару сходных по результатам реакций врожденного и адаптивного иммунитета мы рассмотрели выше в разделе, посвященном комплементу (альтернативная и классическая активация комплемента). Другой пример будет рассмотрен в данном разделе: белки острой фазы в ускоренном и упрощенном варианте воспроизводят некоторые эффекты антител.

Белки (реактанты) острой фазы представляют группу протеинов, секретируемых гепатоцитами. При воспалении продукция белков острой фазы изменяется. При усилении синтеза белки называют положительными, а при понижении синтеза - отрицательными реактантнами острой фазы воспаления.

Динамика и выраженность изменений сывороточной концентрации различных белков острой фазы при развитии воспаления неодинакова: концентарция С-реактивного белка и сывороточного амилоида Р возрастает очень сильно (в десятки тысяч раз) - быстро и кратковременно (практически нормализуется к концу 1-й недели); уровни гаптоглобина и фибриногена возрастают слабее (в сотни раз) соответственно на 2-й и 3-й неделях воспалительной реакции. В данной презентации будут рассмотрены только положительные реактанты, участвующие в иммунных процессах.

СЛАЙД 11

Согласно выполняемым функциям выделяют несколько групп белков острой фазы.

К транспортным белкам относят преальбумин, альбумин, орозомукоид, липокалины, гаптоглобин, трансферрин, маннозасвязывающий и ретинолсвязывающий белки и т.д. Они играют роль переносчиков метаболитов, ионов металлов, физиологически активных факторов. Роль факторов этой группы существенно возрастает и качественно изменяется при воспалении.

Другую группу образуют протеазы (трипсиноген, эластаза, катепсины, гранзимы, триптазы, химазы, металлопротеиназы), активация которых необходима для формирования многих медиаторов воспаления, а также для осуществления эффекторных функций, в частности киллерной. Активация протеаз (трипсина, химотрипсина, эластазы, металлопротеиназ) уравновешивается накоплением их ингибиторов. α2-Макроглобулин участвует в подавлении активности протеаз разных групп.

Помимо перечисленных, к белкам острой фазы относят факторы коагуляции и фибринолиза, а также белки межклеточного матрикса (например, коллагены, эластины, фибронектин) и даже белки системы комплемента.

СЛАЙД 12

Пентраксины. Наиболее полно проявляют свойства реактантов острой фазы белки семейства пентраксинов: в первые 2-3 сут развития воспаления их концентрация в крови повышается на 4 порядка.

С-реактивный белок и сывороточный амилоид Р образуются и секретируются гепатоцитами. Основной индуктор их синтеза - IL-6. Белок PTX3 вырабатывают миелоидные (макрофаги, дендритные клетки), эпителиальные клетки и фибробласты в ответ на стимуляцию через TLR, а также под действием провоспалительных цитокинов (например, IL-1β, TNFα).

Концентрация пентраксинов в сыворотке резко возрастает при воспалении: С-реактивного белка и сывороточного амилоида Р - с 1 мкг/мл до 1–2 мг/мл (т.е. в 1000 раз), РТХ3 - с 25 до 200–800 нг/мл. Пик концентрации достигается через 6–8 ч после индукции воспаления. Для пентраксинов характерна способность связываться с самыми разнообразными молекулами.

С-реактивный белок был впервые идентифицирован благодаря его способности связывать полисахарид С (Streptococcus рneumoniae ), что и определило его название. Пентраксины взаимодействуют и с множеством других молекул: C1q, бактериальными полисахаридами, фосфорилхолином, гистонами, ДНК, полиэлектролитами, цитокинами, белками межклеточного матрикса, сывороточными липопротеинами, компонентами комплемента, друг с другом, а также с ионами Са 2+ и других металлов.

Для всех рассматриваемых пентраксинов существуют высокоаффинные рецепторы на миелоидных, лимфоидных, эпителиальных и других клетках. Кроме того, эта группа белков острой фазы обладает достаточно высоким сродством к таким рецепторам, как FcγRI и FcγRII. Многочисленность молекул, с которыми взаимодействуют пентраксины, определяет широкое разнообразие их функций.

Распознавание и связывание пентраксинами PAMP дает основание рассматривать их как вариант растворимых патогенраспознающих рецепторов.

К наиболее важным функциям пентраксинов относят их участие в реакциях врожденного иммунитета в качестве факторов, запускающих активацию комплемента через C1q и участвующих в опсонизации микроорганизмов.

Комплементактивирующая и опсонизирующая способность пентраксинов делает их своеобразными «протоантителами», частично выполняющими функции антител на начальном этапе иммунного ответа, когда истинные адаптивные антитела еще не успели выработаться.

Роль пентраксинов во врожденном иммунитете заключается также в активации нейтрофилов и моноцитов/макрофагов, регуляции синтеза цитокинов и проявлении хемотаксической активности по отношению к нейтрофилам. Помимо участия в реакциях врожденного иммунитета пентраксины регулируют функции межклеточного матрикса при воспалении, контроле апоптоза и элиминации апоптотических клеток.

СЛАЙД 13

Биогенные амины

К этой группе медиаторов относят гистамин и серотонин, содержащиеся в гранулах тучных клеток. Освобождаясь при дегрануляции, эти амины вызывают разнообразные эффекты, играющие ключевую роль в развитии ранних проявлений гиперчувствительности немедленного типа.

Гистамин (5-β-имидазолилэтиламин) - главный медиатор аллергии. Он образуется из гистидина под влиянием фермента гистидиндекарбоксилазы.

Поскольку гистамин содержится в гранулах тучных клеток в готовом виде, а процесс дегрануляции происходит быстро, гистамин очень рано появляется в очаге аллергического поражения, причем сразу в большой концентрации, что определяет проявления немедленной гиперчувствительности. Гистамин быстро метаболизируется (95% за 1 мин) с участием 2 ферментов - гистамин-N-метилтрансферазы и диаминооксидазы (гистаминазы); при этом образуется (в соотношении примерно 2:1) соответственно N-метилгистамин и имидазолацетат.

Известно 4 разновидности рецепторов для гистамина Н 1 -Н 4 . При аллергических процессах гистамин действует преимущественно на гладкие мыщцы и эндотелий сосудов, связываясь с их Н 1 -рецепторами. Эти рецепторы поставляют активационный сигнал, опосредованный превращениями фосфоинозитидов с образованием диацилглицерола и мобилизацией Са 2+ .

Указанные эффекты частично обусловлены образованием в клетках (мишенях гистамина) оксида азота и простациклина. Действуя на нервные окончания, гистамин вызывает ощущение зуда, характерного для аллергических проявлений в коже.

У человека гистамин играет важную роль в развитии кожной гиперемии и аллергического ринита. Менее очевидно его участие в развитии общих аллергических реакций и бронхиальной астмы. В то же время через Н 2 -рецепторы гистамин и родственные вещества оказывают регуляторное действие, иногда уменьшающее проявления воспаления, ослабляя хемотаксис нейтрофилов и выброс ими лизосомных ферментов, а также высвобождение самого гистамина.

Через Н 2 -рецепторы гистамин действует на сердце, секреторные клетки желудка, подавляет пролиферацию и цитотоксическую активность лимфоцитов, а также секрецию ими цитокинов. Большинство этих эффектов опосредовано активацией аденилатциклазы и повышением внутриклеточного уровня цАМФ.

Данные об относительной роли различных рецепторов гистамина в реализации его действия очень важны, поскольку многие антиаллергические препараты представляют собой блокаторы Н 1 (но не Н 2 и других) рецепторов гистамина.

СЛАЙД 14

Липидные медиаторы.

Важную роль в регуляции иммунных процессов, а также в развитии аллергических реакций играют гуморальные факторы липидной природы. Наиболее многочислены и важны из них эйкозаноиды.

Эйкозаноиды - продукты метаболизма арахидоновой кислоты - жирной полиненасыщенной кислоты, молекула которой содержит 20 атомов углерода и 4 ненасыщенные связи. Арахидоновая кислота образуется из мембранных фосфолипидов как прямой продукт действия фосфолипазы А (PLA) или косвенный продукт превращений, опосредованных PLC.

Образование арахидоновой кислоты или эйкозаноидов происходит при активации различных типов клеток, особенно участвующих в развитии воспаления, в частности аллергического: эндотелиальных и тучных клеток, базофилов, моноцитов и макрофагов.

Метаболизм арахидоновой кислоты может проходить по 2 путям - катализироваться циклооксигеназой или 5’-липоксигеназой. Циклооксигеназный путь приводит к образованию простагландинов и тромбоксанов из нестабильных промежуточных продуктов - эндоперекисных простагландинов G2 и H2, а липоксигеназный - к образованию лейкотриенов и 5-гидроксиэйкозатетраеноата через промежуточные продукты (5-гидроперокси-6,8,11,14-эйкозатетраеновую кислоту и лейкотриен А4), а также липоксинов - продуктов двойной липоксигенации (под действием двух липоксигеназ - см. далее).

Простагландины и лейкотриены во многих отношениях проявляют альтернативные физиологические эффекты, несмотря на то, что внутри этих групп существуют значительные различия в активности.

Общее свойство этих групп факторов - преобладающее действие на стенку сосудов и гладкие мышцы, а также хемотаксический эффект. Эти эффекты реализуются при взаимодействии эйкозаноидов со специфическими рецепторами на поверхности клеток. Некоторые представители семейства эйкозаноидов усиливают действие других вазоактивных и хемотаксических факторов, например, анафилатоксинов (С3а, С5а).

СЛАЙД 15

Лейкотриены (LT) - С 20 -жирные кислоты, молекула которых в положении 5 содержит ОН-группу, а в положении 6 - боковые серосодержащие цепи, например глутатион.

Выделяют 2 группы лейкотриенов:

Одна из них включает лейкотриены С4, D4 и Е4, называемые цистеиниллей-котриенами (Cys-LT),

Во вторую входит один фактор - лейкотриен B4.

Лейкотриены образуются и секретируются в течение 5–10 мин после активации тучных клеток или базофилов.

Лейкотриен C4 присутствует в жидкой фазе в течение 3–5 мин, при этом он превращается в лейкотриен D4. Лейкотриен D4 существует в последующие 15 мин, медленно превращаясь в лейкотриен E4.

Лейкотриены оказывают свое действие через рецепторы, относящиеся к группе пуриновых рецепторов семейства родопсиноподобных рецепторов, 7-кратно пронизывающих мембрану и связанных с протеином G.

Рецепторы лейкотриенов экспрессируются на клетках селезен-ки, лейкоцитах крови, кроме того, CysLT-R1 представлен на макрофагах, клетках кишечника, воздухоносного эпителия, а CysLT-R2 - на клетках надпочечников и головного мозга.

Цистеиниловые лейкотриены (особенно лейкотриен D4) вызывают спазм гладкой мускулатуры и регулируют локальный кровоток, снижая артериальное давление. Цистеиниловые лейкотриены - медиаторы аллергических реакций, в частности, медленной фазы бронхоспазма при бронхиальной астме.

Кроме того, они подавляют пролиферацию лимфоцитов и способствуют их дифференцировке.

Ранее комплекс этих факторов (лейкотриены C4, D4 и E4) называли медленнореагирующей субстанцией А. Лейкотриен B4 (дигидроксиэйкозатетраеновая кислота) проявляет хемотаксическое и активирующее действие преимущественно в отношении моноцитов, макрофагов, нейтрофилов, эозинофилов и даже Т-клеток.

Еще один продукт липоксигеназного пути - 5-гидроксиэйкозатетраеноат - менее активен, чем лейкотриены, но может служить хемоаттрактантом и активатором нейтрофилов и тучных клеток.

СЛАЙД 16

Простагландины (PG ) - С 20 -жирные кислоты, молекула которых содержит циклопентановое кольцо.

Варианты простагландинов, отличающиеся по типу и положению замещающих групп (окси-, гидрокси-), обозначаются различными буквами; цифры в названии означают число ненасыщенных связей в молекуле.

Простагландины накапливаются в очаге воспаления позже кининов и гистамина, несколько позже лейкотриенов, но одновременно с монокинами (через 6–24 ч после запуска воспаления).

Помимо вазоактивного и хемотаксического эффекта, достигаемого в кооперации с другими факторами, простагландины (особенно простагландин E2) оказывают регулирующее действие при воспалительных и иммунных процессах.

Экзогенный простагландин E2 вызывает некоторые проявления воспалительной реакции, но подавляет иммунный ответ и аллергические реакции.

Так, простагландин E2 снижает цитотоксическую активность макрофагов, нейтрофилов и лимфоцитов, пролиферацию лимфоцитов, выработку этими клетками цитокинов.

Он способствует дифференцировке незрелых лимфоцитов и клеток других кроветворных рядов.

Некоторые эффекты простагландина Е2 связаны с повышением уровня внутриклеточного цАМФ.

Простагландины E2 и D2 подавляют агрегацию тромбоцитов; простагландины F2 и D2 вызывают сокращение гладкой мускулатуры бронхов, тогда как простагландин E2 расслабляет ее.

СЛАЙД 17

Тромбоксан А2 (ТХА2 ) - С 20 -жирная кислота; в его молекуле есть 6-членное кислородсодержащее кольцо.

Это очень нестабильная молекула (время полужизни - 30 с), превращающаяся в неактивный тромбоксан В2.

Тромбоксан А2 вызывает сужение сосудов и бронхов, агрегацию тромбоцитов с высвобождением из них ферментов и других активных факторов, способствующих митогенезу лимфоцитов.

Другой продукт циклоксигеназного пути - простагландин I2 (простациклин) - тоже нестабилен. Он проявляет свое действие через цАМФ, сильно расширяет сосуды, увеличивает их проницаемость, ингибирует агрегацию тромбоцитов.

Наряду с пептидным фактором брадикинином простациклин вызывает ощущение боли при воспалении.

СЛАЙД 18

Цитокины


Похожая информация.


Комплемент – сложный белковый комплекс сыворотки крови. Система комплементасостоит из 30 белков (компонентов, или фракций , системы комплемента). Активируется система комплемента за счет каскадного процесса: продукт предыдущей реакции исполняет роль катализатора последующей реакции. Причем при активации фракции компонента происходит, у первых пяти компонентов, ее расщепление. Продукты этого расщепления и обозначаются как активные фракции системы комплемента .

1. Больший из фрагментов (обозначаемый буквой b), образовавшихся при расщеплении неактивной фракции, остается на поверхности клетки – активация комплемента всегда происходит на поверхности микробной клетки, но не собственных эукариотических клеток. Этот фрагмент приобретает свойства фермента и способность воздействовать на последующий компонент, активируя его.

2. Меньший фрагмент (обозначается буквой a) является растворимым и «уходит» в жидкую фазу, т.е. в сыворотку крови.

В. Фракции системы комплемента обозначаются по-разному.

1. Девять – открытых первыми – белков системы комплемента обозначаются буквой С (от английского слова complement) с соответствующей цифрой.

2. Остальные фракции системы комплемента обозначаются другими латинскими буквами или их сочетаниями.

Пути активации комплемента

Существуют три пути активации комплемента: классический, лектиновый и альтернативный.

А. Классический путь активации комплемента является основным . Участие в этом пути активации комплемента – главная функция антител.

1. Активацию комплемента по классическому пути запускает иммунный комплекс : комплекс антигена с иммуноглобулином (класса G или М). Место антитела может «занять» С-реактивный белок – такой комплекс также активирует комплемент по классическому пути.

2. Классический путь активации комплемента осуществляется следующим образом.

а. Сначала активируется фракция С1 : она собирается из трех субфракций (C1q, C1r, C1s) и превращается в фермент С1-эстеразу (С1qrs).

б. С1-эстераза расщепляет фракцию С4 .

в. Активная фракция С4b ковалентно связывается с поверхностью микробных клеток - здесь присоединяет к себе фракцию С2 .

г. Фракция С2 в комплексе с фракцией С4b расщепляется С1-эстеразой с образованием активной фракции С2b .

д. Активные фракции С4b и С2b в один комплекс – С4bС2b – обладающий ферментативной активностью. Это так называемая С3-конвертаза классического пути .

е. С3-конвертаза расщепляет фракцию С3 , нарабатываю большие количества активной фракции С3b.

ж. Активная фракция С3b присоединяется к комплексу С4bС2b и превращает его в С5-конвертазу (С4bС2bС3b ).

з. С5-конвертаза расщепляет фракцию С5 .

и. Появившаяся в результате этого активная фракция С5b присоединяет фракцию С6 .

к. Комплекс С5bС6 присоединяет фракцию С7 .

л. Комплекс С5bС6С7 встраивается в фосфолипидный бислой мембраны микробной клетки .

м. К этому комплексу присоединяется белок С8 и белок С9 . Данный полимер формирует в мембране микробной клетки пору диаметром около 10 нм, что приводит к лизису микроба (так как на его поверхности образуется множество таких пор – «деятельность» одной единицы С3-конвертазы приводит к появлению около 1000 пор). Комплекс С5bС6С7С8С9, образующийся в результате активации комплемента, называется мемранатакующим комплексом (МАК).

Б. Лектиновый путь активации комплемента запускается комплексом нормального белка сыворотки крови – маннансвязывающего лектина (МСЛ) – с углеводами поверхностных структур микробных клеток (с остатками маннозы).

В
.Альтернативный путь активации комплемента начинается с ковалентного связывания активной фракции С3b – которая всегда присутствует в сыворотке крови в результате постоянно протекающего здесь спонтанного расщепления фракции С3 – с поверхностными молекулами не всех, но некоторых микроорганизмов.

1. Дальнейшие события развиваются следующим образом.

а. С3b связывает фактор В , образуя комплекс С3bВ.

б. В связанном с С3b виде фактор В выступает в качестве субстрата для фактора D (сывороточной сериновой протеазы), которая расщепляет его с образованием активного комплекса С3bВb . Этот комплекс обладает ферментативной активностью, структурно и функционально гомологичен С3-конвертазе классического пути (С4bС2b) и называется С3-конвертазой альтернативного пути .

в. Сама по себе С3-конвертаза альтернативного пути нестабильна. Чтобы альтернативный путь активации комплемента успешно продолжался этот фермент стабилизируется фактором Р (пропердином).

2. Основное функциональное отличие альтернативного пути активации комплемента, по сравнению с классическим, заключается в быстроте ответа на патоген: так как не требуется время для накопления специфических антител и образования иммунных комплексов.

Г. Важно понимать, что и классический и альтернативный пути активации комплемента действуют параллельно , еще и амплифицируя (т.е. усиливая) друг друга. Другими словами комплемент активируется не «или по классическому или по альтернативному», а «и по классическому и по альтернативному» путям активации. Это, еще и с добавлением лектинового пути активации, – единый процесс, разные составляющие которого могут просто проявляться в разной степени.

Функции системы комплемента

Система комплемента играет очень важную роль в защите макроорганизма от патогенов.

А. Система комплемента участвует в инактивации микроорганизмов , в т.ч. опосредует действие на микробы антител.

Б. Активные фракции системы комплемента активируют фагоцитоз (опсонины - С3b и C 5 b ) .

В. Активные фракции системы комплемента принимают участие в формировании воспалительной реакции .

Активные фракции комплемента С3а и С5а называются анафилотоксинами , так как участвуют, помимо прочего, в аллергической реакции, называемой анафилаксия. Наиболее сильным анафилотоксином является С5а. Анафилотоксины действуют на разные клетки и ткани макроорганизма.

1. Действие их на тучные клетки вызывает дегрануляцию последних.

2. Анафилотоксины действуют также на гладкие мышцы , вызывая их сокращение.

3. Действуют они и на стенку сосуда : вызывают активацию эндотелия и повышение его проницаемости, что создает условия для экстравазации (выхода) из сосудистого русла жидкости и клеток крови в ходе развития воспалительной реакции.

Корме того, анафилотоксины являются иммуномодуляторами , т.е. они выступают в роли регуляторов иммунного ответа.

1. С3а выступает в роли иммуносупрессора (т.е. подавляет иммунный ответ).

2. С5а является иммуностимулятором (т.е. усиливает иммунный ответ).

ВОПРОС 10 «Иммунитет – понятие. Классификация форм иммунитета. Органы иммунной системы. Иммуногенез»

Под иммунитетом понимают защитные механизмы , которые реализуются с участием лимфоцитов и направлены на распознавание и элиминацию из внутренней среды организма группы молекул или даже частей молекул, рассматриваемые как «чужеродная метка». Для обозначения такой метки, которую иммунитет расценивает как «свое» или «чужое», используется термин антиген . Распознавая эти «метки» – антигены, иммунитет удаляет из внутренней среды организма:

    собственные, ставшие по разным причинам ненужными, клетки,

    микроорганизмы,

    пищевые, ингаляционные и аппликационные внешние вещества,

    трансплантаты.

Выделяют две основные формы иммунитета - видовой (врожденный) и приобретенный. Существует классификация приобретенного иммунитета в зависимости от его происхождения, согласно которой он подразделяется на естественный (не путать с естественным иммунитетом, обусловленным факторами неспецифической резистентности) и искусственный.

А. Естественный приобретенный иммунитет формируется естественным путем (откуда и название).

1. Активный естественный приобретенный иммунитет формируется в результате перенесенной инфекции и поэтому называется постинфекционным .

2. Пассивный естественный приобретенный иммунитет формируется за счет материнских антител, поступающих в организм плода через плаценту, а после рождения – в организм ребенка с материнским молоком. Вследствие этого этот вид иммунитета называется материнским .

Б. Искусственный приобретенный иммунитет формируется у пациента врачом.

1. Активный искусственный приобретенный иммунитет формируется в результате вакцинации и поэтому называется поствакцинальным .

2. Пассивный искусственный приобретенный иммунитет формируется в результате введения лечебно-профилактических сывороток и поэтому называется постсывороточным .

Приобретенный иммунитет может быть также стерильный (без наличия возбудителя) и нестерильный (существующий в присутствии возбудителя в организме), гуморальный и клеточный, системный и местный, по направленности - антибактериальный, антивирусный, антитоксический, противоопухолевый, антитрансплантационный.

Иммунная система - совокупность органов, тканей и клеток, обеспечивающих клеточно-генетическое постоянство организма. Принципы антигенной (генетической) чистоты основываются на распознавании “своего - чужого” и в значительной степени обусловлены системой генов и гликопротеидов (продуктов их экспрессии)- главным комплексом гистосовместимости (MHC ), у человека часто называемой системой HLA (human leukocyte antigens).

Органы иммунной системы.

Выделяют центральные (костный мозг - кроветворный орган, вилочковая железа или тимус, лимфоидная ткань кишечника) и периферические (селезенка, лимфатические узлы, скопления лимфоидной ткани в собственном слое слизистых оболочек кишечного типа) органы иммунитета.

    Иммунная система включает:

    ЛИМФОИДНУЮ СИСТЕМУ (лимфоидные органы и лимфоциты)

    МОНОЦИТАРНО-МАКРОФАГАЛЬНУЮ СИСТЕМУ (моноциты, тканевые макрофаги , дендритные клетки , микрофаги или полиморноядерные гранулоциты – это базофилы, эозинофилы, нейтрофилы).

    Иммунная система включает уровни:

    Органный уровень

    Клеточный уровень (макрофаги и микрофаги, Т и В лимфоциты, моноциты, тромбоциты и другие клетки)

    Гуморальный или молекулярный уровень (иммуноглобулины или антитела, цитокины, интерфероны т.д.).

ЦИТОКИНЫ – биологические активные молекулы, которые обеспечивают взаимодействие клеток иммунной системы друг с другом и с другими системами

    ОРГАНЫ иммунной системы

А. ЦЕНТРАЛЬНЫЕ ОРГАНЫ:

    Тимус

    Костный мозг

ФУНКЦИЯ: Образование, антиген-независимая дифференциация и пролиферация иммунокомпетентных клеток .

В. ПЕРИФЕРИЧЕСКИЕ ОРГАНЫ:

    Лимфатические узлы

    Селезенка

    Лимфоидная ткань слизистых оболочек (Пейеровые бляшки кишечника, аппендикс, миндалины, диффузные скопления лимфоцитов в лёгких и кишечнике и др.).

ФУНКЦИЯ: Антиген-зависимая дифференциация и пролиферация иммунокомпетентных клеток.

Клетки-предшественники иммунокомпетентных клеток продуцируются костным мозгом. Некоторые потомки стволовых клеток становятся лимфоцитами. Лимфоциты подразделяют на два класса - Т и В. Предшественники Т- лимфоцитов мигрируют в тимус, где созревают в клетки, способные участвовать в иммунном ответе. У человека В - лимфоциты созревают в костном мозге. У птиц незрелые В- клетки мигрируют в сумку (бурсу) Фабрициуса, где достигают зрелости. Зрелые В- и Т- лимфоциты заселяют периферические лимфоузлы. Таким образом, центральные органы иммунной системы осуществляют образование и созревание иммунокомпетентных клеток, периферические органы обеспечивают адекватный иммунный ответ на антигенную стимуляцию- “обработку” антигена, его распознавание и клональную пролиферацию лимфоцитов - антиген-зависимую дифференцировку.

Комплемент – система белков сыворотки крови, принимающая участие в регуляции воспалительных процессов, активации фагоцитоза и разрушающем (литическом) действии на клеточные мембраны.

В систему комплемента входит около двух десятков белков, их содержание составляет ~ 5 % от всех белков плазмы крови, т. е. концентрация в крови 3 – 4 г/л. Белки комплемента обозначают символом ʼʼСʼʼ и цифрой, соответствующей хронологии их открытия, продукты расщепления компонентов комплемента – маленькой латинской буквой (С3b, C5a и др.). В наибольшем количестве в крови содержится компонент С3, который выполняет центральную роль в активации комплемента.

Для этой системы характерен быстрый, многократно усиленный ответ на антигеннный сигнал за счёт каскадного процесса. При этом продукт одной реакции является катализатором последующей.

В отсутствие антигена компоненты комплемента находятся в неактивном состоянии. Существует два пути активации комплемента˸ без участия антител – альтернативный, и с участием антител – классический. Активацию комплемента по альтернативному пути вызывают компоненты микробных клеток, по классическому – комплексы антиген – антитело. Общим для обоих путей является образование фермента С3-конвертазы, который расщепляет компонент С3 на фрагменты С3а и С3b. Меньший фрагмент С3а принимает участие в развитии воспалительного процесса и хемотаксиса. Больший фрагмент С3b, связываясь с С3-конвертазой, образует С5-ковертазу – фермент, катализирующий расщепление С5 на фрагменты С5а и С5b. Высвобождающийся фрагмент С5b остается фиксированным на мембране и последовательно присоединяет С6, С7, С8 и С9, благодаря чему образуется мембраноатакующий комплекс (МАК), который лизирует клетку-мишень за счёт формирования трансмембранного канала. По этому каналу внутрь клетки поступают ионы Na + и вода, клетка набухает и лопается, т. е. лизирует. Среди других эффектов системы комплемента необходимо отметить следующие˸

- развитие воспалительной реакции и хемотаксис. Компоненты комплемента С3а и С5а могут привлекать к месту воспаления иммунокомпетентные клетки, например фагоциты, которые атакуют бактерии и пожирают их.

- Опсонизация (облегчение распознавания) микроорганизмов. Фрагменты С3b связываются с поверхностью бактерий, благодаря чему создается метка для узнавания фагоцитами, имеющими рецепторы к этому компоненту комплемента.

Рис. 13. Активация белков системы комплемента

Активность системы комплемента контролируется ингибиторами плазмы крови, блокирующими избыточную реакцию.

Фагоцитоз (ʼʼпоеданиеʼʼ клетками) – первая реакция иммунной системы на внедрение чужеродного антигена. Механизм фагоцитоза включает 8 последовательных стадий (рис. 14)˸

1. Хемотаксис – направленное перемещение фагоцитирующих клеток к объекту по градиенту концентрации хемотаксических соединений.

Рис. 14. Стадии фагоцитоза

2. Адгезия - распознавание и прикрепление чужеродного объекта к поверхности фагоцита. Процесс адгезии усиливают опсонины (комплемент С3b, антитела), обволакивающие объекты фагоцитоза. В этом случае связывание происходит с участием фагоцитарных рецепторов для С3b комлемента и /или Fc антитела.

Система комплемента

Мембраноатакующий комплекс, вызывающий лизис клетки.

Система комплемента - комплекс сложных белков, постоянно присутствующих в крови. Это каскадная система протеолитических ферментов , предназначенная для гуморальной защиты организма от действия чужеродных агентов, она участвует в реализации иммунного ответа организма. Является важным компонентом как врождённого, так и приобретённого иммунитета.

История понятия

В конце XIX столетия было установлено, что сыворотка крови содержит некий «фактор», обладающий бактерицидными свойствами. В 1896 году молодой бельгийский ученый Жюль Борде , работавший в Институте Пастера в Париже, показал, что в сыворотке имеются два разных вещества, совместное действие которых приводит к лизису бактерий: термостабильный фактор и термолабильный (теряющий свои свойства при нагревании сыворотки) фактор. Термостабильный фактор, как оказалось, мог действовать только против определенных микроорганизмов, в то время как термолабильный фактор имел неспецифическую антибактериальную активность. Термолабильный фактор позднее был назван комплементом . Термин «комплемент» ввел Пауль Эрлих в конце 1890-х годов. Эрлих был автором гуморальной теории иммунитета и ввел в иммунологию много терминов, которые впоследствии стали общепринятыми. Согласно его теории, клетки, ответственные за иммунные реакции, имеют на поверхности рецепторы , которые служат для распознавания антигенов . Эти рецепторы мы сейчас называем «антителами » (основой вариабельного рецептора лимфоцитов является прикреплённое к мембране антитело класса IgD, реже IgM. Антитела других классов в отсутствие соответствующего антигена не прикреплены к клеткам). Рецепторы связываются с определенным антигеном, а также с термолабильным антибактериальным компонентом сыворотки крови. Эрлих назвал термолабильный фактор «комплементом» потому, что этот компонент крови «служит дополнением» к клеткам иммунной системы.

Эрлих полагал, что имеется множество комплементов, каждый из которых связывается со своим рецептором, подобно тому, как рецептор связывается со специфическим антигеном. В противоположность этому Борде утверждал, что существует «дополнение» только одного типа. В начале XX века спор был разрешен в пользу Борде; выяснилось, что комплемент может активироваться с участием специфических антител или самостоятельно, неспецифическим способом.

Общее представление

Компоненты системы комплемента

Комплемент - система белков, включающая около 20 взаимодействующих компонентов: С1 (комплекс из трех белков), С2, СЗ, …, С9, фактор В, фактор D и ряд регуляторных белков. Все эти компоненты - растворимые белки с мол. массой от 24 000 до 400 000, циркулирующие в крови и тканевой жидкости. Белки комплемента синтезируются в основном в печени и составляют приблизительно 5 % от всей глобулиновой фракции плазмы крови. Большинство из них неактивны до тех пор, пока не будут приведены в действие или в результате иммунного ответа (с участием антител), или непосредственно внедрившимся микроорганизмом (см. ниже). Один из возможных результатов активации комплемента - последовательное объединение так называемых поздних компонентов (С5, С6, С7, С8 и С9) в большой белковый комплекс, вызывающий лизис клеток (литический, или мембраноатакующий, комплекс). Агрегация поздних компонентов происходит в результате ряда последовательных реакций протеолитической активации с участием ранних компонентов (С1, С2, С3, С4, фактора В и фактора D). Большинство этих ранних компонентов - проферменты, последовательно активируемые путем протеолиза . Когда какой-либо из этих проферментов специфическим образом расщепляется, он становится активным протеолитическим ферментом и расщепляет следующий профермент, и т. д. Поскольку многие из активированных компонентов прочно связываются с мембранами, большинство этих событий происходит на поверхностях клеток. Центральный компонент этого протеолитического каскада - С3. Его активация путем расщепления представляет собой главную реакцию всей цепи активации комплемента. С3 может быть активирован двумя основными путями - классическим и альтернативным. В обоих случаях С3 расщепляется ферментным комплексом, называемым С3-конвертазой. Два разных пути приводят к образованию разных С3-конвертаз, однако обе они образуются в результате спонтанного объединения двух компонентов комплемента, активированных ранее в цепи протеолитического каскада. С3-конвертаза расщепляет С3 на два фрагмента, больший из которых (С3b) связывается с мембраной клетки-мишени рядом с С3-конвертазой; в результате образуется ферментный комплекс еще больших размеров с измененной специфичностью - С5-конвертаза. Затем С5-конвертаза расщепляет С5 и тем самым инициирует спонтанную сборку литического комплекса из поздних компонентов - от С5 до С9. Поскольку каждый активированный фермент расщепляет много молекул следующего профермента, каскад активации ранних компонентов действует как усилитель: каждая молекула, активированная в начале всей цепи, приводит к образованию множества литических комплексов.

Основные этапы активации системы комплемента.

Классический и альтернативный пути активации системы комплемента.

Система комплемента работает как биохимический каскад реакций. Комплемент активируется тремя биохимическими путями: классическим, альтернативным и лектиновым путем. Все три пути активации производят разные варианты C3-конвертазы (белка, расщепляющего С3). Классический путь (он был открыт первым, но эволюционно является новым) требует антител для активации (специфический иммунный ответ, приобретённый иммунитет), в то время как альтернативный и лектиновый пути могут быть активизированы антигенами без присутствия антител (неспецифический иммунный ответ, врождённый иммунитет). Итог активации комплемента во всех трёх случаях одинаков: C3-конвертаза гидролизует СЗ, создавая C3a и C3b и вызывая каскад дальнейшего гидролиза элементов системы комплемента и событий активации. В классическом пути для активации С3-конвертазы необходимо образование комплекса С4bC2a. Этот комплекс образуется при расщеплении С2 и С4 С1-комплексом. С1-комплекс, в свою очередь, для активации должен связаться с иммуноглобулинами класса М или G. C3b связывается с поверхностью болезнетворных микроорганизмов, что приводит к большей «заинтересованности» фагоцитов к связанным с СЗb клеткам (опсонизация). C5a - важный хемоаттрактант, помогающий привлекать в район активации системы комплемента новые иммунные клетки. И C3a, и C5a имеют анафилотоксическую активность, непосредственно вызывая дегрануляцию тучных клеток (как следствие - выделение медиаторов воспаления). C5b начинает формирование мембраноатакующих комплексов (МАК), состоящим из C5b, C6, C7, C8 и полимерного C9. МАК - цитолитический конечный продукт активации системы комплемента. МАК формирует трансмембранный канал, вызывающий осмотический лизис клетки-мишени. Макрофаги поглощают помеченные системой комплемента болезнетворные микроорганизмы.

Биологические функции

Сейчас выделяют следующие функции:

  1. Опсонизирующая функция. Сразу вслед за активацией системы комплемента образуются опсонизирующие компоненты, которые покрывают патогенные организмы или иммунные комплексы, привлекая фагоцитов. Наличие на поверхности фагоцитирующих клеток рецептора к С3b усиливает их прикрепление к опсонизированным бактериям и активирует процесс поглощения. Такое более тесное прикрепление С3b-связанных клеток или иммунных комплексов к фагоцитирующим клеткам получило название феномена иммунного прикрепления .
  2. Солюбилизация (т.е. растворение) иммунных комплексов (молекулой C3b). При недостаточности комплемента развивается иммунокомплексная патология (СКВ-подобные состояния). [СКВ = системная красная волчанка]
  3. Участие в воспалительных реакциях. Активация системы комплемента приводит к выделению из тканевых базофилов (тучных клеток) и базофильных гранулоцитов крови биологически активных веществ (гистамина, серотонина, брадикинина), которые стимулируют воспалительную реакцию (медиаторов воспаления). Биологически активные компоненты, которые образуются при расщеплении С3 и С5 , приводят к высвобождению вазоактивных аминов, таких как гистамин , из тканевых базофилов (тучных клеток) и базофильных гранулоцитов крови. В свою очередь это сопровождается расслаблением гладкой мускулатуры и сокращением клеток эндотелия капилляров, усилением сосудистой проницаемости. Фрагмент С5а и другие продукты активации комплемента содействуют хемотаксису , агрегации и дегрануляции нейтрофилов и образованию свободных радикалов кислорода. Введение С5а животным приводило к артериальной гипотонии, сужению легочных сосудов и повышению проницаемости сосудов из-за повреждения эндотелия.
    Фукнции С3а:
    • выступать в роли хемотаксического фактора, вызывая миграцию нейтрофилов по направлению к месту его высвобождения;
    • индуцировать прикрепление нейтрофилов к эндотелию сосудов и друг к другу;
    • активировать нейтрофилы, вызывая в них развитие респираторного взрыва и дегрануляцию;
    • стимулировать продукцию нейтрофилами лейкотриенов.
  4. Цитотоксическая, или литическая функция. В конечной стадии активации системы комплемента образуется мембраноатакующий комплекс (МАК) из поздних компонентов комплемента, который атакует мембрану бактериальной или любой другой клетки и разрушает ее.
Фактор С3е, образующийся при расщеплении фактора С3b, обладает способностью вызывать миграцию нейтрофилов из костного мозга, и в таком случае быть причиной лейкоцитоза .

Активация системы комплемента

Классический путь

Классический путь запускается активацией комплекса С1 (он включает одну молекулу С1q и по одной молекуле С1r и С1s). Комплекс С1 связывается с помощью С1q с иммуноглобулинами классов М и G, связанными с антигенами. Гексамерный C1q по форме напоминает букет нераскрытых тюльпанов, «бутоны» которого могут связываться с участком антител. Для инициации этого пути достаточно единственной молекулы IgM , активация молекулами IgG менее эффективна и требует больше молекул IgG.

С1q связывается прямо с поверхностью патогена, это ведет к конформационным изменениям молекулы С1q, и вызывает активацию двух молекул сериновых протеаз С1r. Они расщепляют С1s (тоже сериновую протеазу). Потом комплекс С1 связывается с С4 и С2 и затем расщепляет их, образуя С2а и С4b. С4b и С2а связываются друг с другом на поверхности патогена, и образуют С3-конвертазу классического пути, С4b2а. Появление С3-конвертазы приводит к расщеплению С3 на С3а и С3b. С3b образует вместе с С2а и С4b С5-конвертазу классического пути. С5 расщепляется на C5a и C5b.C5b остается на мембране и соединяется с комплексом C4b2a3b.Потом соединяются С6, С7, С8 и С9,которая полимеризуется и возникает трубочка внутри мембраны. Тем самым нарушается осмотический баланс и в результате тургора бактерия лопается. Классический путь действует более точно, поскольку так уничтожается любая чужеродная клетка.

Альтернативный путь

Альтернативный путь запускается гидролизом C3 прямо на поверхности патогена. В альтернативном пути участвуют факторы В и D. С их помощью происходит образование фермента СЗbВb. Стабилизирует его и обеспечивает его длительное функционирование белок P. Далее РС3bВb активирует С3, в результате образуется С5-конвертаза и запускается образование мембраноатакующего комплекса. Дальнейшая активация терминальных компонентов комплемента происходит так же, как и по классическому пути активации комплемента. В жидкости в комплексе CЗbВb В заменяется Н фактором и под воздействием дезактивирующего соединения(Н) превращается в С3bi.Когда микробы попадают в организм комплекс СЗbВb начинает накапливаться на мембране. Он соединяется с С5, который расщепляется на C5a и C5b. C5b остается на мембране. Потом соединяются С6, С7, С8 и С9.После соединения С9 с С8, происходит полимеризация С9 (до 18 молекул сшиваются друг с другом) и образуется трубочка, которая пронизывает мембрану бактерии, начинается закачка воды и бактерия лопается.

Альтернативный путь отличается от классического следующим: при активации системы комплемента не нужно образование иммунных комплексов, он происходит без участия первых компонентов комплемента - С1, С2, С4. Он также отличается тем, что срабатывает сразу же после появления антигенов - его активаторами могут быть бактериальные полисахариды и липополисахариды(являются митогенами), вирусные частицы, опухолевые клетки.

Лектиновый (маннозный) путь активации системы комплемента

Лектиновый путь гомологичен классическому пути активации системы комплемента. Он использует лектин, связывающий маннозу, (MBL) - белок, подобный C1q классического пути активации, который связывается с маннозными остатками и другими сахарами на мембране, что позволяет распознавать разнообразные болезнетворные микроорганизмы. MBL - сывороточный белок, принадлежащий к группе белков коллектинов, который синтезируется преимущественно в печени и может активировать каскад комплемента, непосредственно связываясь с поверхностью патогена.

В сыворотке крови MBL формирует комплекс с MASP-I и MASP-II (Mannan-binding lectin Associated Serine Protease, связывающие MBL сериновые протеазы). MASP-I и MASP-II весьма схожи с C1r и C1s классического пути активации и, возможно, имеют общего эволюционного предшественника. Когда несколько активных центров MBL связываются с определенным образом ориентированными маннозными остатками на фосфолипидном бислое болезнетворного микроорганизма, MASP-I и MASP-II активируются и расщепляют белок C4 на C4a и C4b, а белок С2 на C2a и C2b. Затем C4b и C2a объединяются на поверхности болезнетворного микроорганизма, формируя C3-конвертазу, а C4a и C2b действуют как хемоаттрактанты для клеток иммунной системы.

Регуляция системы комплемента

Система комплемента может быть очень опасной для тканей хозяина, поэтому ее активация должна хорошо регулироваться. Большинство компонентов активны только в составе комплекса, при этом их активные формы способны существовать очень короткое время. Если в течение этого времени они не встретятся со следующим компонентом комплекса, то активные формы теряют связь с комплексом и становятся неактивными. Если концентрация какого-то из компонентов ниже пороговой (критической), то работа системы комплемента не приведет к физиологическим последствиям. Система комплемента регулируется специальными белками, которые находятся в плазме крови даже в большей концентрации, чем сами белки системы комплемента. Эти же белки представлены на мембранах собственных клеток организма, предохраняя их от атаки со стороны белков системы комплемента.

Регуляторные механизмы в основном действуют в трех точках.

  1. С1. Ингибитор С1 контролирует классический и лектиновый пути активации. Действует двумя путями: ограничивает действие С4 и С2 с помощью связывания C1r- и С1s-протеаз и подобным образом выключает лектиновый путь, удаляя ферменты MASP из MBP-комплекса.
  2. С3-конвертаза. Время жизни С3-конвертазы уменьшают факторы ускорения распада. Некоторые из них находятся на поверхности собственных клеток (например, DAF и CR1). Они действуют на С3-конвертазы и классического, и альтернативного путей активации. DAF ускоряет распад С3-конвертазы альтернативного пути. СR1 (C3b/C4b receptor) расположен главным образом на поверхности эритроцитов и отвечает за удаление из плазмы крови опсонизированных иммунных комплексов. Другие регуляторные белки производятся печенью и в неактивном состоянии растворены в плазме крови. Фактор I - сериновая протеаза, расщепляющая C3b и C4b. С4-связывающий белок (C4BP) расщепляет С4 и помогает фактору I расщеплять C4b.Фактор H связывается с гликозаминогликанами, которые есть на собственных клетках, но не на клетках патогенов. Этот белок является кофактором фактора I, а также ингибирует активность C3bBb.
  3. С9. CD59 и Гомологичный Фактор Ограничения ингибируют полимеризацию С9 во время образования мембраноатакующего комплекса, не давая ему сформироваться.

Роль системы комплемента при болезнях

Система комплемента играет большую роль во многих болезнях, связанных с иммунитетом.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта