Главная » Условно-съедобные грибы » Геофизика - это что такое? Где учат на геофизика.

Геофизика - это что такое? Где учат на геофизика.

), астрономией, математикой, физикой и многими техническими науками, физической географией и др.

Крупные разделы геофизики — солнечно-земная физика, физика атмосферы, гидрофизика и физика "твёрдой" Земли, разведочная геофизика, промысловая геофизика и вычислительная геофизика.

Солнечно-земная физика изучает явления и процессы в межпланетной и околоземной среде. Состояние ионосферы и магнитосферы , форма радиационных поясов и т.п. зависят от уровня солнечной активности, вариаций потоков электромагнитного излучения и космических лучей. Наиболее сильные возмущения ионосферы и магнитосферы связаны с солнечными вспышками, которые сопровождаются многократным усилением потоков частиц высоких энергий и увеличением интенсивности электромагнитного излучения во всех диапазонах. Это вызывает полярные сияния, магнитные бури, изменяет отражательную способность ионосферы, нарушает энергетический баланс тропосферы, что приводит к вариациям метеорологических факторов и т.п.

Физика атмосферы изучает процессы и явления в атмосфере, свойства газовых составляющих, поглощение и излучение ими радиации, химические реакции, распределение температуры и давления, испарение и конденсацию водяного пара, образование облаков и выпадение осадков, разнообразные формы движения в атмосфере. Физика атмосферы разделяется на метеорологию, изучающую нижние слои атмосферы, и аэрономию, исследующую верхние слои. Тепловое излучение и различные оптические эффекты изучаются актинометрией и атмосферной оптикой.

Выделяются в отдельные отрасли науки учения об атмосферном электричестве, акустике и турбулентности.

Гидрофизика изучает строение и физические процессы в гидросфере и тесно связана с географией, геохимией, геологией, гидрогеологией и др. Гидрофизика разделяется на физику моря, гидрологию суши. Физика моря (физика океана) исследует физические процессы в Мировом океане и включает термодинамику, гидродинамику, акустику, оптику, ядерную гидрофизику (изучение радиоактивности вод океана и её изменения), а также занимается исследованием квазистационарных электрических и магнитных полей в океане, распространения в нём низкочастотных электромагнитных возмущений, возникающих благодаря электропроводности морской воды, магнитогидродинамических эффектов. Крупнейшая проблема физики океана — взаимодействие атмосферы и океана — имеет большое прикладное значение, в частности, для прогноза погоды и климатологии. Гидрология суши исследует поверхностные воды (реки, озёра, водохранилища, болота, ледники).

Физика Земли (или геофизика в узком смысле слова) представляет комплекс наук, изучающий строение и эволюцию т.н. твёрдой Земли, её состав, свойства, процессы в недрах и др. В зависимости от предмета исследования в физике Земли выделяются самостоятельные крупные разделы: , гравиметрия, геомагнетизм, геоэлектрика, геодинамика, исследование и при высоких давлениях и температурах, а также других геофизических наук, возникшие и развивающиеся на стыке с геологией (тектонофизика и др.), математикой, химией и т.д.

Сейсмология — наиболее обширный раздел физики Земли. Долгое время она была наукой о и сейсмических волнах. Современная занимается измерениями и анализом всех видов движений в земной коре, которые регистрируются на суше, а также на дне океанов и морей. В сейсмологии используются волны как от естественных источников (землетрясений), так и от искусственных источников — и различного типа вибраторов. Исследование характера распространения , а также измерения периодов собственных колебаний Земли позволили решить основную задачу сейсмологии — построить сейсмическую модель Земли. Глобальная сейсмическая модель даёт распределение скоростей продольных и поперечных волн с глубиной или в зависимости от радиуса с учётом неоднородности Земли и специфики отдельных регионов, позволяет установить распределение плотности, давления, модулей упругости и других физических параметров, разделить недра на специфические зоны. Изучение землетрясений включает выявление их географической распространённости и связи с региональными особенностями, распределение их по энергиям (см. сейсмичность Земли), разработку теории подготовки и механизма землетрясения (физика очага землетрясений), критериев прогноза (анализ их предвестников). К "малым" задачам сейсмологии можно отнести исследование сейсмических шумов от промышленных установок и транспорта, микросейсм, связанных со штормами и волнением в океанах, а также цунами и их предсказание. Данные сейсмологии используются в различных геологических концепциях (например, для разработки теории тектоники плит), при решении крупных прикладных задач — прогноза землетрясений, сейсмического микрорайонирования и оценки сейсмического риска, прогноза значительных перемещений, вызываемых землетрясениями и взрывами, обнаружения и распознавания ядерных взрывов, выбора территорий для строительства атомных электростанций. Сейсмические методы широко применяются в разведочной и промысловой геофизике (см. , ), а также в исследованиях других объектов Солнечной системы (например, Луны, Марса и Венеры).

Использование ИСЗ радикально изменило облик классической гравиметрии. С одной стороны, траекторные измерения позволили с высокой точностью определить гравитационный потенциал Земли, с другой — спутниковая альтиметрия установила с ещё большей детальностью форму уровня океанов и, таким образом, поверхность геоида на океанах. К гравиметрии примыкает научное направление — изучение современных движений земной коры и их связи с подготовкой землетрясений. Методы гравиметрии широко используются в разведочной геофизике (см. ).

В результате космических исследований получены количественные данные (разной степени детальности) о гравитационном поле Луны, Марса, Венеры, Меркурия, Юпитера и Сатурна.

Геомагнетизм изучает геомагнитное поле и его пространственно-временные вариации. Вековые вариации отражают сложную картину гидромагнитных течений и колебаний в ядре Земли, где расположены источники собственно геомагнитного поля. Вариации могут также возникать как результат электромагнитного взаимодействия на границе ядро — мантия. Источники суточных и более коротких вариаций геомагнитного поля находятся в атмосфере и магнитосфере. Эти вариации индуцируют теллурические токи в верхних слоях Земли. Создание законченной теории геомагнитного поля — одна из важнейших нерешённых задач геофизики.

Крупным разделом геомагнетизма является наука о магнитных свойствах горных пород, изучение которых археомагнитными и палеомагнитными методами позволяет охарактеризовать геомагнитное поле далёкого прошлого. Явление смены полярности геомагнитного поля с периодами в сотни тысяч и млн. лет положено в основу геомагнитной хронологической шкалы, которая широко используется для установления перемещений земной коры океанов и дрейфа материков в историческое и геологическое время. Открытие западного дрейфа недипольной части изолиний магнитного поля со скоростью примерно 0,2° в год по долготе позволило оценить скорости долготных течений в ядре. Данные геомагнитных исследований применяются для решения задач тектоники, поисков и разведки месторождений полезных ископаемых (см. ) и др. По астрономическим наблюдениям магнитное поле было обнаружено у Юпитера; с помощью космических аппаратов были открыты магнитные поля Меркурия, Марса, Сатурна, а также обнаружены следы намагниченности лунных пород, что, по-видимому, свидетельствует о существовании в первые 1,5 млрд. лет собственного магнитного поля Луны.

Геотермия (геотермика) изучает тепловое состояние, распределение температуры и её источников в недрах и тепловую историю Земли. Вопрос о распределении температур тесно связан с распределением источников тепла в глубинах Земли, что имеет фундаментальное значение для любых гипотез о строении и эволюции планеты. Температура вместе с давлением и значением касательных напряжений определяет состояние вещества и характер процессов в недрах Земли. В отличие от давления, характер распределения температуры с глубиной отличается большей неопределённостью. Экспериментальная геотермия основана на измерении нарастания температуры с глубиной () и теплового потока из земных недр. Построены детальные карты теплового потока на поверхности Земли и проведён гармонический анализ этих данных. Наличие корреляции величины теплового потока с различными тектоническими структурами ( , и и т.д.) и их возрастом привело к созданию структурной геотермии, результаты которой используются в теоретической . Современная геотермия тесно связана с , т.к. находится в конвективном состоянии и конвективный теплоперенос на порядок более эффективен, чем кондуктивный. Исследование теплового потока Земли показало примерное равенство среднего теплового потока для континентов и океанов (несмотря на большую концентрацию радиоактивных источников в более мощной ); однако некоторые исследователи считают, что значения теплового потока в океанах несколько выше, чем на континентах. Эта проблема является одной из основных задач в современной геотермии, решение которой намечается в современных геодинамических моделях. Тепловые аномалии используют при разведке месторождений полезных ископаемых (см. ), а также при оценке геотермальных ресурсов. Оценка теплового потока Луны показала, что его значение в 3-4 раза меньше, чем среднее значение теплового потока Земли.

Геодинамика изучает методы механики сплошных сред и неравновесной термодинамики свойства и процессы, протекающие в "твёрдой" Земле, а также связи тектонических, магматических и метаморфических процессов с глубинными (главным образом тепло- и массоперенос в коре и мантии). При этом исследуются явления и процессы различных пространственных и временных масштабов — от глобальных (фигура Земли, собственные колебания Земли, дрейф континентов) до локальных процессов в очагах землетрясений, слоях горных пород, шахтах, скважинах и т.п. Основная задача современной глобальной геодинамики — исходя из законов физики и химии, дать описание тектонических процессов на континентах и океанах, а также построить термомеханические модели глубинных процессов, определяющих глобальные тектонические явления в земной коре и литосфере с учётом реальных физических свойств вещества Земли.

Для разработки термомеханических аспектов геолого-геофизических концепций и проверки механической обоснованности существующих геотектонических гипотез строятся всё более совершенные геодинамические модели: спрединга, деформирования литосферы в различных регионах, образования и жизни систем разломов, областей перехода от океана к континенту и т.д. (См. также ст. .)

Исследования и при высоких давлениях и температурах являются важной отраслью геофизики. Непосредственное проникновение в недра Земли затруднено, поэтому условия, в которых находятся породы в недрах Земли, моделируют в лабораториях. Динамические методы, использующие для сжатия мощной ударной волны, позволяют восстановить диапазон давлений и температур в недрах. При динамических сжатиях эксперимент длится доли мкс, за которые выполняют необходимые измерения.

В статических установках были изучены фазовые превращения основных породообразующих минералов мантии ( , ) и получены соответствующие фазовые диаграммы до давлений ~3.10 МПа и температурах ~1600°С. Эти результаты были использованы для физической интерпретации природы переходной зоны мантии. В лабораторных установках были выполнены обширные исследования в связи с решением проблемы их образования и взаимодействия при движении от источника магмы к поверхности Земли. Изучены реологические параметры минералов и горных пород при t до ~ 1600°С и давлениях в несколько сотен МПа. Полученные данные используются для оценки параметров неустановившейся и установившейся ползучести минералов и горных пород в коре и . В лабораториях также проводятся систематические исследования электропроводности, теплопроводности, магнитных свойств, скоростей упругих волн, неупругости, пластичности и разрушения минералов и горных пород. Созданы специальные прессы с программным управлением для детального изучения стадий предразрушения, разрушения и послеразрушения в связи с задачами физики очагов землетрясений и проблемой прогноза землетрясений.

Вычислительная геофизика . В основе всей геофизики лежат накопление и анализ большого количества наблюдений, полученных в различных точках земного шара (в т.ч. с помощью ИСЗ). Массовый сбор информации невозможен без автоматизации геофизических исследований. Для хранения этой информации, её редукции и представления в удобном для научных целей виде созданы банки геофизических данных, использование которых было бы невозможно без широкого применения ЭВМ и разработки стандартных и специализированных вычислительных методов. Это привело к возникновению нового направления, получившего название вычислительная геофизика, которая разрабатывает методы и алгоритмы для решения некорректных и обратных задач, позволяет удобно комплексировать разнородные геофизические данные; методы комплексного анализа геофизических, геологических и геоморфологических данных в задачах сейсмического районирования, прогноза землетрясений, поиска полезных ископаемых, расшифровки космических снимков. Методы вычислительной геофизики используются для изучения степени корреляции геофизических полей и строения земной коры. Вычислительная геофизика тесно связана с теоретической геофизикой, особенно при разработке громоздких трёхмерных глобальных и региональных моделей. Она также занимается численным моделированием различных геофизических явлений и процессов.

Краткий исторический очерк . История геофизики сложна из-за неравномерности развития её крупных разделов и ещё недостаточно разработана. Т. к. освоение планеты невозможно без элементарных геофизических наблюдений — измерения расстояний, определения направлений на морях и океанах, описания и систематизации стихийных бедствий и т.д., то естественно, что элементы наблюдательной геофизики известны с глубокой древности, а суждения о различных геофизических явлениях встречаются у многих античных учёных. Предпосылки для создания геофизики как науки заложены в 17-19 вв., когда были открыты основные законы макроскопической физики и осознана необходимость перехода к глобальным наблюдениям и созданию геофизических обсерваторий для накопления большей частью наблюдений. Как комплексная самостоятельная наука геофизика определилась к середине 19 века, когда были накоплены достаточно обширные материалы геофизических наблюдений, позволившие приступить к их обобщению и физическому истолкованию. На основании полученных результатов началось систематическое изучение строения и физических свойств твёрдой, жидкой и газообразной оболочек Земли. Чисто условно завершение первого этапа формирования геофизики как комплексной многоотраслевой науки можно отнести к 1-му Международному геофизическому году (1882-1883), проведённому по инициативе австрийского учёного К. Вайпрехта (сам год получил название Международного полярного года, МПГ). В проведении МПГ приняли участие Россия, Дания, Нидерланды, Норвегия, Австро-Венгрия, и другие страны, которые организовали ряд экспедиций в полярные широты. Председателем полярной комиссии (руководившей всей работой МПГ) был избран директор главной геофизической обсерватории в Петербурге академик Г. И. Вильд.

В начале 20 века геофизика утратила центральное положение в естествознании. Качественно новый этап развития геофизики начался в конце 30-х — начале 40-х гг., когда были построены первые реальные сейсмические модели Земли. С 60-х гг. благодаря использованию ЭВМ, автоматизации наблюдений и их обработки неизмеримо вырос объём собираемой и перерабатываемой информации. Использование достижений и методов физики твёрдого тела и физики высоких давлений позволило перейти от проблемы внутреннего строения Земли к физике земных недр. Космические исследования неизмеримо расширили возможности геофизики. Возникла новая наука — сравнительное планетоведение, в которой геофизические методы играют определяющую роль. Значение геофизики резко возросло в связи с тем, что стоящие перед ней проблемы — изучение и оценка природных ресурсов, охрана окружающей среды, прогноз погоды и стихийных бедствий, исследование , космические исследования, контроль за ядерными испытаниями — принадлежат к числу основных глобальных проблем. В связи с этим геофизика снова выдвинулась на одно из центральных мест в современном естествознании.

Организация геофизических исследований . Сотрудничество в области наук о Земле осуществляется рядом международных научных союзов. Международный геодезический и геофизический союз (МГГС) объединяет деятельность международных ассоциаций (геодезии, сейсмологии и физики недр Земли, вулканологии и химии недр Земли и др.) и входит в Международный совет научных союзов ЮНЕСКО. В рамках МГГС осуществляются международные мероприятия и программы изучения Земли, Международный геофизический год, Международный год геофизического сотрудничества, проекты "Верхняя мантия Земли", "Литосфера". Решения МГГС реализуются комитетами стран — членов союза. Существуют межсоюзные комиссии, например, по геодинамике, по проекту литосферы и др. Организацию ежегодных конференций для геофизиков Европы и другие мероприятия проводят Европейское геофизическое общество, Европейская сейсмологическая комиссия и др. Многостороннее сотрудничество социалистических стран осуществляется в рамках Комиссии академий наук социалистических стран по планетарной геофизике, комиссиями по различным геофизическим проектам.

В СССР организацию геофизических исследований ведут научные советы и комиссии при Президиуме Академии Наук СССР и при Государственном комитете по науке и технике: Межведомственный геофизический комитет (секции: , и физики недр Земли, метеорологии и физики атмосферы, геомагнетизма и аэрономии, океанографии, гидрологии, вулканологии); Межведомственный совет по сейсмологии и сейсмостойкому строительству при Президиуме Академии Наук СССР; Комиссия по прогнозу землетрясений; научные советы по геотермическим исследованиям, геофизическим методам разведки, комплексным исследованиям земной коры и верхней мантии, геомагнетизму, народно-хозяйственному использованию взрывов, по механике горных пород и горному давлению; Советский комитет по международной программе геологической корреляции; Объединённый совет наук о Земле и др. Геофизические исследования ведутся в многочисленных научных геофизических и комплексных институтах.

Основные периодические издания по различным отраслям геофизики издаются в основном Академией Наук СССР: "Геология и геофизика" (с 1960), "Океанология" (с 1961), "Геомагнетизм и аэрономия" (с 1961), "Известия Академии Наук СССР. Физика Земли" (с 1965), "Геотектоника" (с 1965), "Известия Академии Наук СССР. Серия Физика атмосферы и океана" (с 1965), "Вулканология и сейсмология" (с 1979), "Геофизический журнал" (К., с 1979), "Исследования Земли из космоса" (с 1980), "Известия Академий наук" союзных республик и др.

И планеты

Геофи́зика (от др.-греч. γῆ - Земля + φύσις - природа) или физика Земли - комплекс наук, исследующих физическими методами строение Земли . Геофизика в широком смысле изучает физику твёрдой Земли (земную кору , мантию , жидкое внешнее и твёрдое внутреннее ядро), физику океанов , поверхностных вод суши (озёр , рек , льдов) и подземных вод, а также физику атмосферы (метеорологию , климатологию , аэрономию). Подразделяется на фундаментальную и прикладную (разведочную геофизику).

Разведочная геофизика

Разведочной геофизикой называют раздел геофизики, посвящённый изучению строения Земли с целью поиска и уточнения строения залежей полезных ископаемых , а также выявлению предпосылок для их образования. Разведочные геофизические исследования проводятся на суше, акватории морей, океанов и пресных водоемов, в скважинах, с воздуха и из космоса. Разведочная геофизика является важной составляющей геологоразведочного процесса благодаря высокой эффективности, надёжности, дешевизне и скорости проведения. К методам разведочной геофизики относят сейсморазведку , электроразведку на постоянном и переменном токе, магниторазведку, гравиразведку, геофизические исследования скважин, радиометрию, ядерную геофизику и теплометрию.

Сейсморазведка

Сейсморазведка - раздел разведочной геофизики, включающий методы изучения строения Земли, основанные на возбуждении и регистрации упругих волн. Породы земной коры различаются по упругим свойствам - модулю Юнга , коэффициенту Пуассона , скорости продольных и поперечных волн и плотности. На границах слоев с различными упругими свойствами возникают вторичные волны, содержащие информацию о геологическом строении.

Для регистрации колебаний упругих волн применяют специальные устройства - сейсмоприёмники , преобразующие колебания частиц почвы в электрический сигнал. Полученная информация собирается на графиках, называемых сейсмограммами, обрабатывается и получает геологическое толкование. В результате строение земной коры изображается в виде разрезов и карт, на которых определяется место возможного скопления полезных ископаемых.

Гравиразведка

Гравиразведкой (гравиметрией) называется раздел разведочной геофизики, изучающий изменение ускорения свободного падения в связи с изменением плотности геологических тел. Гравиразведка активно применяется при региональном исследовании земной коры и верхней мантии, выявлении глубинных тектонических нарушений, поиске полезных ископаемых - преимущественно рудных, выделении алмазоносных трубок взрыва. Гравиразведка позволяет изучать состав горных пород, и их положение в геологическом разрезе, например для магматических с ростом основности возрастает концентрация железистых соединений и плотность.

Для проведения гравиразведки применяются гравиметры, чувствительные приборы, измеряющие ускорение свободного падения. Единицей измерения этой величины является Гал или более употребительные мГал или мкГал. Крупные геологические тела характеризуются аномалиями в десятки и даже сотни мГал.

Магниторазведка

Магниторазведка - раздел разведочной геофизики, исследующий магнитное поле Земли (его источники и изменения на протяжении геологической истории Земли), а также магнитные свойства горных пород. С целью поисков месторождений полезных ископаемых магниторазведка применяется в виде наземной, морской или аэромагнитной съёмки. Магнитная съёмка проводится, как правило, по сети параллельных линий, или профилей. После ввода необходимых поправок строится карта магнитного поля в виде графиков или изолиний. На карте могут находиться области спокойного поля и магнитные аномалии - локальные возмущения магнитного поля, вызванные неоднородностями магнитных свойств горных пород. Магниторазведка проводится с целью выявления аномалий как непосредственно связанных с полезным ископаемым, так и с контролирующими залежь тектоническими и стратиграфическими структурами.

Электроразведка

Геофизическое исследование скважин

Геофизические исследования скважин (ГИС) - исследования бурящихся, промысловых и других скважин геофизическими методами с целью изучения разреза скважины для последующей качественной и количественной геологической оценки, как самой скважины, так и месторождения в целом.

Комплекс ГИС включает в себя множество методов, которые можно условно разделить на несколько больших и не очень разделов, в зависимости от типа изучаемых физических параметров пород. Работы проводят с помощью геофизического оборудования . Методов каротажа и ГИС довольно много. Они включают в себя:

  • Электрический каротаж - объектом исследований являются электрические свойства горных пород.
  • Ядерно-геофизические методы каротажа, основанные на изучении поведения ионизирующих излучений в скважине.
  • Термокаротаж.
  • Инклинометрия.
  • Радиоактивные методы (гамма-каротаж и гамма-спектральный каротаж , нейтронный каротаж).

Существуют и некоторые другие отдельные виды геофизических работ в скважинах.

Наиболее широкое применение геофизических исследований скважин приходится на нефтегазовую промышленность:

  • Каротажи.
  • Контроль за разработкой месторождения.
  • Перфорация.

Одной из составляющих данного комплекса наук является разведочная геофизика, строение Земли. Ее основная цель: поиск и уточнение строения залежей , выявление предпосылок для их образования. Исследования проводятся на суше, в акватории морей, пресных водоемах и океанах, в скважинах, из и с воздуха.

Вследствие своей высокой эффективности, дешевизны, надежности и скорости проведения работ разведочная геофизика является важной составной частью геологоразведочного процесса. Основными методами разведочной геофизики являются: сейсморазведка, электроразведка на переменном и постоянном токе, магниторазведка, гравиразведка, геофизические исследования , радиометрия, ядерная геофизика и теплометрия.

Сейсморазведка – это раздел разведочной геофизики, который включает методы изучения строения Земли, в основе которых лежит возбуждение и регистрация упругих волн. Для регистрации колебаний этих волн исследователями применяются специальные устройства – сейсмоприемники, которые преобразуют колебания почвенных частиц в электрический сигнал. Полученная в результате исследований информация отображается на графиках, которые называются сейсмограммами. Строение земной коры изображается на специальных картах, по которым определяются места возможных скоплений полезных ископаемых.

Гравиразведкой называется геофизический метод, который изменения ускорения свободного падения, связанные с изменениями плотности геологических тел. Данный метод активно применяется в процессе региональных исследований земной коры, при выявлении глубинных тектонических нарушений и поиске полезных ископаемых. Для проведения гравиразведки специалисты применяют гравиметры – специальные приборы, которые измеряют ускорение свободного падения.

Магниторазведка, как еще одна составляющая геофизики, применяется в целях поиска месторождений полезных ископаемых. Проводится в виде наземной, аэромагнитной или морской съемки. На основе полученных данных строится магнитного поля, содержащая графики или изолинии. На ней могут находиться области со спокойным полем и магнитные аномалии, характеризующиеся локальными возмущениями, вызванными неоднородностью магнитных свойств горных пород.

Методы электроразведки помогают изучать параметры геологического разреза. Для этого измеряются показатели постоянного электрического или же переменного электромагнитного поля. Исследование методом вызванной поляризации может служить примером электроразведочных мероприятий.

Помимо разведочной геофизики, существует еще и

49.4

Для друзей!

Справка

Наука геофизика относительно молода. Она появилась в середине XIXвека. Геофизика основана на расширении представления человека об окружающем мире: он состоит не только из различных веществ - значительное место занимают электромагнитные поля. Их нельзя почувствовать, но можно измерить специальными приборами.

Сегодня главные задачи геофизики - изучение природных ресурсов Земли, охрана окружающей среды, контроль над ядерными испытаниями, составление прогнозов погоды и стихийных бедствий. Кроме этого, они проводят исследования Мирового океана и космические исследования.

Описание деятельности

В зависимости от своей специализации (геофизик-нефтяник, инженер-геофизик, геофизик-разведчик, сейсморазведчик, гравиразведчик и др.), геофизик выполняет разные виды деятельности. Он может работать как в научно-исследовательской лаборатории за компьютером, так и в полевых условиях, выезжая в командировки. Геофизикам приходится бывать в тундрах, пустынях, в горах и других необычных и даже труднодоступных местах. Иногда нужно карабкаться по горам или сплавляться по бурным рекам.

Геофизики ведут поиск и разведку месторождений руды, нефти и газа, подземных вод на суше и шельфах морей, проводят сейсмическую разведку. В арсенале геофизиков множество специальных инструментов и приборов: геодезические, гидрографические, океанографические, гидрологические, метеорологические или геофизические. С их помощью проводятся необходимые измерения магнитных, электрических и гравитационных полей. По результатам измерений они составляют карты структуры земной коры, рельефа дна океана, определяют толщину ледниковых покровов, а также состав и происхождение горных пород.

Геофизики также занимаются сейсморазведкой - исследованием земной коры с помощью искусственно создаваемых взрывом или ударом сейсмических волн. Все полученные результаты анализируются на компьютере.

Кроме общих знаний физики и географии геофизику необходимо иметь геолого-геофизические сведения об изучаемом районе. Он должен знать специальные профессиональные компьютерныепрограммы и уметь составлять карты. В своей работе геофизик применяет знания инженерной геологии в строительстве плотин, мостов, туннелей и крупных сооружений.

Заработная плата

средняя по России: средняя по Москве: средняя по Санкт-Петербургу:

Трудовые обязанности

Геофизик проводит научные исследования состава, строения земной коры, изучает историю ее развития, условия залегания и химический состав горных пород. Он исследует географическое распространение, состав и свойства поверхностных и подземных вод, ледников и снежных покровов, а также совершенствует методы исследований.

В обязанности геофизиков входит планирование и проведение поисковых и разведывательных работ. Они составляют карты магнитных полей Земли, которые применяют в навигации при разведке полезных ископаемых.

После того, как месторождение открыто, геофизику необходимо оценить его запасы. Он должен спланировать разработку наиболее рационально, чтобы не нанести ущерба окружающей среде.

Особенности карьерного роста

Новоиспеченные геофизики обычно начинают свою карьеру в должности техника, выполняя отдельные виды измерений. Геофизики требуются в научно-исследовательских и проектных организациях, геологоразведочных организациях, на предприятиях промышленной отрасли и в нефтедобывающих компаниях. Здесь можно дослужиться до старшего геофизика или начальника участка.

Характеристика сотрудника

Кроме интереса к физике и географии профессиональному геофизику необходимы хорошие математические способности, ведь приходится совершать множество расчетов. Аналитический склад ума и пространственное мышление важны при проведении разнообразных измерений и исследований, а также при последующей их обработке на компьютере и составлении карт. Геофизику потребуются к тому же такие качества, как внимательность и кропотливость.

Так как измерения часто проводятся в полевых условиях, при чем в разных климатических поясах и погодных условиях, геофизик должен обладать крепким здоровьем и физической выносливостью.

Он должен уметь работать в коллективе и быть готовым к взаимовыручке.

Геофизика - комплекс наук, исследующих физическими методами строение Земли и физические процессы, происходящие в ее сферах. Геофизика, в широком смысле, изучает физику твердой Земли (земную кору, мантию, жидкое внешнее и твердое внутреннее ядро) вместе с явлениями, которые в ней происходят или происходили, физику океанов, поверхностных вод суши (озер, рек, льдов) и подземных вод, а также физику атмосферы (метеорологию, климатологию, аэрономию).

Большинство прикладных и теоретических вопросов, решаемых геофизикой, связано с изучением не только Земли, но и окружающего пространства, доступного и недоступного непосредственному прямому наблюдению.

Имеются разные модели строения Земли. Для геофизиков она проста и понятна. Выделяют внешнюю оболочку Земли - атмосферу, включающую тропосферу, стратосферу и мезосферу, которые простираются соответственно до высот около 20, 50 и 100 км, а также ближний космос с ионосферой и термосферой, достигающими высот более 300 и 5000 км соответственно. Внутренние оболочки Земли включают в себя внешнюю геолого-геофизическую среду от земной поверхности до глубин порядка 1 км, осадочный чехол (до 15 км), кристаллический фундамент (10-40 км), земную кору, объединяющую все верхние оболочки Земли (до 10 км в океанах, до 70 км в горах), акватории поверхностных вод суши (океаны, моря, озера, реки) с глубинами до 15 км, подземную гидросферу и литосферу, часто называемую гидролитосферой (примерно до 50-100 км), астеносферу (от кристаллического фундамента до границы порядка 600 км, так называемую верхнюю мантию), нижнюю мантию (от 600 км до 2900 км) и ядро (от 2900 км до центра Земли).

Земля характеризуется наличием физических полей. К естественным физическим полям Земли относят: поле силы тяжести (гравитационное), геомагнитное и электромагнитные поля космической и атмосферной природы, электрические поля электрохимического происхождения, упругие поля землетрясений, тепловое (геотермическое) поле, поля внутренних недр, ядерных излучений.

Искусственными неуправляемыми считаются техногенные физические поля промышленных помех (электромагнитные, упругие, тепловые, ядерных излучений).

Искусственными управляемыми являются физические поля, специально созданные для геофизических исследований (электромагнитные, упругие, тепловые, ядерные).

В.К. Хмелевской. Геофизические методы исследования земной коры

В.М. Бондаренко, Г.В. Демура, Е.И. Савенко. Общий курс разведочной геофизики

В.В. Орлёнок. Физика Земли, планет и звезд

В.А. Магницкий. Внутреннее строение и физика Земли

Б. Гутенберг. Внутреннее строение Земли

Б. Гутенберг. Физика земных недр



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта