Главная » Условно-съедобные грибы » Распределение больцмана для классических и квантовых частиц. Распределение больцмана

Распределение больцмана для классических и квантовых частиц. Распределение больцмана

Барометрическая формула - зависимость давления или плотности газа от высоты в поле силы тяжести.

Для идеального газа, имеющего постоянную температуру и находящегося в однородном поле тяжести (во всех точках его объёма ускорение свободного падения одинаково), барометрическая формула имеет следующий вид:

где - давление газа в слое, расположенном на высоте , - давление на нулевом уровне (), - молярная масса газа, - универсальная газовая постоянная, - абсолютная температура. Из барометрической формулы следует, что концентрация молекул (или плотность газа) убывает с высотой по тому же закону:

где - масса молекулы газа, - постоянная Больцмана.

Барометрическая формула может быть получена из закона распределения молекул идеального газа по скоростям и координатам в потенциальном силовом поле (см. Статистика Максвелла - Больцмана). При этом должны выполняться два условия: постоянство температуры газа и однородность силового поля. Аналогичные условия могут выполняться и для мельчайших твёрдых частичек, взвешенных в жидкости или газе. Основываясь на этом, французский физик Ж. Перрен в 1908 году применил барометрическую формулу к распределению по высоте частичек эмульсии, что позволило ему непосредственно определить значение постоянной Больцмана.

Барометрическая формула показывает, что плотность газа уменьшается с высотой по экспоненциальному закону. Величина , определяющая быстроту спада плотности, представляет собой отношение потенциальной энергии частиц к их средней кинетической энергии, пропорциональной . Чем выше температура , тем медленнее убывает плотность с высотой. С другой стороны, возрастание силы тяжести (при неизменной температуре) приводит к значительно большему уплотнению нижних слоев и увеличению перепада (градиента) плотности. Действующая на частицы сила тяжести может изменяться за счёт двух величин: ускорения и массы частиц .

Следовательно, в смеси газов, находящейся в поле тяжести, молекулы различной массы по-разному распределяются по высоте.

Реальное распределение давления и плотности воздуха в земной атмосфере не следует барометрической формуле, так как в пределах атмосферы температура и ускорение свободного падения меняются с высотой и географической широтой. Кроме того, атмосферное давление увеличивается с концентрацией в атмосфере паров воды.

Барометрическая формула лежит в основе барометрического нивелирования - метода определения разности высот между двумя точками по измеряемому в этих точках давлению ( и ). Поскольку атмосферное давление зависит от погоды, интервал времени между измерениями должен быть возможно меньшим, а пункты измерения располагаться не слишком далеко друг от друга. Барометрическая формула записывается в этом случае в виде: (в м), где - средняя температура слоя воздуха между точками измерения, - температурный коэффициент объёмного расширения воздуха. Погрешность при расчётах по этой формуле не превышает 0,1-0,5 % от измеряемой высоты. Более точна формула Лапласа, учитывающая влияние влажности воздуха и изменение ускорения свободного падения.

Предположим, что газ находится во внешнем потенциальном поле. В таком случае молекула газа массы $m_0\ ,$ движущаяся со скоростью $\overrightarrow{v}\ $имеет энергию ${\varepsilon }_p$, которая выражается формулой:

Вероятность ($dw$) нахождения этой частицы в фазовом объеме $dxdydzdp_xdp_ydp_z$ равно:

Плотности вероятности координат частицы и ее импульсов независимы, следовательно:

Формула (5) дает распределение Максвелла для скоростей молекул. Рассмотрим внимательнее выражение (4), которое приводит к распределению Больцмана. $dw_1\left(x,y,z\right)$ -- плотность вероятности нахождения частицы в объеме $dxdydz$ вблизи точки с координатами $\left(x,y,z\right)$. Будем считать, что молекулы газа независимы и в выделенном объеме газа n частиц. Тогда по формуле сложения вероятностей получим:

Коэффициент $A_1$ находится из условия нормировки, которое в имеющемся у нас случае значит, что в выделенном объеме n частиц:

Что такое распределение Больцмана

Распределением Больцмана называют выражение:

Выражение (8) задает пространственное распределение концентрации частиц в зависимости от их потенциальной энергии. Коэффициент $A_1$ не вычисляют, если необходимо знать только распределение концентрации частиц, а не их количество. Допустим, что в точке ($x_0,y_{0,}z_0$) задана концентрация $n_0$=$n_0$ $(x_0,y_{0,}z_0)=\frac{dn}{{dx}_0dy_0{dz}_0}$, потенциальная энергия в той же точке $U_0=U_0\left(x_0,y_{0,}z_0\right).$ Обозначим концентрацию частиц в точке (x,y,z) $n_0\ \left(x,y,z\right).\ $Подставим данные в формулу (8), получим для одной точки:

для второй точки:

Выразим $A_1$ из (9), подставим в (10):

Чаще всего распределение Больцмана используют именно в виде (11). Особенно удобно подобрать нормировку, при которой $U_0\left(x,y,z\right)=0$.

Распределение Больцмана в поле сил тяжести

Распределение Больцмана в поле сил тяжести имеет можно записать в следующем виде:

\\ }dxdydz\ \left(12\right),\]

где $U\left(x,y,z\right)=m_0gz$ -- потенциальная энергия молекулы массы $m_0$ в поле тяжести Земли, $g$ -- ускорение свободного падения, $z$ -- высота. Или для плотности газа распределение (12) запишется как:

\[\rho ={\rho }_0{exp \left[-\frac{m_0gz}{kT}\right]\ }\ \left(13\right).\]

Выражение (13) называют барометрической формулой.

При выводе распределения Больцмана никаких ограничений для массы частицы не применялось. Следовательно, оно применимо и для тяжелых частиц. Если масса частицы велика, то показатель экспоненты быстро изменяется с высотой. Таким образом, сама экспонента быстро стремится к нулю. Для того, чтобы тяжелые частицы "не осели на дно", необходимо, чтобы их потенциальная энергия была малой. Это достигается в том случае, если частицы помещают, например, в плотную жидкость. Потенциальная энергия частицы U(h) на высоте h взвешенная в жидкости:

где $V_0$- объем частиц, $\rho $- плотность частиц, ${\rho }_0$ -- плотность жидкости, h -- расстояние (высота) от дна сосуда. Следовательно, распределение концентрации частиц взвешенных в жидкости:

\\ }\ \left(15\right).\]

Для того, чтобы эффект был заметен, частицы должны быть малы. Визуально этот эффект наблюдают с помощью микроскопа.

Пример 1

Задание: В поле силы тяжести находятся два вертикальных сосуда с разными газами (водород при $T_1=200K\ $ и гелий при $T_2=400K)$. Сравнить плотности этих газов на высоте h, если на уровне h=0 плотности газов были одинаковы.

В качестве основы для решения задачи используем барометрическую формулу:

\[\rho ={\rho }_0{exp \left[-\frac{m_0gz}{kT}\right]\ }\left(1.1\right)\]

Запишем (1.1) для водорода:

\[{\rho }_1={\rho }_0{exp \left[-\frac{m_{H_2}gh}{kT_1}\right]\ }\left(1.2\right),\]

где $m_{H_2}=\frac{{\mu }_{H_2}}{N_A}$ , ${\mu }_{H_2}\ $- молярная масса водорода, $N_A$ -- постоянная Авогадро.

Запишем (1.1) для гелия:

\[{\rho }_2={\rho }_0{exp \left[-\frac{m_{He}gh}{kT_2}\right]\ }\left(1.3\right),\]

где $m_{H_2}=\frac{{\mu }_{He}}{N_A}$ , ${\mu }_{He}\ $- молярная масса гелия.

Найдем отношение плотностей:

\[\frac{{\rho }_1}{{\rho }_2}=\frac{{exp \left[-\frac{\frac{{\mu }_{H_2}}{N_A}\ gh}{kT_1}\right]\ }}{{exp \left[-\frac{\frac{{\mu }_{He}}{N_A}gh}{kT_2}\right]\ }}=exp\frac{gh}{kN_A}\left[-\frac{{\mu }_{H_2}}{T_1}+\frac{{\mu }_{He}}{T_2}\right]=exp\frac{gh\left({\mu }_{He}T_1-{\mu }_{H_2}T_2\right)}{kN_AT_1T_2}\ \left(1.4\right).\]

Подставим имеющиеся данные, вычислим отношения плотностей:

\[\frac{{\rho }_1}{{\rho }_2}=exp\frac{gh\left(4\cdot 200-2\cdot 400\right)}{kN_A200\cdot 400}=1\]

Ответ: Плотности газов одинаковы.

Пример 2

Задание: Эксперименты с распределением взвешенных частиц в жидкости проводил, начиная с 1906 г., Ж.Б. Перрен. Он использовал распределение частиц гуммигута в воде для измерения постоянной Авогадро. При этом плотность частиц гуммигута составляла $\rho =1,2\cdot {10}^3\frac{кг}{м^3}$, их объем $V_0=1,03\cdot {10}^{-19}м^3.$ Температура, при которой проводился эксперимент, T=277K. Найдите высоту h, на которой плотность распределения гуммигута уменьшилась в два раза.

Используем распределение концентрации частиц, взвешенных в жидкости:

\\ }\left(2.1\right).\]

Зная плотность воды ${\rho }_0=1000\frac{кг}{м^3},$ имеем: $V_0\left(\rho -{\rho }_0\right)=1,03 {10}^{-19}\left(1,2-1\right){\cdot 10}^3=0,22 {10}^{-16}\ (кг)$. Подставим полученный результат в (2.1):

\\ }\] \\ }\]

\[\frac{n_0\left(h_1\right)}{n_0\left(h_2\right)}=exp{- \left[\frac{V_0\left(\rho -{\rho }_0\right)g}{kT}\right]\ }\cdot \left=2\ (2.2)\]

Прологарифмируем правую и левую части (2.2):

\[{ln \left(2\right)\ }={- \left[\frac{V_0\left(\rho -{\rho }_0\right)g}{kT}\right]\ }\cdot \triangle h\to \triangle h=\frac{{ln \left(2\right)\ }kT}{V_0\left(\rho -{\rho }_0\right)g}=\frac{{ln \left(2\right)\ }\cdot 1,38\cdot {10}^{-23}\cdot 277}{0,22\cdot {10}^{-16}\cdot 9,8}=\] \[=1,23\ \cdot {10}^{-5}\left(м\right).\]

Ответ: Плотность распределения гуммигута уменьшится в два раза при изменении высоты на $1,23\ \cdot {10}^{-5}м$.

Одним из важнейших объектов изучения статистической физики является так называемый идеальный газ. Под этим названием подразумевают газ, взаимодействие между частицами (молекулами) которого настолько слабо, что им можно пренебречь. Физически допустимость такого пренебрежения может быть обеспечена либо малостью взаимодействия частиц при любых расстояниях между ними, либо достаточной разреженностью газа. В последнем, наиболее важном случае разреженность газа приводит к тому, что его молекулы почти всегда находятся на значительных расстояниях друг от друга, на которых силы взаимодействия уже достаточно малы.

Отсутствие взаимодействия между молекулами позволяет свести квантовомеханическую задачу об определении уровней энергии всего газа в целом к задаче об определении уровней энергии отдельной молекулы. Эти уровни мы будем обозначать посредством , где индекс k представляет собой совокупность квантовых чисел, определяющих состояние молекулы. Энергии выразятся тогда в виде сумм энергий каждой из молекул.

Надо, однако, иметь в виду, что даже при отсутствии непосредственного силового взаимодействия в квантовой механике имеет место своеобразное взаимное влияние частиц, находящихся в одинаковом квантовом состоянии (так называемые обменные эффекты). Так, если частицы подчиняются статистике Ферми, то это влияние проявляется в том, что в каждом квантовом состоянии может находиться одновременно не более одной частицы); аналогичное влияние, проявляющееся иным образом, имеет место и для частиц, подчиняющихся статистике Бозе.

Обозначим посредством число частиц в газе, находящихся в k-м квантовом состоянии; числа называют числами заполнения различных квантовых состояний.

Поставим задачу о вычислении средних значений этих чисел, причем обратимся к подробному изучению чрезвычайно важного случая, когда все числа

Физически этот случай соответствует достаточно разреженному газу. В дальнейшем будет установлен критерий, обеспечивающий выполнение этого условия, но уже сейчас укажем, что фактически оно выполняется для всех обычных молекулярных или атомных газов. Это условие нарушилось бы лишь при таких больших плотностях, при которых вещество фактически уже ни в какой мере нельзя было бы рассматривать как идеальный газ.

Условие для средних чисел заполнения означает, что в каждый момент времени в каждом квантовом состоянии фактически находится не более одной частицы. В связи с этим можно пренебрегать не только непосредственным силовым взаимодействием частиц, но и их косвенным квантовомеханическим взаимным влиянием, упомянутым выше. Это обстоятельство в свою очередь позволяет применить к отдельным молекулам формулу распределения Гиббса.

Действительно, распределение Гиббса было выведено нами для тел, являющихся относительно малыми, но в то же время макроскопическими частями каких-либо больших замкнутцх систем. Макроскопичность тел давала возможность считать их квазизамкнутыми, т. е. в известном смысле пренебречь их взаимодействием с другими частями системы. В рассматриваемом случае квазизамкнутыми являются отдельные молекулы газа, хотя они отнюдь не представляют собой макроскопических тел.

Применив к молекулам газа формулу распределения Гиббса, мы можем утверждать, что вероятность молекуле находиться в состоянии, а потому и среднее число молекул в этом состоянии, пропорциональны :

где а - постоянная, определяющаяся условием нормировки

(N - полное число частиц в газе). Распределение молекул идеального газа по различным состояниям, определяемое формулой (37,2), называется распределением Больцмана (оно было открыто Больцманом для классической статистики в 1877 г.).

Постоянный коэффициент в (37,2) может быть выражен через термодинамические величины газа. Для этого дадим еще один вывод этой формулы, основанный на применении распределения Гиббса к совокупности всех частиц газа, находящихся в данном квантовом состоянии.

Мы имеем право сделать это (даже если числа не малы), поскольку непосредственного силового взаимодействия между этими и остальными частицами (как и между всеми вообще частицами идеального газа) нет, а квантовомеханические обменные эффекты имеют место лишь для частиц, находящихся в одном и том же состоянии. Полагая в общей формуле распределения Гиббса с переменным числом частиц и приписывая индекс k величине получим распределение вероятностей различных значений в виде

Из-за хаотического движения изменения в положении каждой частицы (молекулы, атома и т.д.) физической системы (макроскопического тела) носят характер случайного процесса. Поэтому можно говорить о вероятности обнаружить частицу в той или иной области пространства.

Из кинематики известно, что положение частицы в пространстве характеризуется ее радиусом-вектором или координатами.

Рассмотрим вероятность dW() обнаружить частицу в области пространства определяемой малым интервалом значений радиуса-вектора , если физическая система находится в состоянии термодинамического равновесия.

Векторный интервал будем измерять объемом dV=dxdydz.

Плотность вероятности (функция вероятности распределения значений радиуса-вектора )

.

(2.10)

Частица в данный момент времени реально где-то находится в указанном пространстве, значит должно выполняться условие нормировки:

Найдем функцию вероятности распределения частиц f() классического идеального газа. Газ занимает весь объем V и находится в состоянии термодинамического равновесия с температурой Т.

При отсутствии внешнего силового поля все положения каждой частицы равновероятны, т.е. газ занимает весь объем с одинаковой плотностью. Поэтому f() = c onst.

Используя условие нормировки найдем, что

,

т. е . f(r)=1/V .

Если число частиц газа N, то концентрация n = N/V .

Следовательно, f(r ) =n/N .

Вывод : в отсутствие внешнего силового поля вероятность dW() обнаружить частицу идеального газа в объеме dV не зависит от положения этого объема в пространстве, т.е. .

Поместим идеальный газ во внешнее силовое поле.

В результате пространственного перераспределения частиц газа плотность вероятности f() ¹ c onst.

Концентрация частиц газа n и давление его Р будут различными, т.е. в пределе где D N - среднее число частиц в объеме D V и давление в пределе , где D F- абсолютное значение средней силы, действующей нормально на площадку D S.

Если силы внешнего поля являются потенциальными и действуют в одном направлении (например, сила тяжести Земли направлена вдоль оси z), то силы давления, действующие на верхнее dS 2 и нижнее dS 1 основания объема dV, не будут равны друг другу (рис. 2.2).

Рис. 2.2

В этом случае разность сил давления dF на основания dS 1 и dS 2 должна быть скомпенсирована действием сил внешнего поля .

Суммарная разность сил давления dF = nGdV,

где G - сила, действующая на одну частицу со стороны внешнего поля.

Разность сил давления (по определению давления) dF = dPdxdy. Следовательно, dP = nGdz.

Из механики известно, что потенциальная энергия частицы во внешнем силовом поле связана с силой этого поля соотношением .

Тогда разность давлений на верхнее и нижнее основания выделенного объема dP = - n dW p .

В состоянии термодинамического равновесия физической системы ее температура Т в пределах объема dV везде одинакова. Поэтому используем уравнение состояния идеального газа для давления dP = kTdn.

Решив совместно последние два равенства получим, что

- ndW p = kTdn или .

После преобразований найдем, что

или

,

где ℓ n n o - постоянная интегрирования (n o - концентрации частиц в том месте пространства, где W p =0).

После потенцирования, получим

Вероятность обнаружить частицу идеального газа в объеме dV, расположенного у точки, определяемой радиусом-вектором , представим в виде

где Р о = n o kT.

Применим распределение Больцмана к атмосферному воздуху, находящему в поле тяготения Земли.

В состав атмосферы Земли входят газы: азот - 78,1 %; кислород - 21 %; аргон-0,9 %. Масса атмосферы -5,15 × 10 18 кг. На высоте 20-25 км - слой озона.

Вблизи земной поверхности потенциальная энергия частиц воздуха на высоте h W p = m o gh , где m o - масса частицы.

Потенциальная энергия на уровне Земли (h=0) равна нулю (W p =0).

Если в состоянии термодинамического равновесия частицы земной атмосферы имеют температуру Т, то изменение давления атмосферного воздуха с высотой происходит по закону

.

(2.15)

Формула (2.15) называется барометрической формулой ; применима для разреженных смесей газов.

Заключение : для земной атмосферы чем тяжелее газ, тем быстрее падает его давление в зависимости от высоты, т.е. по мере увеличения высоты атмосфера должна все более обогащаться легкими газами. Из-за изменения температуры атмосфера не находится в равновесном состоянии. Следовательно, барометрическую формулу можно применять к малым участкам, в пределах которых изменения температуры не происходит. Кроме того, на неравновесность земной атмосферы влияет гравитационное поле Земли, которое не может удержать ее вблизи поверхности планеты. Происходит рассеивание атмосферы и тем быстрее, чем слабее гравитационное поле. Например, земная атмосфера рассеивается достаточно медленно. За время существования Земли (~ 4-5 млрд. лет) она потеряла малую часть своей атмосферы (в основном легких газов: водорода, гелия и др.).

Гравитационное поле Луны слабее земного, поэтому она практически полностью потеряла свою атмосферу.

Неравновесность земной атмосферы можно доказать следующим образом. Допустим, что атмосфера Земли пришла в состояние термодинамического равновесия и в любой точке ее пространства она имеет постоянную температуру. Применим формулу Больцмана (2.11), в которой роль потенциальной энергии выполняет потенциальная энергия гравитационного поля Земли, т.е.

где g - гравитационная постоянная; М з - масса Земли; m o - масса частицы воздуха; r - расстояние частицы от центра Земли. = R з , где R з - радиус Земли, то

.

(2.17)

Это означает, что n ¥ ¹ 0. Но число частиц в атмосфере Земли - конечно. Поэтому такое число частиц не может быть распространено по бесконечному объему.

Следовательно, действительно земная атмосфера не может находиться в равновесном состоянии.

Распределение Больцмана

Статистика Максвелла - Больцмана - статистический метод описания физических систем, содержащих большое число невзаимодействующих частиц, движущихся по законам классической механики (то есть классического идеального газа); предложена в 1871 г. австрийским физиком Л. Больцманом .

Вывод распределения

Из общего распределения Гиббса. Рассмотрим систему частиц, находящуюся в однородном поле. В таком поле каждая молекула идеального газа обладает полной энергией

Где

Кинетическая энергия её поступательного движения, а - потенциальная энергия во внешнем поле, которая зависит от её положения.

Подставим это выражение для энергии в распределение Гиббса для молекулы идеального газа (где - вероятность того, что частица находится в состоянии со значениями координат и импульсов , в интервале )

,

где интеграл состояний равен:

интегрирование ведется по всем возможным значениям переменных. Далее интеграл состояний можно написать в виде:

,

мы находим, что нормированное на единицу распределение Гиббса для молекулы газа при наличии внешнего поля имеет вид:

.

Полученное распределение вероятностей, характеризующее вероятность того, что молекула имеет данный импульс и находится в данном элементе объема, носит название распределение Максвелла - Больцмана .

Некоторые свойства

При рассмотрении распределения Максвелла - Больцмана, бросается в глаза важное свойство - его можно представить как произведение двух множетелей:

.

Первый множитель есть ничто иное как распределение Максвелла, оно характеризует распределение вероятностей по импульсам. Второй множитель зависит только лишь от координат частиц и определяется видом её потенциальной энергии. Он характеризует вероятность обнаружения частицы в объеме dV.

Согласно теории вероятности , распределение Максвелла - Больцмана можно рассматривать как произведение вероятностей двух независимых событий - вероятность данного значения импульса и данного положения молекулы. Первая из них:

представляет распределение Максвелла; вторая вероятность:

Распределение Больцмана. Очевидно, что каждое из них нормировано на единицу.

Независимость вероятностей дает важный результат: вероятность данного значения импульса совершенно не зависит от положения молекулы и, наоборот, вероятность положения молекулы не зависит от её импульса. Это значит что распределение частиц по импульсам (скоростям) не зависит от поля, другими словами остается тем же самым от точки к точке пространства, в котором заключен газ. Меняется лишь вероятность обнаружения частицы или, что то же самое, число частиц.

См.также

Wikimedia Foundation . 2010 .

Смотреть что такое "Распределение Больцмана" в других словарях:

    распределение Больцмана - Bolcmano skirstinys statusas T sritis fizika atitikmenys: angl. Boltzmann distribution; Boltzmann distribution law vok. Boltzmannsche Verteilung, f; Boltzmannsches Verteilungsgesetz, n; Boltzmann Verteilung, f rus. больцмановское распределение,… … Fizikos terminų žodynas

    Статистич. метод описания физ. св в систем, содержащих большое число невзаимодействующих ч ц, движущихся по законам классич. механики (т. е. св в классич. идеального газа). Создана австр. физиком Л. Больцманом в 1868 71. В Б. с. рассматривается… … Физическая энциклопедия

    Распределение Гиббса распределение, определяющее количества частиц в различных квантовых состояниях. Основывается на постулатах статистики: Все доступные микросостояния системы равновероятны. Равновесию соответствует наиболее вероятное… … Википедия

    Физическая статистика для систем из большого числа невзаимодействующих частиц. Строго Б.с. подчиняются атомные и молекулярные идеальные газы, т. е. газы, у которых потенциальная энергия взаимодействия молекул считается равной нулю.… … Большая советская энциклопедия

    Как функция от ε/μ, построенная для 4 различных температур. С ростом температуры ступенька размывается Статистика Ферми Дирака в статистической физике квантовая статистика, применяемая к системам тождественных фермионов (как правило, частиц с… … Википедия

    Статистически равновесная ф ция распределения по импульсам р и координатам r ч ц идеального газа, молекулы к рого движутся по законам классич. механики, во внеш. потенц. поле: f(p, r) = Aехр{ (р2/2m+U(r))/kT}. (1) Здесь p2/2m кинетич. энергия… … Физическая энциклопедия

    - (Максвелла Больцмана распределение) равновесное распределение частиц идеального газа по энергиям (E) во внешнем силовом поле (напр., в поле тяготения); определяется функцией распределения f e E/kT, где E сумма кинетической и потенциальной энергийБольшой Энциклопедический словарь

    - (Максвелла Больцмана распределение), равновесное распределение частиц идеального газа по энергиям во внешнем силовом поле (например, в поле тяготения); определяется функцией распределения f ≈ e E/kT, где Е сумма кинетической и потенциальной… … Энциклопедический словарь

    Функция плотности распределения Распределение Максвелла распределение вероятности, встречающееся в физике и химии. Оно лежит в основании кинетической теории газов, которая объясняет многие фундаментальные свойства газов, включая давление и… … Википедия



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта