Главная » Съедобные грибы » Cos период. Урок "Периодичность функций y=sinx, y=cosx"

Cos период. Урок "Периодичность функций y=sinx, y=cosx"

Инструкция

Чтобы найти период тригонометрической функции, возведенной в степень, оцените четность степени. Для уменьшите стандартный период в два раза. Например, если вам дана функция у=3 cos^2х, то стандартный период 2П уменьшится в 2 раза, таким образом, период будет равен П. Обратите , функции tg, ctg в любой степени периодичны П.

Если вам дано уравнение, содержащее или частное двух тригонометрических функций, сначала найдите период для каждой из них отдельно. Затем найдите минимальное число, которое умещало бы в себе целое количество обоих . Например, дана функция у=tgx*cos5x. Для тангенса период П, для косинуса 5х – период 2П/5. Минимальное число, в которое можно уместить оба этих периода, это 2П, таким образом, искомый период – 2П.

Если вы затрудняетесь действовать предложенным образом или сомневаетесь в ответе, попытайтесь действовать по определению. Возьмите в качестве периода функции Т, он больше нуля. Подставьте в уравнение вместо х выражение (х+Т) и решите полученное равенство, как если бы Т было параметром или числом. В результате вы найдете значение тригонометрической функции и сможете подобрать минимальный период. Например, в результате упрощения у вас получилось тождество sin (Т/2)=0. Минимальное значение Т, при котором оно выполняется, 2П, это и будет задачи.

Источники:

  • период sin

Периодической функцией называется функция, повторяющая свои значения через какой-то ненулевой период. Периодом функции называется число, при добавление которого к аргументу функции значение функции не меняется.

Вам понадобится

  • Знания по элементарной математике и началам анализа.

Инструкция

Видео по теме

Обратите внимание

Все тригонометрические функции являются периодическими, а все полиномиальные со степенью больше 2 - апериодическими.

Полезный совет

Периодом функции, состоящей из двух периодический функций, является Наименьшее общее кратное периодов этих функций.

Тригонометрические уравнения - это уравнения, которые содержат в себе функции неизвестного аргумента (для примера: 5sinx-3cosx =7). Чтобы научиться решать их - нужно знать некоторые для этого методы.

Инструкция

Разложение уравнения на множители. Сначала переносим все члены влево и раскладываем на множители.

Важно помнить, что о четности и нечетности функции имеет прямую с областью определения функции. Если, например, четная либо нечетная функция не при х=5, то она не существует и при х=-5, чего нельзя сказать про функцию общего вида. При установлении четности и нечетности обращайте внимание на область определения функции.

Исследование функции на четность и нечетность коррелирует с нахождением множества значений функции. Для нахождения множества значений четной функции достаточно рассмотреть половину функции, правее либо левее нуля. Если при x>0 четная функция y(x) принимает от А до В, то те же значения она будет и при x<0.
Для нахождения множества значений, принимаемых нечетной функцией, тоже достаточно рассмотреть только одну функции. Если при x>0 нечетная функция y(x) принимает диапазон значений от А до В, то при x<0 она будет принимать симметричный диапазон значений от (-В) до (-А).

«Тригонометрическими» когда-то стали называть функции, которые определяются зависимостью острых углов в прямоугольном треугольнике от длин его сторон. К таким функциям относят в первую очередь синус и косинус, во вторую - обратные этим функциям секанс и косеканс, производные от них тангенс и котангенс, а также обратные функции арксинус, арккосинус и др. Правильнее говорить не о «решении» таких функций, а об их «вычислении», то есть о нахождении численного значения.

Инструкция

Если аргумент тригонометрической неизвестен, то вычислить ее значение можно косвенным способом исходя из определений этих функций. Для этого требуется знать длины сторон треугольника, тригонометрическую для одного из углов которого требуется вычислить. Например, синус острого угла в прямоугольном треугольнике - это отношение длины противолежащего этому углу катета к длине гипотенузы. Из этого вытекает, что для угла достаточно знать длины этих двух сторон. Аналогичное гласит, что синусом острого угла является отношение длины прилежащего к этому углу катета к длине гипотенузы. Тангенс острого угла можно вычислить, разделив длину противолежащего ему катета на длину прилежащего, а требует деления длины прилежащего катета к длине противолежащего. Для вычисления секанса острого угла надо найти отношение длины гипотенузы к длине прилежащего к нужному углу катета, а косеканс определяется отношением длины гипотенузы к длине противолежащего катета.

Если же аргумент тригонометрической функции известен, то знать длины сторон треугольника не требуется - можно воспользоваться таблицами значений или калькуляторами тригонометрических функций. Такой есть среди стандартных программ операционной системы Windows. Для его запуска можно нажать сочетание клавиш Win + R, ввести команду calc и щелкнуть кнопку «OK». В интерфейсе программы следует раскрыть раздел «Вид» и пункт «Инженерный» или «Научный». После этого можно вводить аргумент тригонометрической функции. Для вычисления функций синус, косинус и достаточно после ввода значения щелкнуть по соответствующей кнопке интерфейса (sin, cos, tg), а для нахождения обратных им арксинуса, арккосинуса и следует предварительно поставить отметку в чекбоксе Inv.

Есть и альтернативные способы. Один из них - перейти на сайт поисковой системы Nigma или Google и ввести в качестве поискового запроса нужную функцию и ее аргумент (например, sin 0.47). Эти поисковики имеют встроенные калькуляторы, поэтому после отправки такого запроса вы получите значение введенной вами тригонометрической функции.

Видео по теме

Тригонометрические функции вначале возникли как инструменты абстрактных математических вычислений зависимостей величин острых углов в прямоугольном треугольнике от длин его сторон. Сейчас они очень широко применяются как в научных, так и в технических областях человеческой деятельности. Для практических вычислений тригонометрических функций от заданных аргументов можно использовать разные инструменты - ниже описано несколько наиболее доступных из них.

Инструкция

Воспользуйтесь, например, устанавливаемой по умолчанию вместе с операционной системой программой-калькулятором. Она открывается выбором пункта «Калькулятор» в папке «Служебные» из подраздела «Стандартные», помещенного в раздел «Все программы». Этот раздел можно , открыв щелчком по кнопке «Пуск» главное меню операционной . Если вы используете версию Windows 7, то имеете возможность просто ввести «Калькулятор» в поле «Найти программы и файлы» главного меню, а затем щелкнуть по соответствующей ссылке в результатах поиска.

Введите угла, для которого надо рассчитать тригонометрическую функцию, а потом кликните по соответствующей этой кнопке - sin, cos или tan. Если вас интересуют обратные тригонометрические функции (арксинус, арккосинус или ), то сначала кликните кнопку с надписью Inv - она меняет присвоенные управляющим кнопкам функции на противоположные.

В более ранних версиях ОС (например, Windows XP) для доступа к тригонометрическим функциям надо раскрыть в меню калькулятора раздел «Вид» и выбрать строку «Инженерный». Кроме того, вместо кнопки Inv в интерфейсе старых версий программы присутствует чекбокс с же надписью.

Можно и без калькулятора, если у вас есть доступ в интернет. В сети много сервисов, которые предлагают по-разному организованные вычислители тригонометрических функций. Один их наиболее удобных встроен в поисковую систему Nigma. Перейдя на ее главную страницу, просто введите в поле поискового запроса интересующее вас значение - например, «арктангенс 30 ». После нажатия кнопки «Найти!» поисковик рассчитает и покажет результат вычисления - 0,482347907101025.

Видео по теме

Тригонометрия – раздел математики для изучения , выражающих различные зависимости сторон прямоугольного треугольника от величин острых углов при гипотенузе. Такие функции получили называние тригонометрических, а для упрощения работы с ними были выведены тригонометрические тождества .

Понятие тождества в означает равенство, которое выполняется при любых значениях аргументов входящих в него функций. Тригонометрические тождества – это равенства тригонометрических функций, доказанные и принятые для облегчения работы с тригонометрическими формулами.Тригонометрическая функция – это элементарная функция зависимости одного из катетов прямоугольного треугольника от величины острого угла при гипотенузе. Чаще всего используются шесть основных тригонометрических функций: sin (синус), cos (косинус), tg (тангенс), ctg (котангенс), sec (секанс) и cosec (косеканс). Эти функции называются прямыми, существуют также

Цель: обобщить и систематизировать знания учащихся по теме “Периодичность функций”; формировать навыки применения свойств периодической функции, нахождения наименьшего положительного периода функции, построения графиков периодических функций; содействовать повышению интереса к изучению математики; воспитывать наблюдательность, аккуратность.

Оборудование: компьютер, мультимедийный проектор, карточки с заданиями, слайды, часы, таблицы орнаментов, элементы народного промысла

“Математика – это то, посредством чего люди управляют природой и собой”
А.Н. Колмогоров

Ход урока

I. Организационный этап.

Проверка готовности учащихся к уроку. Сообщение темы и задач урока.

II. Проверка домашнего задания.

Домашнее задание проверяем по образцам, наиболее сложные моменты обсуждаем.

III. Обобщение и систематизация знаний.

1. Устная фронтальная работа.

Вопросы теории.

1) Сформируйте определение периода функции
2) Назовите наименьший положительный период функций y=sin(x), y=cos(x)
3). Назовите наименьший положительный период функций y=tg(x), y=ctg(x)
4) Докажите с помощью круга верность соотношений:

y=sin(x) = sin(x+360º)
y=cos(x) = cos(x+360º)
y=tg(x) = tg(x+180º)
y=ctg(x) = ctg(x+180º)

tg(x+π n)=tgx, n € Z
ctg(x+π n)=ctgx, n € Z

sin(x+2π n)=sinx, n € Z
cos(x+2π n)=cosx, n € Z

5) Как построить график периодической функции?

Устные упражнения.

1) Доказать следующие соотношения

a) sin(740º ) = sin(20º )
b) cos(54º ) = cos(-1026º)
c) sin(-1000º) = sin(80º )

2. Доказать, что угол в 540º является одним из периодов функции y= cos(2x)

3. Доказать, что угол в 360º является одним из периодов функции y=tg(x)

4. Данные выражения преобразовать так, чтобы входящие в них углы по абсолютной величине не превышали 90º .

a) tg375º
b) ctg530º
c) sin1268º
d) cos(-7363º)

5. Где вы встречались со словами ПЕРИОД, ПЕРИОДИЧНОСТЬ?

Ответы учащихся: Период в музыке – построение, в котором изложено более или менее завершенная музыкальная мысль. Геологический период – часть эры и разделяется на эпохи с периодом от 35 до 90 млн. лет.

Период полураспада радиоактивного вещества. Периодическая дробь. Периодическая печать – печатные издания, появляющиеся в строго определенные сроки. Периодическая система Менделеева.

6. На рисунках изображены части графиков периодических функций. Определите период функции. Определить период функции.

Ответ : Т=2; Т=2; Т=4; Т=8.

7. Где в жизни вы встречались с построением повторяющихся элементов?

Ответ учащихся: Элементы орнаментов, народное творчество.

IV. Коллективное решение задач.

(Решение задач на слайдах.)

Рассмотрим один из способов исследования функции на периодичность.

При этом способе обходятся трудности, связанные с доказательством того, что тот или иной период является наименьшим, а также отпадает необходимость касаться вопросов об арифметических действиях над периодическими функциями и о периодичности сложной функции. Рассуждение опирается лишь на определение периодической функции и на такой факт: если Т – период функции, то и nT(n?0) – ее период.

Задача 1. Найдите наименьший положительный период функции f(x)=1+3{x+q>5}

Решение: Предположим, что Т-период данной функции. Тогда f(x+T)=f(x) для всех x € D(f), т.е.

1+3{x+T+0,25}=1+3{x+0,25}
{x+T+0,25}={x+0.25}

Положим x=-0,25 получим

{T}=0 <=> T=n, n € Z

Мы получили, что все периоды рассматриваемой функции (если они существуют) находятся среди целых чисел. Выберем среди этих чисел наименьшее положительное число. Это 1 . Проверим, не будет ли оно и на самом деле периодом 1 .

f(x+1) =3{x+1+0,25}+1

Так как {T+1}={T} при любом Т, то f(x+1)=3{(x+0.25)+1}+1=3{x+0,25}+1=f(x), т.е. 1 – период f. Так как 1 – наименьшее из всех целых положительных чисел, то T=1.

Задача 2. Показать, что функция f(x)=cos 2 (x) периодическая и найти её основной период.

Задача 3. Найдите основной период функции

f(x)=sin(1,5x)+5cos(0,75x)

Допустим Т-период функции, тогда для любого х справедливо соотношение

sin1,5(x+T)+5cos0,75(x+T)=sin(1,5x)+5cos(0,75x)

Если х=0, то

sin(1,5T)+5cos(0,75T)=sin0+5cos0

sin(1,5T)+5cos(0,75T)=5

Если х=-Т, то

sin0+5cos0=sin(-1,5Т)+5cos0,75(-Т)

5= – sin(1,5Т)+5cos(0,75Т)

sin(1,5Т)+5cos(0,75Т)=5

– sin(1,5Т)+5cos(0,75Т)=5

Сложив, получим:

10cos(0,75Т)=10

2π n, n € Z

Выберем из всех “подозрительных” на период чисел наименьшее положительное и проверим, является ли оно периодом для f. Это число

f(x+)=sin(1,5x+4π )+5cos(0,75x+2π )= sin(1,5x)+5cos(0,75x)=f(x)

Значит – основной период функции f.

Задача 4. Проверим является ли периодической функция f(x)=sin(x)

Пусть Т – период функции f. Тогда для любого х

sin|x+Т|=sin|x|

Если х=0, то sin|Т|=sin0, sin|Т|=0 Т=π n, n € Z.

Предположим. Что при некотором n число π n является периодом

рассматриваемой функции π n>0. Тогда sin|π n+x|=sin|x|

Отсюда вытекает, что n должно быть одновременно и четным и нечетным числом, а это невозможно. Поэтому данная функция не является периодической.

Задача 5. Проверить, является ли периодической функция

f(x)=

Пусть Т – период f, тогда

, отсюда sinT=0, Т=π n, n € Z. Допустим, что при некотором n число π n действительно является периодом данной функции. Тогда и число 2π n будет периодом

Так как числители равны, то равны и их знаменатели, поэтому

Значит, функция f не периодическая.

Работа в группах.

Задания для группы 1.

Задания для группы 2.

Проверьте является ли функция f периодической и найдите ее основной период (если существует).

f(x)=cos(2x)+2sin(2x)

Задания для группы 3.

По окончании работы группы презентуют свои решения.

VI. Подведение итогов урока.

Рефлексия.

Учитель выдаёт учащимся карточки с рисунками и предлагает закрасить часть первого рисунка в соответствии с тем, в каком объёме, как им кажется, они овладели способами исследования функции на периодичность, а в части второго рисунка – в соответствии со своим вкладом в работу на уроке.

VII. Домашнее задание

1). Проверьте, является ли функция f периодической и найдите её основной период (если он существует)

b). f(x)=x 2 -2x+4

c). f(x)=2tg(3x+5)

2). Функция y=f(x) имеет период Т=2 и f(x)=x 2 +2x при х € [-2; 0]. Найдите значение выражения -2f(-3)-4f(3,5)

Литература/

  1. Мордкович А.Г. Алгебра и начала анализа с углубленным изучением.
  2. Математика. Подготовка к ЕГЭ. Под ред. Лысенко Ф.Ф., Кулабухова С.Ю.
  3. Шереметьева Т.Г. , Тарасова Е.А. Алгебра и начала анализа для 10-11 классов.

>> Периодичность функций у = sin х, у = cos х

§ 11. Периодичность функций у = sin х, у = cos х

В предыдущих параграфах мы использовали семь свойств функций : область определения, четность или нечетность, монотонность, ограниченность, наибольшее и наименьшее значения, непрерывность, область значений функции. Использовали мы эти свойства либо для того, чтобы построить график функции (так было, например, в § 9), либо для того, чтобы прочитать построенный график (так было, например, в § 10). Теперь настал благоприятный момент для введения еще одного (восьмого) свойства функций, которое прекрасно просматривается на построенных выше графиках функций у = sin х(см. рис. 37), у=соs х(см. рис. 41).

Определение. Функцию называют периодической, если существует такое отличное от нуля число T, что для любого х из множествах выполняется двойное равенство :

Число Т, удовлетворяющее указанному условию, называют периодом функции у = f(х).
Отсюда следует, что, поскольку для любого х справедливы равенства:


то функции у = sin х, у=соs х являются периодическими и число 2п служит периодом и той, и другой функции.
Периодичность функции - это и есть обещанное восьмое свойство функций.

А теперь посмотрите на график функции у = sin х (рис. 37). Чтобы построить синусоиду, достаточно построить одну ее волну (на отрезке а затем сдвинуть эту волну по оси х на В итоге с помощью одной волны мы построим весь график.

Посмотрим с этой же точки зрения на график функции у =соs х (рис. 41). Видим, что и здесь для построения графика достаточно сначала построить одну волну (например, на отрезке

А затем сдвинуть ее по оси х на
Обобщая, делаем следующий вывoд.

Если функция у = f(х) имеет период Т, то для построения графика функции нужно сначала построить ветвь (волну, часть) графика на любом промежутке длины Т (чаще всего берут промежуток с концами в точках а затем сдвинуть эту ветвь по оси х вправо и влево на Т, 2Т, ЗТ и т.д.
У периодической функции бесконечно много периодов: если Т - период, то и 2Т - период, и ЗТ - период, и -Т - период; вообще периодом является любое число вида KТ, где к = ±1, ±2, ± 3... Обычно стараются, если это возможно, выделить наименьший положительный период, его называют основным периодом.
Итак, любое число вида 2пк, где к = ±1, ± 2, ± 3,является периодом функций у = sinп х, у=соs х; 2п- основной период и той, и другой функции.

Пример. Найти основной период функции:


а) Пусть Т - основной период функции у = sin х. Положим

Чтобы число Т было периодом функции, должно выполняться тождество Но, поскольку речь идет об отыскании основного периода, получаем
б) Пусть Т - основной период функции у =соs 0,5х. Положим f(х)=соs 0,5х. Тогда f(х + Т)=соs 0,5(х + Т)=соs (0,5х + 0,5Т).

Чтобы число Т было периодом функции, должно выполняться тождество соs (0,5х + 0,5Т)=соs 0,5х.

Значит, 0,5т = 2пп. Но, поскольку речь идет об отыскании основного периода, получаем 0.5Т = 2 л, Т =4л.

Обобщением результатов, полученных в примере, является следующее утверждение: основной период функции

А.Г. Мордкович Алгебра 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта