Главная » Съедобные грибы » Электризация тел опыты иллюстрирующие явление электризации. Тело, получившее после натирания способность притягивать другие тела

Электризация тел опыты иллюстрирующие явление электризации. Тело, получившее после натирания способность притягивать другие тела

Электростатика - раздел физики, изучающий неподвижные заряды и не изменяющиеся во времени электрические поля.

Электрические явления известны человеку с давних времен. Это электризация тел при трении, молния. Систематическое изучение электрических явлений начато в XVIII в. В России этим занимались М. В. Ломоносов и Г. Рихман, в Америке - Б. Франклин. М. В. Ломоносов установил природу молнии, Б. Франклин - два рода электричества. Франклин предложил считать, что стекло, натертое кожей, заряжается положительно, а янтарь, натертый шерстью, - отрицательно. С точки зрения современной науки, отрицательно заряженное тело содержит избыток электронов. Если у тела забрать часть электронов, то оно заряжается положительно. Следовательно, отрицательный знак заряда электрона - условное понятие, связанное с произвольным выбором Б. Франклина.

Любому телу можно сообщить электрический заряд, т. е. наэлектризовать его. Для этого его нужно привести в контакт с источником зарядов. С древних времен человеку было известно, что кусок янтаря (затвердевшей смолы хвойных деревьев), натертый шерстью, притягивает к себе мелкие кусочки сухих листьев дерева, соринки. Позже было обнаружено, что аналогичной способностью обладает и стекло, натертое кожей. Эти явления были названы электрическими (от лат. «электрон» - янтарь). Такие тела могут служить источниками зарядов.

В наше время, в век господства синтетических материалов, мы повседневно сталкиваемся с проявлением статического электричества : трение одежды из синтетики о кожу человека сопровождается треском искр, видимых в темноте.

Чтобы обнаружить заряд какого-либо тела, нужно воспользоваться пробным зарядом - другим заряженным телом малых размеров (точечным зарядом). На пробный заряд со стороны нашего тела будет действовать сила. Если источник пробного заряда и тела один и тот же (янтарь или стекло), это будет отталкивающая сила, если же их источники разные (у одного янтарь, а у другого стекло), то пробный заряд будет притягиваться к нему.

Тела, которые в результате трения приобретают способность притягивать другие тела, называют наэлектризованными или заряженными , а явление приобретения телами электрического заряда называют — электризация .

Вы замечали, что когда снимаете свитер или футболку летят искры и слышны потрескивания? А когда вы выходите из машины и вас бьёт током? Это статическое электричество или электризация тел. Она возникает в результате накопления электрических зарядов разных знаков на объектах с последующей их компенсацией. В этой статье мы кратко рассмотрим данное явление, причины его возникновения, а также способы применения как в быту, так и в промышленности.

Определение

Электризацией называется процесс разделения электрических зарядов и накопление их в определенных местах предметов и тел. Явление происходит в результате трения, соприкосновения тел или в результате электростатической индукции. Простыми словами, когда рядом расположен какой-то предмет, обладающий электрическим полем.

Напомним : в физике выделяют два рода зарядов – положительные и отрицательные, или протоны и электроны. Между ними возникает . Одноименные заряды притягиваются, а разноименные отталкиваются.

Явление наблюдается на источниках питания и не только. На диэлектриках накапливаются заряды, все видели это в опытах, иллюстрирующих явление с эбонитовыми и стеклянными палочками, которые демонстрировали на уроках физики в школе.

Изначально все атомы, из них состоит всё что нас окружает, электрически нейтральны. В результате явления электризации на поверхности предметов появляются положительные или отрицательные заряды. Напомним школьный опыт: если потереть эбонитовую палочку шерстяной тканью, после прекращения трения палочка останется заряженной. Тогда говорят, что тело электризовано.

Таким образом, во время трения электроны переходили с одного предмета на другой. В результате, после прекращения трения избыточные электроны остались «не на своих» телах и получился избыточный заряд, и оно перестало быть нейтральным. В результате трения палочки о шерсть или мех на её поверхности образовался отрицательный заряд.

Условия возникновения явления и способы передачи зарядов

Мы рассказали, как объясняется это явление в природе, а теперь давайте рассмотрим, как можно наэлектризовать тела. Сразу отметим, что выполнение всех условий необязательно – электризация может происходить по тем или иным причинам, разделим их на две основных группы:

Первая — это механическое взаимодействие. При трении расстояние между предметами сопоставимо расстоянию между молекулами в нём. Так как электроны в одном из тел слабее связаны с ядром – они переходят «вырываются» на другое тело. Другими способами электризации являются удар и соприкосновение.

Вторая группа — электризация влиянием, то есть явление наблюдается при воздействии на тело внешних сил, среди которых:

  • Электрическое поле. В результате воздействия поля на проводник на его поверхности появляются заряды, причем чем меньше радиус изгиба поверхности – тем больше зарядов здесь скопится. Так на острие будет больше всего зарядов, подробнее этот вопрос мы рассматривали в статье и здесь

  • Воздействие светом. Открыто профессором А.Г. Столетовым в 1888 году, заключается в том, что при воздействии светом на цинк, алюминий, цезий, натрий, свинец, калий и другие металлы они теряют электроны и становятся заряженными положительно.
  • Теплом. При нагревании металла электронам сообщается энергия достаточная для того чтобы покинуть пределы металла, в результате он приобретает положительный заряд.
  • Химическая реакция. При наличии двух электродов из разных металлов происходят окислительно-восстановительные реакции, в результате один из них становится заряженным положительно, а второй – отрицательно. Подробнее мы это рассматривали в статье про .
  • Под давлением. В пьезоэлектриках (кварц, сегнетовая соль, фосфат аммония), при механическом воздействии (сжатии или растяжении), на гранях образуются положительные и отрицательные заряды.

Это и есть основные виды электризации.

Какие законы физики связаны с электризацией

Явление электризации связано с такими физическими законами как:

  • . Описывает силу, с которой взаимодействуют заряды. Таким образом можно определить, как сильно наэлектризованные тела притягиваются друг к другу.
  • . В нём сказано, что алгебраическая сумма зарядов в замкнутой системе неизменна. Это говорит о том, что избыточные заряды на электризованных предметах не появляются из ниоткуда, а переходят с тела на тело.

Мы уже рассматривали эти законы, вы можете ознакомиться подробнее в соответствующих статьях, на которые мы сослались.

Применение на практике

Явление электризации имеет как положительные и отрицательные проявления. Примеры положительного применения:


Также есть ряд применений для очистки, сортировки, фильтрации, а также в медицине для ускорения лечения.

Отрицательное влияние электризации может привести к фатальным последствиям:

  1. Возникновение искр при соприкосновении заряженных предметов. К таким случаям можно отнести искры в быту, которые проскакивают, когда вы снимаете свитер, когда вас бьёт током при выходе из машины. Например, самолёт в полёте электризуется и при подведении к нему трапа могут проскочить искры, а из-за этого возможно воспламенение, поэтому сначала снимают заряд с самолёта. Также известны случаи воспламенения нефтяных танкеров из-за электризации.
  2. Явление приводит к появлению больших электрических зарядов, они могут привести к выходу из строя электронных компонентов в технике, как при производстве техники, так и в процессе эксплуатации или ремонта. Это происходит в результате разрядки инструмента на печатную плату. Поэтому мастера по ремонту электроники должны работать в заземленных электрических браслетах и заземленными паяльниками и прочим. В современной элементной базе есть ряд технических решений по минимизации влияния электризации на их работу. Например, установка диодов Зенера параллельно цепи ЗАТВОР-ИСТОК полевых транзисторов.

Интересно! Известен случай, когда при покрытии лаком печатных плат после монтажа электронных компонентов, наблюдалась большая отбраковка, при том, что все изделия проходили проверку до покрытия лаком. Возник вопрос: как избавиться от проблемы электризации? Проблема решилась заземлением краскопульта.

«Электризация тел» - Электризация. Для очистки воздуха используются электростатические фильтры. Элетризация. Увелечение производительности труда, 50% экономия краски. Трут так же янтарь о янтарь, об алмаз, о стекло и многое другое. Формирование представлений об электризации, о взаимодействии заряженных тел. произошла от греческого «elektron», что в переводе означает янтарь-желтая смола.

«Заряд электрического поля» - Электростатика. Потенциал точечного заряда. Притяжение отталкивание взаимодействие отсутствует. Отношение напряжений на концах первого и второго проводников равно: 1) 1:4 2) 1:2 3) 4:1 4) 2:1. В какой точке поля потенциал меньше? 1) 1 2) 2 3) 3 4) Во всех точках поля потенциал одинаков. Закон сохранения заряда.

«Потенциал в физике» - Шару сообщили отрицательный заряд. Тест по физике «Электрическое поле». Вопрос №5. На рисунке – сечение уединенного проводящего полого шара. Вопрос №2. Вопрос №4. В каких областях пространства напряженность поля, создаваемого шаром отлична от нуля? Что показывает потенциал поля в данной точке. Вопрос №1.

«Электризация» - Как взаимодействуют тела, заряженные одноименно? А потом приближают к самолету металлический трап. Почему возникают искорки и слышен треск, когда мы снимаем нейлоновую рубашку? Электризуется одежда из синтетических тканей, полимерные и ковровые покрытия полов. Волосы встанут дыбом. Электрические явления в природе.

«Электрический заряд тела» - М., 1992 Яворский Б.М., Детлаф А.А. Курс физики. Теоретический вопрос и досрочная сдача экзамена 751 - 850 - два!! Вопроса и досрочная сдача экзамена 651 – 750 – три!!! ОФ Чернов И.П. Вопросов и сдача экзамена только в назначенный срок, т.Е. По расписанию. Задачник по физике. Закон Кулона 1.3. Электростатическое поле.

«Напряженность электрического поля» - В 1979 г. в США было получено в лабораторных условиях самое высокое напряжение. Напряжение характеризует электрическое поле, создаваемое током. Напряженность электрического поля. Единица измерения напряжения в системе СИ: [ U ] = 1 B 1 Вольт равен электрическому напряжению на участке цепи, где при протекании заряда, равного 1 Кл, совершается работа, равная 1 Дж: 1 В = 1 Дж/1 Кл.

электризация тел.

2. Электризация тел.

Эти явления были обнаружены еще в глубокой древности. Древнегреческие ученые заметили, что янтарь (окаменевшая смола хвойных деревьев, которые росли на Земле много сотен тысяч лет назад) при натирании его шерстью начинает притягивать к себе различные тела. По-гречески янтарь - электрон, отсюда произошло название “электричество”.

Про тело, которое после натирания притягивает к себе другие тела, говорят, что оно наэлектризовано или что ему сообщен электрический заряд.

Электризоваться могут тела, сделанные из разных веществ. Легко наэлектризовать натиранием о шерсть палочки из резины, серы, эбонита, пластмассы, капрона.

Электризация тел происходит при соприкосновении и последующем разделении тел. Трут тела друг о друга лишь для того, чтобы увеличить площадь их соприкосновения.

В электризации всегда участвуют два тела: в рассмотренных выше опытах стеклянная палочка соприкасалась с листом бумаги, кусочек янтаря - с мехом или шерстью, палочка из плексигласа - с шелком. При этом электризуются оба тела. Например, при соприкосновении стеклянной палочки и куска резины электризуются и стекло, и резина. Резина, как и стекло начинает притягивать к себе легкие тела.

Электрический заряд можно передать от одного тела к другому. Для этого нужно коснуться наэлектризованным телом другого тела, и тогда часть электрического заряда перейдет на него. Чтобы убедиться, что и второе тело наэлектризовано, нужно поднести к нему мелкие листочки бумаги и посмотреть, будут ли они притягиваться.

3. Два рода зарядов. Взаимодействие заряженных тел.

Все электризованные тела притягивают к себе другие тела, например листочки бумаги. По притяжению тел нельзя отличить электрический заряд стеклянной палочки, потертой о шелк, от заряда, полученного на эбонитовой палочке, потертая о них. Ведь обе наэлектризованные палочки притягивают листочки бумаги.

Означает ли это, что заряды, полученные на телах, сделанных из различных веществ, ничем не отличаются друг от друга?

Обратимся к опытам. Наэлектризуем эбонитовую палочку, подвешенную на нити. Приблизим к ней другую такую же палочку, наэлектризованную трением о тот же кусочек меха. Палочки оттолкнуться Так как палочки одинаковые и наэлектризовали их трением об одно и тоже тело, можно сказать, что на них были заряды одного рода. Значит, тела, имеющие заряды одного рода, взаимно отталкиваются.

Теперь поднесем к наэлектризованной эбонитовой палочке стеклянную палочку, потертую о шелк. Мы увидим, что стеклянная и эбонитовая палочки взаимно притягиваются (рис.№2). Следовательно, заряд, полученный на стекле, потертом о шелк, другого рода, чем на эбоните, потертом о мех. Значит, существует другой род электрических зарядов.

Будим приближать к подвешенной наэлектризованной эбонитовой палочке наэлектризованные тела из различных веществ: резины, плексигласа, пластмассы, капрона. Мы увидим, что в одних случаях эбонитовая палочка отталкивается от тел, поднесенных к ней, а в других - притягивается. Если эбонитовая палочка оттолкнулась, значит, на теле, поднесенном к ней, заряд такого же рода, что и на ней. А заряд тех тел, к которым эбонитовая палочка притянулась, сходен с зарядом, полученном на стекле, потертом о шелк. Поэтому можно считать, что существует только два рода электрических зарядов.

Заряд, полученный на стекле потертом о шелк (и на всех телах, где получается заряд такого же рода), назвали положительным, а заряд, полученный на янтаре (а также эбоните, сере, резине), потертом о шерсть назвали отрицательным, т. е. зарядам приписали знаки “+” и “-”.

И так, опыты показали, что существует два рода электрических зарядов - положительные и отрицательные заряды и что наэлектризованные тела по-разному взаимодействуют друг с другом.

Тела, имеющие электрические заряды одинакового знака, взаимно отталкиваются, а тела, имеющие заряды противоположного знака, взаимно притягиваются.

4. Электроскоп. Проводники и не проводники электричества.

Если тела наэлектризованы, то они притягиваются друг к другу или взаимно отталкиваются. По притяжению или отталкиванию можно судить, сообщен ли телу электрический заряд. Поэтому и устройство прибора, при помощи которого выясняют, наэлектризовано ли тело, основано на взаимодействии заряженных тел. Этот прибор называется электроскопом (от греч. слов электрон и скопео - наблюдать, обнаруживать).

В электроскопе через пластмассовую пробку (рис.№3), вставленную в металлическую оправу, пропущен металлический стержень, на конце которого укреплены два листочка из тонкой бумаги. Оправа с обеих сторон закрыта стеклами.

Чем больше заряд электроскопа, тем больше сила отталкивания листочков и тем на больший угол они разойдутся. Значит, по изменению угла расхождение листочков электроскопа можно судить, увеличился или уменьшился его заряд.

Если прикоснуться к заряженному телу (например, к электроскопу) рукой, оно разрядиться. Электрические заряды перейдут на наше тело и через него могут уйти в землю. Разредиться заряженное тело и в том случае если соединить его с землей металлическим предметом, например железной или медной проволокой. Но если заряженное тело соединить с землей стеклянной или эбонитовой палочкой, то электрические заряды по ним не уйдут в землю. В этом случае заряженное тело не разрядится.

По способности проводить электрические заряды вещества условно делятся на проводники и непроводники электричества.

Все металлы, почва, растворы солей и кислот в воде - хорошие проводники электричества.

К непроводникам электричества, или диэлектрикам, относятся фарфор, эбонит, стекло, янтарь, резина, шелк, капрон, пластмассы, керосин, воздух (газы).

Тела, изготовленные из диэлектриков, называются изоляторами (от греч. слова изоляро - уединять).

5. Делимость электрического заряда. Электрон.

Зарядим металлический шар, прикрепленный к стержню электроскопа (рис. №4а). Соединим этот шар с металлическим проводником А, держа его за ручку В, изготовленную из диэлектрика, с другим точно таким же, но незаряженным шаром, находящемся на втором электроскопе. Половина заряда перейдет с первого шара на второй (рис. №4б). Значит, первоначальный заряд разрядился на две равные части.

Теперь разъединим шары и коснемся второго шара рукой. От этого он потеряет заряд - разрядиться. Присоединим его снова к первому шару, на котором осталась половина первоначального заряда. Оставшийся заряд снова разделиться на две равные части, и на первом шаре останется четвертая часть первоначального заряда.

Таким же образом можно получить одну восьмую, одну шестнадцатую часть заряда и т. д.

Таким образом, опыт показывает, что электрический заряд может иметь разное значение. Электрический заряд - физическая величина.

За единицу электрического заряда принят один кулон (обозначается 1 Кл). Единица названа так в честь французского физика Ш. Кулона.

В опыте изображенным на рисунке №4, показано, что электрический заряд можно разделить на части.

А существует ли придел деления заряда?

Чтобы ответить на этот вопрос, понадобилось выполнять более сложные и точные опыты, чем описанные выше, т. к. очень скоро оставшийся на шаре электроскопа заряд становиться таким малым, что обнаружить его при помощи электроскопа не удается.

Для деления заряда на очень маленькие порции нужно передавать его не шарам, а маленьким крупинкам металла или капелькам жидкости. Измеряя заряд, полученный на таких маленьких телах, установили, что можно получить порции заряда, в миллиарды миллиардов раз меньше, чем в описанном опыте. Однако во всех опытах разделить заряд дальше определенного значения не удавалось.

Это позволило предположить, что электрический заряд имеет придел делимости или, точнее, что существуют заряженные частица, которая имеет самый малый заряд, далее уже не делимый.

Чтобы доказать, что существует придел деления электрического заряда, и установить, каков этот придел, ученые проводили специальные опыты. Например, советский ученый А. Ф. Иоффе поставил опыт, в котором электризовали мелкие пылинки цинка, видимые только под микроскопом. Заряд пылинок несколько раз меняли, и каждый раз измеряли, на сколько изменился заряд. Опыты показали, что все изменения заряда пылинки были в целое число раз (т. е. в 2, 3, 4, 5 и т. д.)больше некоторого определенного наименьшего заряда, т. е. заряд пылинки изменялся хотя и очень малыми, но целыми порциями. Так как заряд с пылинки уходит вместе с частицей вещества, то Иоффе сделал вывод, что в природе существует такая частица вещества, которая имеет самый маленький заряд, далее уже не делимый.

Эту частицу назвали электрон.

Значение заряда электрона впервые определил американский ученый Р. Милликен. В своих опытах, сходных с опытами А. Ф. Иоффе, он пользовался мелкими капельками масла.

Заряд электрона - отрицательный, равен он - 1,610 Кл (0,000 000 000 000 000 000 16 Кл). Электрический заряд - одно из основных свойств электрона. Этот заряд нельзя “снять” с электрона.

Масса электрона равна 9,110 кг, она в 3700 раз меньше массы молекулы водорода, наименьшей из всех молекул. Крылышко мухи имеет массу, примерно в 510 большую, чем масса электрона.

6. Ядерная модель строения атома

Изучение строения атома практически началось в 1897-1898 гг., после того как была окончательно установлена природа катодных лучей как потока электронов и были определены величина заряда и масса электрона. Факт выделения электронов самыми разнообразными веществами приводил к выводу, что электроны входят в состав всех атомов. Но атом в целом электрически нейтрален, следовательно, он должен содержать в себе еще другую составную часть, заряженную положительно, причем ее заряд должен уравновешивать сумму отрицательных зарядов электронов.

Эта положительно заряженная часть атома была открыта в 1911 г. Эрнестом Резерфордом (1871-1937). Резерфорд предложил следующую схему строения атома. В центре атома находится положительно заряженное ядро, вокруг которого по разным орбитам вращаются электроны. Возникающая при их вращении центробежная сила уравновешивается притяжением между ядром и электронами, вследствие чего они остаются на определенных расстояниях от ядра. Суммарный отрицательный заряд электронов численно равен положительному заряду ядра, так что атом в целом электронейтрален. Так как масса электронов ничтожно мала, то почти вся масса атома сосредоточена в его ядре. Наоборот, размер ядер чрезвычайно мал даже по сравнению с размером самих атомов: диаметр атома - величина порядка 10 см, а диаметр ядра - порядка 10 - 10 см. Отсюда ясно, что на долю ядра и электронов, число которых, как увидим дальше, сравнительно невелико, приходится лишь ничтожная часть всего пространства, занятого атомной системой (рис. №5)

В этой статье попробуем изложить довольно обобщенное представление о том, что же такое электризация тел, а также коснемся закона сохранения электрического заряда.

Независимо от того, принципу работает тот или иной источник электрической энергии, в каждом из них происходит процесс электризации физических тел , т. е. разделение электрических зарядов, имеющихся в источнике электрической энергии, и сосредоточение их на определенных местах, например на электродах или зажимах источника. В результате этого процесса на одном на зажимов источника электрической энергии (катоде) получается избыток отрицательных зарядов (электронов), а на другом зажиме (аноде) - недостаток электронов, т. е. первый из них заряжается отрицательным, а второй - положительным электричеством.

После открытия электрона, элементарной частицы, обладающей минимальным зарядом, после того, как было наконец объяснено строение атома, большинство физических явлений, связанных с электричеством, также стали объяснимы.

Вещественная материя, образующая тела, в целом оказывалась электрически нейтральной, ибо составляющие тела молекулы и атомы нейтральны в обычных условиях, и тела в итоге зарядом не обладают. Но если такое нейтральное тело потереть о другое тело, то часть электронов покинет свои атомы, и перейдет с одного тела на другое. Длина путей, пройденных этими электронами при таком перемещении, не более расстояния между соседними атомами.

Однако если после трения тела разъединить, раздвинуть, то оба тела окажутся заряженными. Тело, на которое перешли электроны, станет отрицательно заряженным, а то, которое эти электроны отдало - приобретет положительный заряд, станет положительно заряженным. Это и есть электризация.

Допустим что в каком-нибудь физическом теле, например в стекле, удалось изъять из значительного числа атомов часть их электронов. Это значит, что стекло, потеряв часть своих электронов, окажется заряженным положительным электричеством, так как в нем положительные заряды получили перевес над отрицательными.

Изъятые из стекла электроны исчезнуть не могут и должны быть где-то размешены. Допустим, что после того как электроны били изъяты из стекла, они оказались размещенными на металлическом шарике. Тогда очевидно, что металлический шарик, получивший лишние электроны, зарядился отрицательным электричеством, так как в нем отрицательные заряды получили перевес над положительными.

Наэлектризовать физическое тело - значит создать в нем избыток или недостаток электронов, т.е. нарушить в нем равновесие двух противоположностей, а именно положительных и отрицательных зарядов.

Наэликтризовать два физических тела одновременно и совместно разноменными электрическими зарядами - значит изьять из одного тела электроны и передать их другому телу.

Если где-либо в природе образовался положительный электрический заряд, то оновременно с ним неизбежно должен возникнуть такой же по абсолютной величине отрицательный заряд, так как всякий избыток электронов в любом физическом теле возникает за счет недостатка их в каком-нибудь другом физическом теле.

Разноименные электрические заряды выступают в электрических явлениях как неизменно сопутствующие друг другу противоположности, единство и взаимодействие которых сотавляет внутреннее содержание электрических явлений в веществах.

Нейтральные тела электризуются тогда, когда они отдают или принимают электроны, в любом случае они приобретают электрический заряд, и перестают быть нейтральными. Здесь не возникают ниоткуда электрические заряды, заряды только разделяются, поскольку электроны уже были в телах, и просто поменяли свое местоположение, электроны переместились с одного электризуемого тела на другое электризуемое тело.

Знак электрического заряда, получающегося при трении тел зависит от природы этих тел, от состояния их поверхностей и от ряда других причин. Поэтому не исключена возможность, что одно и то же физическое тело может в одном случае зарядиться положительным, a в другом - отрицательным электричеством, например, металлы при трении их о стекло и шерсть электризуются отрицательно, а при трении о каучук - положительно.

Уместным будет вопрос: почему через диэлектрики электрический заряд не проходит, а через металлы проходит? Все дело в том, что в диэлектриках все электроны связаны с ядрами своих атомов, они просто не имеют возможности к свободному перемещению по объему всего тела.

А вот в металлах ситуация иная. Связи электронов в атомах металлов гораздо слабее, чем в диэлектриках, и некоторые электроны легко покидают свои атомы, и свободно перемещаются по объему всего тела, это так называемые свободные электроны, которые и обеспечивают перенос заряда в проводниках.

Разделение зарядов происходит, тем не менее, и при трении металлических тел, и при трении диэлектриков. Но в демонстрациях используют именно диэлектрики: эбонит, янтарь, стекло. К этому прибегают по той простой причине, что поскольку в диэлектриках заряды по объему не перемещаются, то они и остаются на тех же местах на поверхностях тел, где и возникли.

А если трением, скажем, о мех, наэлектризовать кусок металла, то заряд лишь успев переместиться к его поверхности, мгновенно стечет на тело экспериментатора, и демонстрации, такой как с диэлектриками, не получится. Но если кусок металла будет иметь изоляцию от рук экспериментатора, то он на металле останется.

Если заряд тел в процессе электризации лишь разделяется, то как ведет себя общий их заряд? Несложные эксперименты дают ответ на этот вопрос. Взяв электрометр с укрепленным на его стержне металлическим диском, кладут на диск кусок шерстяной ткани, размером с этот диск. Сверху на диск из ткани кладут еще один такой же проводящий диск, как на стержне электрометра, но оснащенный диэлектрической рукояткой.

Держась за рукоятку, экспериментатор несколько раз двигает верхний диск, трет его об упомянутый тканевый диск, лежащий на диске стержня электрометра, затем убирает его в сторону от электрометра. Стрелка электрометра отклоняется в момент, когда диск убирают, и остается в таком положении. Это свидетельствует о том, что на шерстяной ткани и на диске, закрепленном на стержне электрометра, появился электрический заряд.

После этого диск с рукояткой приводят в соприкосновение со вторым электрометром, но без закрепленного на нем диска, и наблюдают, что его стрелка отклоняется почти на такой же угол, что и стрелка первого электрометра.

Эксперимент показывает, что оба диска при электризации получили равные по модулю заряды. Но каковы знаки этих зарядов? Чтобы ответить на данный вопрос, электрометры соединяют проводником. Стрелки электрометров тут же вернутся к нулевому положению каждая, в котором и были до начала эксперимента. Заряд нейтрализовался, а значит заряды дисков были равны по модулю, но противоположны по знаку, и в сумме дали ноль, как до начала эксперимента.

Подобные эксперименты указывают на то, что при электризации сохраняется суммарный заряд тел, то есть если в сумме был ноль до электризации, то в сумме будет ноль и после электризации . Но почему так получается? Если натереть о сукно эбонитовую палку, она зарядится отрицательно, а сукно положительно, и это известный факт. На эбоните, при трении о шерсть образуется избыток электронов, а на сукне, соответственно, недостаток.

Заряды будут равны по модулю, ведь сколько электронов перешло с сукна на эбонит, столько отрицательного заряда получил эбонит, и столько же положительного заряда образовалось на сукне, так как ушедшие с сукна электроны - это положительный заряд сукна. И избыток электронов на эбоните в точности равен недостатку электронов на сукне. Заряды противоположны по знаку, но равны по модулю. Очевидно, полный заряд при электризации сохраняется, он в сумме равен нулю.

Мало того, даже если до электризации заряды обоих тел отличались от нуля, то в сумме полный заряд все равно сохраняется тем же, что и был до электризации. Обозначив заряды тел до их взаимодействия как q1 и q2, а заряды после взаимодействия как q1" и q2", то справедливым будет следующее равенство:

q1 + q2 = q1" + q2"

Это говорит о том, что при любых взаимодействиях тел полный заряд неизменно сохраняется. Это один из фундаментальных законов природы, закон сохранения электрического заряда. Бенджамин Франклин открыл его в 1750 году, и ввел понятия «положительный заряд» и «отрицательный заряд». Франклин и предложил обозначать разноименные заряды знаками «-» и «+».

В электронике для токов прямо следуют из закона сохранения электрического заряда. Объединение проводников и радиоэлектронных компонентов представляется в виде незамкнутой системы. Суммарный приток зарядов в данную систему равен суммарному выходу зарядов из этой системы. В правилах Кирхгофа предполагается, что электронная система не может значительно изменять свой суммарный заряд.

Справедливости ради отметим, что наилучшей экспериментальной проверкой закона сохранения электрического заряда является поиск таких распадов элементарных частиц, которые были бы разрешены в случае нестрогого сохранения заряда. Такие распады никогда на практике не наблюдались.

Другие способы электризации физических тел:

1. Если цинковую пластину погрузить в раствор серной кислоты H 2 SO 4 , то она частично в нем растворится. Часть атомов цинковой пластины, оставив по два своих электрона на цинковой пластине перейдет в раствор серией кислоты в виде двухзарядных положительных ионов цинка. В результате цинковая пластина зарядится отрицательным электричеством (избыток электронов), а раствор серной кислоты - положительным (избыток положительных ионов цинка). Это имение электризации цинка в растворе серной кислоты использовано как основной процесс возникновении электрической энергии.

2. Если на поверхности таких металлов, как цинк, цезий и некоторые другие, падают лучи света, то с этих поверхностей выделяются свободные электроны в окружающую среду. В результате металл заряжается положительным электричеством, а окружающее его пространство - отрицательным. Испускание электронов освещенными поверхностями некоторых металлов называется фотоэффектом, нашедшим себе применение в фотоэлементах.

3. Если металлическое тело нагреть до состояния белого каления, то с его поверхности будут вылетать свободные электроны в окружающее пространство. В результате этого металл, потерявший электроны зарядится положительным электричеством, а окружающая среда - отрицательным.

4. Если спаять концы двух разнородных проволок, например висмутовой и медной, и место их спая нагреть, то свободные электроны частично перейдут из медной проволоки на висмутовую. В результате медная проволока зарядится положительным электричеством, а висмутовая - отрицательным. Явление электризации двух физических тел при поглощении ими тепловой энергии .

Надеемся, что эта краткая статья дала вам общее представление о том, что такое электризация тел, и теперь вы знаете, как экспериментально проверить закон сохранения электрического заряда при помощи простого эксперимента.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта