Главная » Несъедобные грибы » Глава шестая. водолазный колокол

Глава шестая. водолазный колокол

Cтраница 1


Водолазный колокол Галлея был первым подводным устройством, в которой водолаз не был о / раничен запасом воздуха, содержащимся в самом колоколе.  

Новый тип водолазного колокола, в отличие от батисферы, позволяет двигаться по морскому дну.  

Английский ученый Эдмукд Галлей (1656 - 1742) изобретает водолазный колокол с дополнительной подачей воздуха.  

Голландский инженер Ян Лигвотер (1575 - 1650) изобретает примитивный водолазный колокол.  

Съемный кессон (съемный ящик, пло-вучий кессон) представляет по существу усовершенствованный водолазный колокол и применяется с целью производства под водою фундаментных работ при неглубоком залегании материкового грунта под дном реки. Съемный кессон изготовляется исключительно из железа, и рабочая камера его мало отличается от рабочей камеры обычного, оставляемого в грунте кессона.  

Ыс we - y звонить в колокола; 2) звон, звук; - у koscielne колокольный звон; - riurkowy водолазный колокол; od wielkiego - u на торжественный случай; - ek от 1) звонок; - ek wywol-awczy сигнальный звонок; 2) колокольчик; czapka z - kami шутовской колпак; 3) бот.  

Таким образом, необходимо считаться с потенциальной пожароопасностью таких ситуаций, при которых имеет место искусственное повышение давления (например, при эксплуатации водолазного колокола или при проведении проходческих работ в тоннелестроении) (разд.  

В этой части расположены: палуба обработки бурового раствора; буровая шахта для пропуска бурового инструмента, подводного противовыбросового оборудования и других механизмов для бурения; колодец для водолазного колокола. Слева и справа от буровой шахты на палубе танков установлены бункеры для цемента, барита и бентонита.  

В средней части судна расположены палуба обработки бурового раствора 15, буровая шахта 26 для пропуска бурового инструмента, подводного противовыбросового оборудования и других механизмов для производства буровых работ, а также колодец для водолазного колокола. Слева и справа от буровой шахты на палубе танков установлены бункеры б для цемента барита и бентонита.  

Эти опыты должны наглядно объяснить вам также, как люди могут находиться и работать под водой в водолазном колоколе или внутри тех широких труб, которые называются кессоны. Вода не проникает внутрь водолазного колокола или кессона по той же причине, по какой не втекает она под стакан в нашем опыте.  

Обслуживающий персонал доставляется в водолазном колоколе с атмосферным давлением.  

Капсула Линка является высокоманевренным подводным судном. Оно может служить наблюдательной камерой, водолазным колоколом, подводной декомпрессионной камерой, из которой водолаз, снабженный устройством для дыхания, рекомпрессионной или экспериментальной гипербарической камерой, может выходить под водой и работать вблизи дна.  

Поэтому во время рабочего цикла акванавты все время находятся в мире высоких давлений. А вверх-вниз перемещаются с помощью особого лифта - водолазного колокола. Воде не дает проникнуть внутрь давление газовой смеси. Таким образом, прибыв на морское дно, акванавт может тотчас выйти в воду без особых затруднений. Покинув колокол, он работает под водой, а дыхание, тепло и связь осуществляются через пуповину шланг-кабеля.  


Воздушный колокол представляет собой отрезок трубы, заваренный сверху, с прорезями для поступления жидкости в его полость. В верхней части трубы вварены два штуцера, к которым подведены две импульсные трубки. По одной из них подается водо-воздушная смесь от эжектора. Вода к эжектору подается из системы водоснабжения насосной станции под давлением 0 1 - 0 2 МПа. Воздух, подаваемый эжектором, обеспечивает компенсацию растворяющегося в сточной воде кислорода, препятствует засорению импульсных трубок и внутренней полости колокола. По второй импульсной трубке через воздушную подушку передается давление столба жидкости в одну из камер дифференциального манометра. Вторая камера дифференциального манометра сообщается с атмосферой. Это давление пропорционально уровню жидкости в резервуаре.  


Фильтр заполнен силикагелем с индикатором влажности, так как в сборник и под кольцевой воздушный колокол должен подаваться совершенно сухой воздух. Продувать необходимо до самой высокой точки подъема колокола; весь процесс повторяется 10 - 15 раз.  

Различают: 1) регуляторы с воздушными колоколами и 2) регуляторы без воздушных колоколов.  


При высоких требованиях к устойчивости работы установки длина водослива или объем воздуха в воздушном колоколе должны быть достаточно большими.  


Успокоитель необходим для поддержания режима работы установки с высокой степенью точности, так чтобы случайные колебания расхода не превышали 3 % их номинальных значений - При таких высоких требованиях к устойчивости работы установки длина водослива или объем воздуха в воздушном колоколе должны быть достаточно большими.  

Насос подает масло в воздушный колокол, служащий аккумулятором энергии. В хороших конструкциях встречаются особые разгрузочные клапаны, которые, по достижении нормального давления в колоколе, переводят автоматически насос на холостую работу. В более простых устройствах часто ограничиваются просто постановкой предохранительного клапана, который при давлении, несколько превышающем нормальное давление в колоколе, выпускает масло обратно в резервуар, откуда оно вновь засасывается насосом.  

К резервуару 2 присоединен воздушный колокол 3 с реле давления 4 и реле уровня или водомерным стеклом. Реле давления обеспечивает задание и поддержание постоянного давления в воздушном колоколе путем подаяи в колокол или выпуска из него сжатого воздуха при отклонениях давления от заданного. Питание сжатым воздухом осуществляется из специального ресивера.  

Разработана схема автоматизации механизмов грабельного помещения, в которой автоматическое управление граблями, ленточными транспортерами и дробилками осуществляется в зависимости от степени засорения решеток. В схеме предусматривается возможность перехода с автоматического на местное или дистанционное управление каждым механизмом. Перепад уровней воды в канале до и после решеток контролируется двумя дифференциальными реле давления, подключенными к воздушным колоколам. Продолжительность par боты грабель задается с помощью реле времени.  

Тарелки клапана придавливаются при этом к седлу давлением пружины или давлением воды, и приподнимание происходит посредством соответствующих рычагов или кулачков. Клапан, включающий трубопровод главного цилиндра для наполнения водой, регулируется гидравлически небольшим аппаратом, действующим посредством воды или масла. Давление воды равно 1 5 - 2кг / см2 и достигается посредством высоко расположенного бзка или соответствующих размеров воздушного колокола. Скорость воды в трубопроводах, находящихся под давлением, равна 15 - 25 м / сек. Превышение этого предела ведет наряду с большими потерями давления к неравномерной работе пресса вследствие ударов воды.  

Страницы:      1

Идея использовать воздух при нырянии владела ныряльщикам давно. Ещё за 500 лет до нашей зры Греодот упоминал об использовании его современниками водолазного аппарата, который опускали на речное дно.

Есть свидетельство Аристотеля, относящееся к четвертому столетию до нашей эры, в котором он свидетельствует о том, что при осаде финикийского города Тира Александр Македонский опускался в водолазном колоколе на дно. Это был перевёрнутый сосуд, наполненный воздухом. По свидетельствам летописца македонский царь, успешно оказавшийся на суше, с восторгом выразил изумление чудесами Божьими. Правда, зачем царь опускался на дно неизвестно.

Так же есть свидетельство летописцев о первой подводной атаке, совершенной защитниками Византии при помощи водолазного колокола, напав на римские галеры, которые блокировали гавань.

Сейчас водолазный колокол является средством для перемещения водолазов и их снаряжения на большие глубины к месту проведения работ и обратно с переводом их в последствие в декомпрессионную камеру.

Поначалу, столетия назад, он был довольно- таки примитивным приспособлением, помогающим человеку опускаться под воду и представлял собой короб или опрокинутую бочку.

Приспособление, внутри которого находился водолаз, спускали под воду. В воздухе, который находился внутри него, было давление, равняющееся давлению воды вкруг него. Воздух, находящийся внутри колокола давал возможность водолазу какое-то время дышать и совершать некоторые действия – выплывать наружу, чтобы осмотреть часть корабля, находящуюся под водой и выполнить какие- то ремонтные работы или осмотреть давно затонувшее судно. По окончании работы водолаз мог вернуться в колокол, который лебедкой поднимали наверх.

Впервые о водолазном колоколе упомянуто примерно в тридцатых годах 15-го столетия, на озере в окрестностях Рима на глубине более 20-ти метров пытались найти затонувшие вместе с кораблями сокровища. Колокол представлял собой цилиндр, в котором были стеклянные иллюминаторы, державшийся у водолаза на плечах при помощи двух опор. В нем водолаз опускался на дно озера Неми. В течение целого часа Лорено пытался обнаружить следы некогда затонувших галер Калигулы. Воздуха в таком сосуде для этого было маловато. С учетом этого под водолазные колокола стали использовать большого размера металлические бочки и деревянные ящики, снизу открытые, с платформой для водолаза.

Под этим колоколом размещался опускающийся водолаз. В процессе спуска под воду уровень воды повышался, давление в воздушной подушке повышалось, а сама подушка уменьшалась.

Водолаз в колоколе находился не более 45 минут. Так как в воздушной подушке идет скопление углекислоты, а содержание кислорода резко падает. Да и организм водолаза никак не защищён от влияния низких температур воды, что тоже не увеличивало время нахождения под водой.

Уже в середине 17-го столетия посредством водолазного колокола подняли с погибшего корабля около 50 пушек, а 19 столетии он уже применялся шире и гораздо успешнее.

Изобретение водолазного колокола явилось новой страницей в летописи водолазных дел. Его применение позволило значительно увеличить время нахождения водолаза под водой в сравнении с ныряниями и одновременно позволяло увеличить глубину погружения по сравнению с использованием для дыхания трубочки из тростника.

Проблема замены воздуха в колоколе, израсходованного водолазом, стояла очень остро, и её по мере сил пытались решить конструкторы и исследователи различными путями.

Во второй половине 17-го столетия немецкий ученый Штурм построил и провел испытания водолазного колокола, воздух в котором добавлял, разбивая по мере надобности бутылки под водой.

Итальянский ученый Джованни Борели, примерно в эти же годы, предлагал подавать вместо использованного воздуха свежий посредством шланга.

А французский ученый Денни Папен Точно описал колокол, в котором газовая среда и поддержка внутреннего давления подачей воздуха насосом. В этом колоколе предусматривалось использовать его главное изобретение – вентиль и невозвратный клапан.

В конце 19 столетия изобретатели Гаузен и Зибе модернизировали водолазный колокол, что позволило считать его примитивным скафандром.

122 126 ..

Устройство некоторых образцов водолазных колоколов

Водолазный колокол компании «Тейлор» (США)

Водолазный колокол компании «Тейлор» (США) рассчитан на спуски водолазов в шланговом снаряжении и разработан в двух вариантах: с нахождением системы газоснабжения на поверхности и с ее размещением в самом колоколе.

Рекламируемое компанией преимущество второго варианта спорно, так как требует выполнения всех манипуляций по контролю и обеспечению газоснабжения обеспечивающим водолазам, находящимся под давлением и в стесненной обстановке. Выполнение таких манипуляций оператором, находящимся на судне в нормальных условиях, несомненно, более просто и надежно. Кроме того, при первом варианте вместо одного шланга для подачи в колокол газовой смеси он связан с поверхностью тремя шлангами, что усложняет спуск колокола.

Размещение системы газоснабжения в самом колоколе ограничивает запас газовых смесей в баллонах, который может быть недостаточным для обеспечения дыхания водолазов в аварийных ситуациях.

Колокол по обоим вариантам имеет одинаковый цилиндрический корпус с нижним расположением выходного люка, рассчитанный на двух водолазов, один из которых в снаряжении ведет работу под водой по выходе из колокола, а второй, без снаряжения, находится в колоколе, обеспечивая работу первого.

Вариант колокола с собственной системой газораспределения (рис. 7.4) имеет две замкнутые ветви циркуляции газа: первая обеспечивает внутреннее пространство колокола, а вторая - работающего в воде водолаза.

Рис. 7.4. Схема устройства водолазного колокола компании «Тейлор»;
1- источник горячей воды на поверхности; 2 и 7- глушители; 3 - всасывающий поршневой насос; 4 - отсек вспомогательных механизмов; 5 - основной двигатель; 6 - нагнетающий поршневой насос; 5 - баллон с кислородом; 9 - прибор управляющий подачей кислорода; 10- кислородный датчик; -гелиевый баллон; 12 - кислородный баллон; 13 - смеситель; 14 - баллон с готовой газовой смесью; 15 - редуктор; 16 - глушитель; 17 - аппарат поглощения углекислоты; 18 - обогревательный змеевик (расположен за аппаратом поглощения); 19 - нагнетательный ресивер; 20 - шланг подачи газа водолазу; 21 - аварийные маски; 22 - запасные баллоны газовой смеси; 23 - водолазный шлем; 24 - отсасывающий шланг; 25 - приемник горячей воды; 26 - комбинированный шланг; 27 - выходная шахта; 28 - люк; 29 - всасывающий ресивер; 30 - шланг подачи воды водолазу; 31 - отстойник; 32 - контрольный прибор; 33- баллон с гелием; 34 - шланг подачи горячей воды; 35 - корпус колокола.

Находящаяся во внутреннем пространстве газовая смесь для очистки засасывается поршневым насосом 6, через глушитель 7 нагнетается в нагнетательный ресивер 19, где очищается от влаги. Из ресивера смесь поступает в аппарат 17 поглощения углекислого газа, из которого всасывается насосом 3 и через приемный ресивер 29 и отстойник 31 снова поступает в колокол.

При циркуляции смеси по описанной схеме она обогащается кислородом из баллона 8. При необходимости увеличения общего количества смеси в колоколе (например, при увеличении в нем давления) она подается в систему колокола с поверхности из баллона 14 через редуктор 15 или из гелиевого 11 и кислородного 12 баллонов через смеситель 13.

Кроме того, колокол имеет запасные баллоны 22 с готовыми газовыми смесями, которые могут подаваться в систему циркуляции.

Дыхание водолаза, работающего в воде вне колокола, обеспечивается подачей по шлангу 20 в шлем 23 водолазного снаряжения. Смесь к шлему подается под давлением, несколько превышающим давление окружающей среды, и ее поступление на дыхание регулируется самим водолазом. Смесь из подшлем-ного пространства поступает по шлангу 24 в систему общей циркуляции колокола.

Наиболее важно в циркуляции газовой смеси поддержание нужного парциального давления кислорода, которое при больших давлениях лежит в очень узких пределах. Для контроля содержания кислорода в газовой смеси служит датчик 10, соединенный с прибором, управляющим подачей кислорода. Этот прибор управляет электромагнитными клапанами баллона 8.

Кроме рассмотренных систем циркуляции газовых смесей колокол имеет систему водяного обогрева. Горячая вода подается в колокол из источника 1, установленного на поверхности, по шлангу 34. В колоколе вода с помощью змеевика 18 обогревает его внутреннее пространство и по шлангу 30 подается к приемнику 25 водолазного снаряжения. Отработанная горячая вода из снаряжения сливается в окружающую среду. Обогрев водолаза регулируется по его указаниям изменением открытия крана, через который вода поступает в приемник.

Для дыхания водолазов в аварийных случаях при отказе системы циркуляции газовой смеси водолазы используют аварийные маски 21, к которым газовая смесь поступает с поверхности или из запасных баллонов.

Вариант колокола с нахождением системы газоснабжения на поверхности имеет внутри только магистрали, вентили и приборы для обеспечения дыхания работающего в воде водолаза и использования аварийных масок, а также для регулирования подачи горячей воды. Все остальные устройства и приспособления, установленные на ранее описанном варианте колокола, вынесены на поверхность и установлены на обеспечивающем судне.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта