Главная » Несъедобные грибы » Как считать ускорение. Формулы ускорения в физике: линейное и центростремительное ускорение

Как считать ускорение. Формулы ускорения в физике: линейное и центростремительное ускорение

В курсе физики VII класса вы изучали самый простой вид движения - равномерное движение по прямой линии. При таком движении скорость тела была постоянной и тело за любые равные промежутки времени проходило одинаковые пути.

Большинство движений, однако, нельзя считать равномерными. На одних участках тела могут иметь меньшую скорость, на других - большую. Например, поезд, отходящий от станции, начинает двигаться все быстрее и быстрее. Подъезжая к станции, он, наоборот, замедляет свое движение.

Проделаем опыт. Установим на тележку капельницу, из которой через одинаковые промежутки времени падают капли окрашенной жидкости. Поместим эту тележку на наклонную доску и отпустим. Мы увидим, что расстояние между следами, оставленными каплями, по мере движения тележки вниз будет становиться все больше и больше (рис. 3). Это означает, что за равные промежутки времени тележка проходит неодинаковые пути. Скорость тележки возрастает. Причем, как можно доказать, за одни и те же промежутки времени скорость тележки, съезжающей по наклонной доске, возрастает все время на одну и ту же величину.

Если скорость тела при неравномерном движении за любые равные промежутки времени изменяется одинаково, то движение называют равноускоренным.

Так, например, опытами установлено, что скорость любого свободно падающего тела (при отсутствии сопротивления воздуха) за каждую секунду возрастает примерно на 9,8 м/с, т. е. если вначале тело покоилось, то через секунду после начала падения оно будет иметь скорость 9,8 м/с, еще через секунду - 19,6 м/с, еще через секунду - 29,4 м/с и т. д.

Физическая величина, показывающая, на сколько изменяется скорость тела за каждую секунду равноускоренного движения, называется ускорением.

a - ускорение.

Единицей ускорения в СИ является такое ускорение, при котором за каждую секунду скорость тела изменяется на 1 м/с, т. е. метр в секунду за секунду. Эту единицу обозначают 1 м/с 2 и называют «метр на секунду в квадрате».

Ускорение характеризует быстроту изменения скорости. Если, например, ускорение тела равно 10 м/с 2 , то это означает, что за каждую секунду скорость тела изменяется на 10 м/с, т. е. в 10 раз быстрее, чем при ускорении 1 м/с 2 .

Примеры ускорений, встречающихся в нашей жизни, можно найти в таблице 1.


Как рассчитывают ускорение, с которым тела начинают двигаться?

Пусть, например, известно, что скорость отъезжающего от станции электропоезда за 2 с увеличивается на 1,2 м/с. Тогда, для того чтобы узнать, на сколько она возрастает за 1 с, надо 1,2 м/с разделить на 2 с. Мы получим 0,6 м/с 2 . Это и есть ускорение поезда.

Итак, чтобы найти ускорение тела, начинающего равноускоренное движение, надо приобретенную телом скорость разделить на время, за которое была достигнута эта скорость:

Обозначим все величины, входящие в это выражение, латинскими буквами:

a - ускорение; v - приобретенная скорость; t - время.

Тогда формулу для определения ускорения можно записать в следующем виде:

Эта формула справедлива для равноускоренного движения из состояния покоя, т. е. когда начальная скорость тела равна нулю. Начальную скорость тела обозначают Формула (2.1), таким образом, справедлива лить при условии, что v 0 = 0.

Если же нулю равна не начальная, а конечная скорость (которая обозначается просто буквой v ), то формула ускорения принимает вид:

В таком виде формулу ускорения применяют в тех случаях, когда тело, имеющее некоторую скорость v 0 , начинает двигаться все медленнее и медленнее, пока наконец не остановится (v = 0). Именно по этой формуле, например, мы будем рассчитывать ускорение при торможении автомобилей и других транспортных средств. Под временем t при этом мы будем понимать время торможения.

Как и скорость, ускорение тела характеризуется не только числовым значением, но и направлением. Это означает, что ускорение тоже является векторной величиной. Поэтому на рисунках его изображают в виде стрелки.

Если скорость тела при равноускоренном прямолинейном движении возрастает, то ускорение направлено в ту же сторону, что и скорость (рис. 4, а); если же скорость тела при данном движении уменьшается, то ускорение направлено в противоположную сторону (рис. 4, б).

При равномерном прямолинейном движении скорость тела не изменяется. Поэтому ускорение при таком движении отсутствует (a = 0) и на рисунках изображено быть не может.

1. Какое движение называют равноускоренным? 2. Что такое ускорение? 3. Что характеризует ускорение? 4. В каких случаях ускорение равно нулю? 5. По какой формуле находится ускорение тела при равноускоренном движении из состояния покоя? 6. По какой формуле находится ускорение тела при уменьшении скорости движения до нуля? 7. Как направлено ускорение при равноускоренном прямолинейном движении?

Экспериментальное задание. Используя линейку в качестве наклонной плоскости, положите на ее верхний край монету и отпустите. Будет ли двигаться монета? Если будет, то как - равномерно или равноускоренно? Как это зависит от угла наклона линейки?

На данном уроке мы с вами рассмотрим важную характеристику неравномерного движения - ускорение. Кроме того, мы рассмотрим неравномерное движение с постоянным ускорением. Такое движение еще называется равноускоренным или равнозамедленным. Наконец, мы поговорим о том, как графически изображать зависимости скорости тела от времени при равноускоренном движении.

Домашнее задание

Решив задачи к данному уроку, вы сможете подготовиться к вопросам 1 ГИА и вопросам А1, А2 ЕГЭ.

1. Задачи 48, 50, 52, 54 сб. задач А.П. Рымкевич, изд. 10.

2. Запишите зависимости скорости от времени и нарисуйте графики зависимости скорости тела от времени для случаев, изображенных на рис. 1, случаи б) и г). Отметьте на графиках точки поворота, если такие есть.

3. Рассмотрите следующие вопросы и ответы на них:

Вопрос. Является ли ускорение свободного падения ускорением, согласно данному выше определению?

Ответ. Конечно, является. Ускорение свободного падения - это ускорение тела, которое свободно падает с некоторой высоты (сопротивлением воздуха нужно пренебречь).

Вопрос. Что произойдет, если ускорение тела будет направлено перпендикулярно скорости движения тела?

Ответ. Тело будет двигаться равномерно по окружности.

Вопрос. Можно ли вычислять тангенс угла наклона, воспользовавшись транспортиром и калькулятором?

Ответ. Нет! Потому что полученное таким образом ускорение будет безразмерным, а размерность ускорения, как мы показали ранее, должно иметь размерность м/с 2 .

Вопрос. Что можно сказать о движении, если график зависимости скорости от времени не является прямой?

Ответ. Можно сказать, что ускорение этого тела меняется со временем. Такое движение не будет являться равноускоренным.

Как известно, движение в классической физике описывается вторым законом Ньютона. Благодаря этому закону вводится понятие ускорения тела. В данной статье рассмотрим основные в физике, которые используют понятия действующей силы, скорости и пройденного телом пути.

Понятие об ускорении через второй закон Ньютона

Если на некоторое физическое тело массой m действует внешняя сила F¯, то при отсутствии других воздействий на него, можно записать следующее равенство:

Здесь a¯ - получившая название линейного ускорения. Как видно из формулы, оно прямо пропорционально внешней силе F¯, поскольку массу тела можно считать величиной постоянной при скоростях намного меньших скорости распространения электромагнитных волн. Кроме того, вектор a¯ совпадает по направлению с F¯.

Приведенное выражение позволяет записать первую формулу ускорения в физике:

a¯ = F¯/m или a = F/m

Здесь второе выражение записано в скалярной форме.

Ускорение, скорость и пройденный путь

Еще один способ найти линейное ускорение a¯ заключается в исследовании процесса движения тела по прямой траектории. Такое движение принято описывать такими характеристиками, как скорость, время и пройденный путь. В этом случае ускорение понимается как скорость изменения самой скорости.

Для прямолинейного перемещения объектов справедливы следующие формулы в скалярной форме:

2) a cp = (v 2 -v 1)/(t 2 -t 1);

3) a cp = 2*S/t 2

Первое выражение представляет собой оно определяется как производная скорости по времени.

Вторая формула позволяет рассчитать среднее ускорение. Здесь рассматривается два состояния движущегося объекта: его скорость в момент v 1 времени t 1 и аналогичная величина v 2 в момент времени t 2 . Время t 1 и t 2 отсчитывается от некоторого начального события. Отметим, что среднее ускорение характеризует в общем эту величину на рассмотренном временном промежутке. Внутри же него значение мгновенного ускорения может изменяться и значительно отличаться от среднего a cp .

Третья формула ускорения в физике дает возможность определять также a cp , но уже через пройденный путь S. Формула справедлива, если тело начинало движения с нулевой скорости, то есть когда t=0, v 0 =0. Этот тип движения называют равноускоренным. Его ярким примером является падение тел в поле гравитации нашей планеты.

Движение по окружности равномерное и ускорение

Как было сказано, ускорение является вектором и по определению представляет собой изменение скорости за единицу времени. В случае равномерного движения по окружности модуль скорости не меняется, однако постоянно изменяет направление его вектор. Этот факт приводит к возникновению специфического вида ускорения, получившего название центростремительного. Оно направлено к центру окружности, по которой тело совершает движение, и определяется по формуле:

a c = v 2 /r, где r - радиус окружности.

Эта формула ускорения в физике демонстрирует, что его значение с ростом скорости растет быстрее, чем с уменьшением радиуса кривизны траектории.

Примером проявления a c является движение автомобиля, входящего в поворот.

Перемеще́ние (в кинематике) - изменение местоположения физического тела в пространстве относительно выбранной системы отсчёта. Также перемещениемназывают вектор, характеризующий это изменение. Обладает свойством аддитивности.

Ско́рость (часто обозначается , от англ. velocity или фр. vitesse) - векторная физическая величина, характеризующая быстротуперемещения и направления движения материальной точки в пространстве относительно выбранной системы отсчёта (например, угловая скорость).

Ускоре́ние (обычно обозначается , в теоретической механике ) - производная скорости по времени, векторная величина, показывающая, насколько изменяется вектор скорости точки (тела) при её движении за единицу времени (т.е. ускорение учитывает не только изменение величины скорости, но и её направления).

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения τ (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n . Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

Направление полного ускорения также определяется правилом сложения векторов:

    Сила. Масса. Законы Ньютона.

Си́ла - векторная физическая величина, являющаяся мерой интенсивности воздействия на данное тело других тел, а также полей. Приложенная к массивному телу сила является причиной изменения его скорости или возникновения в нём деформаций.

Ма́сса (от греч. μάζα) - скалярная физическая величина, одна из важнейших величин в физике. Первоначально (XVII-XIX века) она характеризовала «количество вещества» в физическом объекте, от которого, по представлениям того времени, зависели как способность объекта сопротивляться приложенной силе (инертность), так и гравитационные свойства - вес. Тесно связана с понятиями «энергия» и «импульс» (по современным представлениям - масса эквивалентна энергии покоя).

Первый закон Ньютона

Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго.

Второй закон Ньютона

В инерциальной системе отсчёта ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

Третий закон Ньютона

Материальные точки попарно действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

    Импульс. Закон сохранения импульса. Упругие и неупругие удары.

И́мпульс (Количество движения) - векторная физическая величина, характеризующая меру механического движения тела. В классической механике импульс тела равен произведению массы m этого тела на его скорость v, направление импульса совпадает с направлением вектора скорости:

Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.

В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.

Как и любой из фундаментальных законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, - однородность пространства.

Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание).

Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел.

Во многих случаях столкновения атомов, молекул и элементарных частиц подчиняются законам абсолютно упругого удара.

При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии.

4. Виды механической энергии. Работа. Мощность. Закон сохранения энергии.

В механике различают два вида энергии: кинетическую и потенциальную.

Кинетической энергией называют механическую энергию всякого свободно движущегося тела и измеряют ее той работой, которую могло бы совершить тело при его торможении до полной остановки.

Итак, кинетическая энергия поступательно движущегося тела равна половине произведения массы этого тела на квадрат его скорости:

Потенциальная энергия – это механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними. Численно потенциальная энергия системы в данном ее положении равна работе, которую произведут действующие на систему силы при перемещении системы из этого положения в то, где потенциальная энергия условно принимается равной нулю (E n = 0). Понятие «потенциальная энергия» имеет место только для консервативных систем, т.е. систем, у которых работа действующих сил зависит только от начального и конечного положения системы.

Так, для груза весом P, поднятого на высоту h, потенциальная энергия будет равна E n = Ph (E n = 0 при h = 0); для груза, прикрепленного к пружине, E n = kΔl 2 / 2, где Δl - удлинение (сжатие) пружины, k – ее коэффициент жесткости (E n = 0 при l = 0); для двух частиц с массами m 1 и m 2 , притягивающимися по закону всемирного тяготения, , где γ – гравитационная постоянная, r – расстояние между частицами (E n = 0 при r → ∞).

Термин "работа" в механике имеет два смысла: работа как процесс, при котором сила перемещает тело, действуя под углом, отличном от 90°; работа - физическая величина, равная произведению силы, перемещения и косинуса угла между направлением действия силы и перемещением:

Работа равна нулю, когда тело движется по инерции (F = 0), когда нет перемещения (s = 0) или когда угол между перемещением и силой равен 90° (cos а = 0). Единицей работы в СИ служит джоуль (Дж).

1 джоуль - это такая работа, которая совершается силой 1 Н при перемещении тела на 1 м по линии действия силы. Для определения быстроты совершения работы вводят величину "мощность".

Мо́щность - физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Различают среднюю мощность за промежуток времени :

и мгновенную мощность в данный момент времени:

Так как работа является мерой изменения энергии, мощность можно определить также как скорость изменения энергии системы.

В системе СИ единицей измерения мощности является ватт, равный одному джоулю, делённому на секунду.

Зако́н сохране́ния эне́ргии - фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системыможет быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то его можно именовать не законом, а принципом сохранения энергии.

Ускорение - физическая векторная величина, которая характеризует насколько быстро тело (материальная точка) изменяет скорость своего движения. Ускорение является важной кинематической характеристикой материальной точки.

Самый простой вид движения - равномерное движение по прямой линии, когда скорость тела постоянна и тело за любые равные промежутки времени проходит одинаковый путь.

Но большинство движений неравномерны. На одних участках скорость тела больше, на других меньше. Машина начиная движение двигается все быстрее. а останавливаясь замедляется.

Ускорение характеризует быстроту изменения скорости. Если, например, ускорение тела равно 5 м/с 2 , то это означает, что за каждую секунду скорость тела изменяется на 5 м/с , т. е. в 5 раз быстрее, чем при ускорении 1 м/с 2 .

Если скорость тела при неравномерном движении за любые равные промежутки времени изменяется одинаково, то движение называют равноускоренным .

Единицей ускорения в СИ является такое ускорение, при котором за каждую секунду скорость тела изменяется на 1 м/с, т. е. метр в секунду за секунду. Эту единицу обозначают 1 м/с2 и называют «метр на секунду в квадрате».

Как и скорость, ускорение тела характеризуется не только числовым значением, но и направлением. Это означает, что ускорение тоже является векторной величиной. Поэтому на рисунках его изображают в виде стрелки.

Если скорость тела при равноускоренном прямолинейном движении возрастает, то ускорение направлено в ту же сторону, что и скорость (рис. а); если же скорость тела при данном движении уменьшается, то ускорение направлено в противоположную сторону (рис. б).

Среднее и мгновенное ускорение

Среднее ускорение материальной точки на некотором промежутке времени - это отношение изменения его скорости, что произошло за это время, к продолжительности этого промежутка:

\(\lt\vec a\gt = \dfrac {\Delta \vec v} {\Delta t} \)

Мгновенное ускорение материальной точки в некоторый момент времени - это лимит его среднего ускорения при \(\Delta t \to 0 \) . Имея в виду определение производной функции, мгновенное ускорение можно определить как производную от скорости по времени:

\(\vec a = \dfrac {d\vec v} {dt} \)

Тангенциальное и нормальное ускорение

Если записать скорость как \(\vec v = v\hat \tau \) , где \(\hat \tau \) - орт касательной к траектории движения, то (в двухмерной системе координат):

\(\vec a = \dfrac {d(v\hat \tau)} {dt} = \)

\(= \dfrac {dv} {dt} \hat \tau + \dfrac {d\hat \tau} {dt} v =\)

\(= \dfrac {dv} {dt} \hat \tau + \dfrac {d(\cos\theta\vec i + sin\theta \vec j)} {dt} v =\)

\(= \dfrac {dv} {dt} \hat \tau + (-sin\theta \dfrac {d\theta} {dt} \vec i + cos\theta \dfrac {d\theta} {dt} \vec j)) v \)

\(= \dfrac {dv} {dt} \hat \tau + \dfrac {d\theta} {dt} v \hat n \) ,

где \(\theta \) - угол между вектором скорости и осью абсцисс; \(\hat n \) - орт перпендикуляра к скорости.

Таким образом,

\(\vec a = \vec a_{\tau} + \vec a_n \) ,

где \(\vec a_{\tau} = \dfrac {dv} {dt} \hat \tau \) - тангенциальное ускорение, \(\vec a_n = \dfrac {d\theta} {dt} v \hat n \) - нормальное ускорение.

Учитывая, что вектор скорости направлен по касательной к траектории движения, то \(\hat n \) - это орт нормали к траектории движения, который направлен к центру кривизны траектории. Таким образом, нормальное ускорение направлено к центру кривизны траектории, в то время как тангенциальное - по касательной к ней. Тангенциальное ускорение характеризует скорость изменения величины скорости, в то время как нормальное характеризует скорость изменения ее направления.

Движение по криволинейной траектории в каждый момент времени можно представить как вращение вокруг центра кривизны траектории с угловой скоростью \(\omega = \dfrac v r \) , где r - радиус кривизны траектории. В таком случае

\(a_{n} = \omega v = {\omega}^2 r = \dfrac {v^2} r \)

Измерение ускорения

Ускорение измеряется в метрах (разделенных) на секунду во второй степени (м/с 2). Величина ускорения определяет, насколько изменится скорость тела за единицу времени, если оно будет постоянно двигаться с таким ускорением. Например, тело, движущееся с ускорением 1 м/с 2 за каждую секунду изменяет свою скорость на 1 м/с.

Единицы измерения ускорения

  • метр в секунду в квадрате, м/с², производная единица системы СИ
  • сантиметр в секунду в квадрате, см/с², производная единица системы СГС
В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!


Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта