Главная » Съедобные грибы » Какие виды солнечной радиации бывают. Солнечная радиация: географический словарь

Какие виды солнечной радиации бывают. Солнечная радиация: географический словарь

1. Что называется солнечной радиацией? В каких единицах она измеряется? От чего зависит её величина?

Вся совокупность лучистой энергии, посылаемой Солнцем, называется солнечной радиацией, обычно она выражается в калориях или джоулях на один квадратный сантиметр в минуту. Солнечная радиация распределяется по земле неравномерно. Это зависит:

От плотности и влажности воздуха – чем они выше, тем меньше радиации получает земная поверхность;

От географической широты местности – количество радиации увеличивается от полюсов к экватору. Количество прямой солнечной радиации зависит от длины пути, который проходят солнечные лучи в атмосфере. Когда Солнце находится в зените (угол падения лучей 90°), его лучи попадают на Землю кратчайшим путем и интенсивно отдают свою энергию малой площади;

От годового и суточного движения Земли – в средних и высоких широтах поступление солнечной радиации сильно изменяется по временам года, что связано с изменением полуденной высоты Солнца и продолжительности дня;

От характера земной поверхности – чем светлее поверхность, тем больше солнечных лучей она отражает.

2. На какие виды разделяют солнечную радиацию?

Существуют следующие виды Солнечной радиации: радиация, достигающая земной поверхности, состоит из прямой и рассеянной. Радиация, приходящая на Землю непосредственно от Солнца в виде прямых солнечных лучей при безоблачном небе, называется прямой. Она несет наибольшее количество тепла и света. Если бы у нашей планеты не было атмосферы, земная поверхность получала только прямую радиацию. Однако, проходя через атмосферу, примерно четвертая часть солнечной радиации рассеивается молекулами газов и примесями, отклоняется от прямого пути. Некоторая их часть достигает поверхности Земли, образуя рассеянную солнечную радиацию. Благодаря рассеянной радиации свет проникает и в те места, куда прямые солнечные лучи (прямая радиация) не проникают. Эта радиация создает дневной свет и придает цвет небу.

3. Почему меняется поступление солнечной радиации по сезонам года?

Россия, в своем большинстве, расположена в умеренных широтах, лежащих между тропиком и полярным кругом, в этих широтах Солнце каждый день восходит и заходит, но никогда не бывает в зените. Благодаря тому, что угол наклона Земли не изменен в течение всего её обращения вокруг Солнца, в разные сезоны количество приходящего тепла, в умеренных широтах, различно и зависит от угла Солнца над горизонтом. Так, на широте 450 mах угол падения солнечных лучей (22 июня) составляет приблизительно 680, а min (22 декабря) приблизительно 220. Чем меньше угол падения лучей Солнца, тем меньше тепла они приносят, поэтому отмечаются существенные сезонные различия получаемой солнечной радиации в разные сезоны года: зимы, весны, лета, осени.

4. Для чего необходимо знать высоту Солнца над горизонтом?

Высота Солнца над горизонтом определяет количество тепла приходящего на Землю, поэтому между углом падения солнечных лучей и количеством солнечной радиации, приходящей на земную поверхность, существует прямая зависимость. От экватора к полюсам в целом наблюдается уменьшение угла падения солнечных лучей, и как следствие от экватора к полюсам уменьшается величина солнечной радиации. Таким образом, зная высоту Солнца над горизонтом, можно узнать количество тепла приходящего на земную поверхность.

5. Выберите верный ответ. Общее количество радиации, достигшей поверхности Земли, называется: а) поглощённой радиацией; б) суммарной солнечной радиацией; в) рассеянной радиацией.

6. Выберите верный ответ. При движении к экватору величина суммарной солнечной радиации: а) увеличивается; б) уменьшается; в) не изменяется.

7. Выберите верный ответ. Самый большой показатель отражённой радиации имеет: а) снег; б) чернозём; в) песок; г) вода.

8. Как вы думаете, можно ли в летний пасмурный день загореть?

Суммарная солнечная радиация состоит из двух составляющих: рассеянной и прямой. При этом Солнечные лучи, независимости от своей природы несут в себе ультрафиолет, который и влияет на загар.

9. По карте на рисунке 36 определите суммарную солнечную радиацию для десяти городов России. Какой вывод вы сделали?

Суммарная радиация в разных городах России:

Мурманск: 10 ккал/см2 в год;

Архангельск: 30 ккал/см2 в год;

Москва: 40 ккал/см2 в год;

Пермь: 40 ккал/см2 в год;

Казань: 40 ккал/см2 в год;

Челябинск: 40 ккал/см2 в год;

Саратов: 50 ккал/см2 в год;

Волгоград: 50 ккал/см2 в год;

Астрахань: 50 ккал/см2 в год;

Ростов-на-Дону: более 50 ккал/см2 в год;

Общая закономерность в распределении солнечной радиации такова: чем ближе объект (город) к полюсу, тем меньше солнечной радиации приходиться на него (город).

10. Опишите, чем различаются сезоны года в вашей местности (природные условия, жизнь людей, их занятия). В какой из сезонов года жизнь наиболее активна?

Сложный рельеф, большая протяженность с севера на юг позволяют в области выделить 3 зоны, различающиеся как по рельефу, так и по климатическим характеристикам: горно-лесная, лесостепная и степная. Климат горно-лесной зоны прохладный и влажный. Температурный режим меняется в зависимости от рельефа. Этой зоне характерно короткое прохладное лето и продолжительная снежная зима. Постоянный снежный покров образуется в период с 25 октября по 5 ноября и залегает он до конца апреля, а в отдельные годы снежный покров сохраняется до 10-15 мая. Самым холодным месяцем является январь. Средняя температура зимой минус 15-16° С, абсолютный минимум 44-48° С. Самый теплый месяц - июль со средней температурой воздуха плюс 15-17° С, абсолютный максимум температуры воздуха за лето в этом районе достигал плюс 37-38° С. Климат лесостепной зоны теплый, с достаточно холодной и снежной зимой. Средняя температура января равняется минус 15,5-17,5° С, абсолютный минимум температуры воздуха достигал минус 42-49° С. Средняя температура воздуха в июле равняется плюс 18-19° С. Абсолютный максимум температуры - плюс 42,0° С. Климат степной зоны очень теплый и засушливый. Зима здесь холодная, с сильными морозами, метелями, которые наблюдаются в течение 40-50 дней, вызывая сильный перенос снега. Средняя температура января минус 17-18° С. В суровые зимы минимальная температура воздуха опускается до минус 44-46° С.

Энергия, излучаемая Солнцем, носит название солнечной радиации. Поступая на Землю, солнечная радиация в большей своей части превращается в тепло.

Солнечная радиация является практически единственным источником энергии для Земли и атмосферы. По сравнению с солнечной энергией значение других источников энергии для Земли ничтожно мало. Например, температура Земли в среднем с глубиной возрастает (примерно 1 о С на каждые 35 м). Благодаря этому поверхность Земли получает некоторое количество тепла из внутренних частей. Подсчитано, что в среднем 1см 2 земной поверхности получает из внутренних частей Земли около 220 Дж в год. Это количество в 5000 раз меньше тепла, получаемого от Солнца. Некоторое количество тепла Земля получает от звезд и планет, но и она во много раз (приблизительно в 30 млн.) меньше тепла, поступающего от Солнца.

Количество энергии, посылаемой Солнцем на Землю, огромно. Так, мощность потока солнечной радиации, поступающей на площадь в 10 км 2, составляет в летний безоблачный (с учетом ослабления атмосферы) 7-9 кВт. Это больше, чем мощность Красноярской ГЭС. Количество лучистой энергии, поступающей от Солнца за 1 секунду на площадь 15Ч15 км (это меньше площади Ленинграда) в околополуденные часы летом, превышает мощность всех электростанций распавшегося СССР (166 млн кВт) .

Рисунок 1 - Солнце - источник радиации

Виды солнечной радиации

В атмосфере солнечная радиация на пути к поверхности земли частично поглощается, а частично рассеивается и отражается от облаков и земной поверхности. В атмосфере наблюдается три вида солнечной радиации: прямая, рассеянная и суммарная.

Прямая солнечная радиация - радиация, приходящая к земной поверхности непосредственно от диска Солнца. Солнечная радиация распространяется от Солнца по всем направлениям. Но расстояние от Земли до Солнца так велико, что прямая радиация падает на любую поверхность на Земле в виде пучка параллельных лучей, исходящего как бы из бесконечности. Даже весь земной шар в целом так мал в сравнении с расстоянием до Солнца, что всю солнечную радиацию, падающую на него, без заметной погрешности можно считать пучком параллельных лучей.

На верхнюю границу атмосферы приходит только прямая радиация. Около 30 % падающей на Землю радиации отражается в космическое пространство. Кислород, азот, озон, диоксид углерода, водяные пары (облака) и аэрозольные частицы поглощают 23 % прямой солнечной радиации в атмосфере. Озон поглощает ультрафиолетовую и видимую радиацию. Несмотря на то, что его содержание в воздухе очень мало, он поглощает всю ультрафиолетовую часть радиации (это примерно 3 %). Таким образом, у земной поверхности ее вообще не наблюдается, что очень важно для жизни на Земле.

Прямая солнечная радиация на пути сквозь атмосферу также рассеивается. Частица (капля, кристалл или молекула) воздуха, находящаяся на пути электромагнитной волны, непрерывно «извлекает» энергию из падающей волны и переизлучает ее по всем направлениям, становясь излучателем энергии.

Около 25 % энергии общего потока солнечной радиации проходя через атмосферу, рассеивается молекулами атмосферных газов и аэрозолем и превращается в атмосфере в рассеянную солнечную радиацию. Таким образом рассеянная солнечная радиация - солнечная радиация, претерпевшая рассеяние в атмосфере. Рассеянная радиация приходит к земной поверхности не от солнечного диска, а от всего небесного свода. Рассеянная радиация отлична от прямой по спектральному составу, так как лучи различных длин волн рассеиваются в разной степени.

Так как первоисточником рассеянной радиации является прямая солнечная радиация, поток рассеянной зависит от тех же факторов, которые влияют на поток прямой радиации. В частности, поток рассеянной радиации возрастает по мере увеличение высоты Солнца и наоборот. Он возрастает также с увеличением в атмосфере количества рассеивающих частиц, т.е. со снижением прозрачности атмосферы, и уменьшается с высотой над уровнем моря в связи с уменьшение количества рассеивающих частиц в вышележащих слоях атмосферы. Очень большое влияние на рассеянную радиацию оказывают облачность и снежный покров, которые за счет рассеяния и отражения падающей на них прямой и рассеянной радиации и повторного рассеяния их в атмосфере могут в несколько раз увеличить рассеянную солнечную радиацию.

Рассеянная радиация существенно дополняет прямую солнечную радиацию и значительно увеличивает поступление солнечной энергии на земную поверхность. Особенно велика ее роль в зимнее время в высоких широтах и в других районах с повышенной облачностью, где доля рассеянной радиации может превышать долю прямой. Например, в годовой сумме солнечной энергии на долю рассеянной радиации приходится в Архангельске - 56 %, в Санкт-Петербурге - 51 %.

Суммарная солнечная радиация - это сумма потоков прямой и рассеянной радиаций, поступающих на горизонтальную поверхность. До восхода и после захода Солнца, а также днем при сплошной облачности суммарная радиация полностью, а при малых высотах Солнца преимущественно состоит из рассеянной радиации. При безоблачном или малооблачном небе с увеличением высоты Солнца доля прямой радиации в составе суммарной быстро возрастает и в дневные часы поток ее многократно превышает поток рассеянной радиации. Облачность в среднем ослабляет суммарную радиацию (на 20-30 %), однако при частичной облачности, не закрывающей солнечного диска, поток ее может быть больше, чем при безоблачном небе. Существенно увеличивает поток суммарной радиации снежный покров за счет увеличения потока рассеянной радиации.

Суммарная радиация, падая на земную поверхность, большей частью поглощается верхним слоем почвы или более толстым слоем воды (поглощенная радиация) и переходит в тепло, а частично отражается (отраженная радиация) .

Источники тепла. В жизни атмосферы решающее значение имеет тепловая энергия. Главнейшим источником этой энергии является Солнце. Что же касается теплового излучения Луны, планет и звезд, то оно для Земли настолько ничтожно, что практически его нельзя принимать во внимание. Значительно больше тепловой энергии дает внутреннее тепло Земли. По вычислениям геофизиков, постоянный приток тепла из недр Земли повышает температуру земной поверхности на 0°,1. Но подобный приток тепла все же настолько мал, что принимать его в расчет также нет никакой необходимости. Таким образом, единственным источником тепловой энергии на поверхности Земли можно считать только Солнце.

Солнечная радиация. Солнце, имеющее температуру фотосферы (излучающей поверхности) около 6000°, излучает энергию в пространство во всех направлениях. Часть этой энергии в виде огромного пучка параллельных солнечных лучей попадает на Землю. Солнечная энергия, дошедшая до поверхности Земли в виде прямых лучей Солнца, носит название прямой солнечной радиации. Но не вся солнечная радиация, направленная на Землю, доходит до земной поверхности, так как солнечные лучи, проходя через мощный слой атмосферы, частично поглощаются ею, частично рассеиваются молекулами и взвешенными частичками воздуха, некоторая часть отражается облаками. Та часть солнечной энергии, которая рассеивается в атмосфере, называется рассеянной радиацией. Рассеянная солнечная радиация распространяется в атмосфере и попадает к поверхности Земли. Нами этот вид радиации воспринимается как равномерный дневной свет, когда Солнце полностью закрыто облаками или только что скрылось за горизонтом.

Прямая и рассеянная солнечная радиация, достигнув поверхности Земли, не полностью поглощается ею. Часть солнечной радиации отражается от земной поверхности обратно в атмосферу и находится там в виде потока лучей, так называемой отраженной солнечной радиации.

Состав солнечной радиации весьма сложный, что связано с очень высокой температурой излучающей поверхности Солнца. Условно по длине волн спектр солнечной радиации делят на три части: ультрафиолетовую (η<0,4<μ видимую глазом (η от 0,4μ до 0,76μ) и инфракрасную часть (η >0,76μ). Кроме температуры солнечной фотосферы, на состав солнечной радиации у земной поверхности влияет еще поглощение и рассеивание части солнечных лучей при их прохождении через воздушную оболочку Земли. В связи с этим состав солнечной радиации на верхней границе атмосферы и у поверхности Земли будет неодинаков. На основании теоретических расчетов и наблюдений установлено, что на границе атмосферы на долю ультрафиолетовой радиации приходится 5%, на видимые лучи - 52% и на инфракрасные - 43%. У земной же поверхности (при высоте Солнца 40°) ультрафиолетовые лучи составляют только 1%, видимые - 40%, а инфракрасные - 59%.

Интенсивность солнечной радиации. Под интенсивностью прямой солнечной радиации понимают количество тепла в калориях, получаемого в 1 мин. от лучистой энергии Солнца поверхностью в 1 см 2 , расположенной перпендикулярно к солнечным лучам.

Для измерения интенсивности прямой солнечной радиации применяются специальные приборы - актинометры и пиргелиометры; величина рассеянной радиации определяется пиранометром. Автоматическая регистрация продолжительности действия солнечной радиации производится актинографами и гелиографами. Спектральная интенсивность солнечной радиации определяется спектроболографом.

На границе атмосферы, где исключено поглощающее и рассеивающее воздействие воздушной оболочки Земли, интенсивность прямой солнечной радиации равна приблизительно 2 кал на 1 см 2 поверхности в 1 мин. Эта величина носит название солнечной постоянной. Интенсивность солнечной радиации в 2 кал на 1 см 2 в 1 мин. дает такое большое количество тепла в течение года, что его хватило бы, чтобы расплавить слой льда в 35 м толщиной, если бы такой слой покрывал всю земную поверхность.

Многочисленные измерения интенсивности солнечной радиации дают основание полагать, что количество солнечной энергии, приходящее к верхней границе атмосферы Земли, испытывает колебания в размере нескольких процентов. Колебания бывают периодические и непериодические, связанные, по-видимому, с процессами, происходящими на самом Солнце.

Кроме того, некоторое изменение в интенсивности солнечной радиации происходит в течение года благодаря тому, что Земля в годовом своем вращении движется не по окружности, а по эллипсу, в одном из фокусов которого находится Солнце. В связи с этим меняется расстояние от Земли до Солнца и, следовательно, происходит колебание интенсивности солнечной радиации. Наибольшая интенсивность наблюдается около 3 января, когда Земля находится ближе всего от Солнца, а наименьшая около 5 июля, когда Земля удалена от Солнца на максимальное расстояние.

Колебание интенсивности солнечной радиации по этой причине очень невелико и может представлять только теоретический интерес. (Количество энергии при максимальном расстоянии относится к количеству энергии при минимальном расстоянии, как 100: 107, т. е. разница совершенно ничтожна.)

Условия облучения поверхности земного шара. Уже одна только шарообразная форма Земли приводит к тому, что лучистая энергия Солнца распределяется на земной поверхности весьма неравномерно. Так, в дни весеннего и осеннего равноденствия (21 марта и 23 сентября) только на экваторе в полдень угол падения лучей будет 90° (рис. 30), а по мере приближения к полюсам он будет уменьшаться от 90 до 0°. Таким образом,

если на экваторе количество полученной радиации принять за 1, то на 60-й параллели она выразится в 0,5, а на полюсе будет равна 0.

Земной шар, кроме того, имеет суточное и годовое движение, причем земная ось наклонена к плоскости орбиты на 66°,5. В силу этого наклона между плоскостью экватора и плоскостью орбиты образуется угол в 23°30 г. Это обстоятельство приводит к тому, что углы падения солнечных лучей для одних и тех же широт будут меняться в пределах 47° (23,5+23,5).

В зависимости от времени года меняется не только угол падения лучей, но также продолжительность освещения. Если в тропических странах во все времена года продолжительность дня и ночи приблизительно одинакова, то в полярных странах, наоборот, она очень различна. Так, например, на 70° с. ш. летом Солнце не заходит 65 суток, на 80° с. ш.- 134, а на полюсе -186. В силу этого на Северном полюсе радиация в день летнего солнцестояния (22 июня) на 36% больше, чем на экваторе. Что же касается всего летнего полугодия, то общее количество тепла и света, получаемого полюсом, только на 17% меньше, чем на экваторе. Таким образом, в летнее время в полярных странах продолжительность освещения в значительной мере компенсирует тот недостаток радиации, который является следствием малого угла падения лучей. В зимнее полугодие картина совершенно другая: количество радиации на том же Северном полюсе будет равно 0. В результате за год среднее количество радиации на полюсе оказывается в 2,4 меньше, чем на экваторе. Из всего сказанного следует, что количество солнечной энергии, которое получает Земля путем радиации, определяется углом падения лучей и продолжительностью облучения.

Земная поверхность при отсутствии атмосферы на различных широтах за сутки получала бы следующее количество тепла, выраженное в калориях на 1 см 2 (см. таблицу на стр. 92).

Приведенное в таблице распределение радиации по земной поверхности принято называть солярным климатом. Повторяем, что такое распределение радиации мы имеем только у верхней границы атмосферы.


Ослабление солнечной радиации в атмосфере. До сих пор мы говорили об условиях распределения солнечного тепла по земной поверхности, не принимая во внимание атмосферы. Между тем атмосфера в данном случае имеет огромное значение. Солнечная радиация, проходя через атмосферу, испытывает рассеивание и, кроме того, поглощение. Оба эти процесса вместе ослабляют солнечную радиацию в значительной степени.

Солнечные лучи, проходя через атмосферу, прежде всего испытывают рассеивание (диффузию). Рассеивание создается тем, что лучи света, преломляясь и отражаясь от молекул воздуха и частичек твердых и жидких тел, находящихся в воздухе, отклоняются от прямого пути к действительно «рассеиваются».

Рассеивание сильно ослабляет солнечную радиацию. При увеличений количества водяных паров и особенно пылевых частиц рассеивание увеличивается и радиация ослабляется. В больших городах и пустынных областях, где запыленность воздуха наибольшая, рассеивание ослабляет силу радиации на 30-45%. Благодаря рассеиванию получается тот дневной свет, который освещает предметы, если даже на них непосредственно солнечные лучи не падают. Рассеивание обусловливает и самый цвет неба.

Остановимся теперь на способности атмосферы поглощать лучистую энергию Солнца. Основные газы, входящие в состав атмосферы, поглощают лучистую энергию сравнительно очень мало. Примеси же (водяной пар, озон, углекислый газ и пыль), наоборот, отличаются большой поглотительной способностью.

В тропосфере наиболее значительную примесь составляют водяные пары. Они особенно сильно поглощают инфракрасные (длинноволновые), т. е. преимущественно тепловые лучи. И чем больше водяных паров в атмосфере, тем естественно больше и. поглощение. Количество же водяных паров в атмосфере подвержено большим изменениям. В естественных условиях оно меняется от 0,01 до 4% (по объему).

Очень большой поглотительной способностью отличается озон. Значительная примесь озона, как уже говорилось, находится в нижних слоях стратосферы (над тропопаузой). Озон поглощает ультрафиолетовые (коротковолновые) лучи почти полностью.

Большой поглотительной способностью отличается также и углекислый газ. Он поглощает главным образом длинноволновые, т. е. преимущественно тепловые лучи.

Пыль, находящаяся в воздухе, также поглощает некоторое количество солнечной радиации. Нагреваясь под действием солнечных лучей, она может заметно повысить температуру воздуха.

Из общего количества солнечной энергии, приходящей к Земле, атмосфера поглощает всего около 15%.

Ослабление солнечной радиации путем рассеивания и поглощения атмосферой для различных широт Земли очень различно. Это различие зависит прежде всего от угла падения лучей. При зенитном положении Солнца лучи, падая вертикально, пересекают атмосферу кратчайшим путем. С уменьшением угла падения путь лучей удлиняется и ослабление солнечной радиации становится более значительным. Последнее хорошо видно по чертежу (рис. 31) и приложенной таблице (в таблице величина пути солнечного луча при зенитном положении Солнца принята за единицу).


В зависимости от угла падения лучей изменяется не только количество лучей, но также и их качество. В период, когда Солнце находится в зените (над головой), на ультрафиолетовые лучи приходится 4%, на

видимые - 44% и инфракрасные - 52%. При положении Солнца у горизонта ультрафиолетовых лучей совсем нет, видимых 28% и инфракрасных 72%.

Сложность влияния атмосферы на солнечную радиацию усугубляется еще тем, что пропускная ее способность очень сильно меняется в зависимости от времени года и состояния погоды. Так, если бы небо все время оставалось безоблачным, то годовой ход притока солнечной радиации на различных широтах можно было бы графически выразить следующим образом (рис. ,32) Из чертежа ясно видно, что при безоблачном небе в Москве в мае, июне и июле тепла от солнечной радиации получалось бы больше, чем на экваторе. Точно так же во вторую половину мая, в июне и первой половине июля на Северном полюсе тепла получалось бы больше, чем на экваторе и в Москве. Повторяем, что так было бы при безоблачном небе. Но на самом деле этого не получается, потому что облачность в значительной мере ослабляет солнечную радиацию. Приведем пример, изображенный на графике (рис. 33). На графике видно, как много солнечной радиации не доходит до поверхности Земли: значительная часть ее задерживается атмосферой и облаками.

Однако нужно сказать, что тепло, поглощенное облаками, частью идет на нагревание атмосферы, а частью косвенным образом достигает и земной поверхности.

Суточный и годовой ход интенсивности сол нечной радиации. Интенсивность прямой солнечной радиации у поверхности Земли зависит от высоты Солнца над горизонтом и от состояния атмосферы (от ее запыленности). Если бы. прозрачность атмосферы в течение суток была постоянная, то максимальная интенсивность солнечной радиации наблюдалась бы в полдень, а минимальная - при восходе и заходе Солнца. В этом случае график хода суточной интенсивности солнечной радиации был бы симметричным относительно полдня.

Содержание пыли, водяного пара и других примесей в атмосфере непрерывно меняется. В связи с этим меняется прозрачность воздуха и нарушается симметричность графика хода интенсивности солнечной радиации. Нередко, особенно в летний период, в полуденное время, когда происходит усиленное нагревание земной поверхности, возникают мощные восходящие токи воздуха, увеличивается количество водяного пара и пыли в атмосфере. Это приводит к значительному ослаблению солнечной радиации в полдень; максимум интенсивности радиации в этом случае наблюдается в дополуденные или послеполуденные часы. Годовой ход интенсивности солнечной радиации также связан с изменениями высоты Солнца над горизонтом в течение года и с состоянием прозрачности атмосферы в различные сезоны. В странах северного полушария наибольшая высота Солнца над горизонтом бывает в июне месяце. Но в это же время наблюдается и наибольшая запыленность атмосферы. Поэтому максимальная интенсивность обычно приходится не на середину лета, а на весенние месяцы, когда Солнце довольно высоко* поднимается над горизонтом, а атмосфера после зимы остается еще сравнительно чистой. Для иллюстрации годового хода интенсивности солнечной радиации в северном полушарии приводим данные среднемесячных полуденных величин интенсивности радиации в Павловске.


Сумма тепла солнечной радиации. Поверхность Земли в течение дня непрерывно получает тепло от прямой и рассеянной солнечной радиации или только от рассеянной радиации (при пасмурной погоде). Определяют суточную величину тепла на основании актинометрических наблюдений: по учету количества прямой и рассеянной радиации, поступившей на земную поверхность. Определив сумму тепла за каждые сутки, вычисляют и количество тепла, получаемого земной поверхностью за месяц или за год.

Суточное количество тепла, получаемого земной поверхностью от солнечной радиации, зависит от интенсивности радиации и от продолжительности ее действия в течение суток. В связи с этим минимум притока тепла приходится на зиму, а максимум на лето. В географическом распределении суммарной радиации по земному шару наблюдается ее увеличение с уменьшением широты местности. Это положение подтверждается следующей таблицей.


Роль прямой и рассеянной радиации в годовом количестве тепла, получаемом земной поверхностью на разных широтах земного шара, неодинакова. В высоких широтах в годовой сумме тепла преобладает рассеянная радиация. С уменьшением широты преобладающее значение переходит к прямой солнечной радиации. Так, например, в бухте Тихой рассеянная солнечная радиация дает 70% годовой суммы тепла, а прямая радиация только 30%. В Ташкенте, наоборот, прямая солнечная радиация дает 70%, рассеянная только 30%.

Отражательная способность Земли. Альбедо. Как уже указывалось, поверхность Земли поглощает только часть солнечной энергии, поступающей к ней в виде прямой и рассеянной радиации. Другая часть отражается в атмосферу. Отношение величины солнечной радиации, отраженной данной поверхностью, к величине потока лучистой энергии, падающей на эту поверхность, называется альбедо. Альбедо выражается в процентах и характеризует отражательную способность данного участка поверхности.

Альбедо зависит от характера поверхности (свойства почвы, наличия снега, растительности, воды и т. д.) и от величины угла падения лучей Солнца на поверхность Земли. Так, например, если лучи падают на земную поверхность под углом в 45°, то:

Из приведенных примеров видно, что отражающая способность у различных предметов неодинакова. Она всего больше у снега и меньше всего у воды. Однако взятые нами примеры относятся лишь к тем случаям, когда высота Солнца над горизонтом равна 45°. При уменьшении же этого угла отражающая способность увеличивается. Так, например, пои высоте Солнца в 90° вода отражает только 2%, при 50° - 4%, при 20°-12%, при 5° - 35-70% (в зависимости от состояния водной поверхности).

В среднем при безоблачном небе поверхность земного шара отражает 8% солнечной радиации. Кроме того, 9% отражает атмосфера. Таким образом, земной шар в целом при безоблачном небе отражает 17% падающей на него лучистой энергии Солнца. Если же небо покрыто облаками, то от них отражается 78% радиации. Если взять естественные условия, исходя из того соотношения между безоблачным небом и небом, покрытым облаками, которое наблюдается в действительности, то отражательная способность Земли в целом равна 43%.

Земная и атмосферная радиация. Земля, получая солнечную энергию, нагревается и сама становится источником излучения тепла в мировое пространство. Однако лучи, испускаемые земной поверхностью, резко отличаются от солнечных лучей. Земля излучает лишь длинноволновые (λ 8-14 μ) невидимые инфракрасные (тепловые) лучи. Энергия, излучаемая земной поверхностью, называется земной радиацией. Излучение Земли происходит и. днем и ночью. Интенсивность излучения тем больше, чем выше температура излучающего тела. Земное излучение определяется в тех же единицах, что и солнечное, т. е. в калориях с 1 см 2 поверхности в 1 мин. Наблюдения показали, что величина земного излучения невелика. Обычно она достигает 15-18 сотых калории. Но, действуя непрерывно, она может дать значительный тепловой эффект.

Наиболее сильное земное излучение получается при безоблачном небе и хорошей прозрачности атмосферы. Облачность (особенно низкие облака) значительно уменьшает земное излучение и часто доводит его до нуля. Здесь можно сказать, что атмосфера вместе с облаками является хорошим «одеялом», предохраняющим Землю от чрезмерного остывания. Части атмосферы подобно участкам земной поверхности излучают энергию в соответствии с их температурой. Эта энергия носит название атмосферной радиации. Интенсивность атмосферной радиации зависит от температуры излучающего участка атмосферы, а также от количества водяных паров и углекислого газа, содержащихся в воздухе. Атмосферная радиация относится к труппе длинноволновой. Распространяется она в атмосфере во всех направлениях; некоторое количество ее достигает земной поверхности и поглощается ею, другая часть уходит в межпланетное пространство.

О приходе и расходе энергии Солнца на Земле. Земная поверхность, с одной стороны, получает солнечную энергию в виде прямой и рассеянной радиации, а с другой стороны, теряет часть этой энергии в виде земной радиации. В результате прихода и расхода солнечной" энергии получается какой-то результат. В одних случаях этот результат может быть положительным, в других отрицательным. Приведем примеры того и другого.

8 января. День безоблачный. На 1 см 2 земной поверхности поступило за сутки 20 кал прямой солнечной радиации и 12 кал рассеянной радиации; всего, таким образом, получено 32 кал. За это же время в силу излучения 1 см? земной поверхности потерял 202 кал. В результате, выражаясь языком бухгалтерии, в балансе имеется потеря 170 кал (отрицательный баланс).

6 июля. Небо почти безоблачно. От прямой солнечной радиации получено 630 кал, от рассеянной радиации 46 кал. Всего, следовательно, земная поверхность получила на 1 см 2 676 кал. Путем земного излучения потеряно 173 кал. В балансе прибыль на 503 кал (баланс положительный).

Из приведенных примеров, помимо всего прочего, совершенно ясно, почему в умеренных широтах зимой холодно, а летом тепло.

Использование солнечной радиации для технических и бытовых целей. Солнечная радиация является неисчерпаемым природным источником энергии. О величине солнечной энергии на Земле можно судить по такому примеру: если, например, использовать тепло солнечной радиации, падающей только на 1/10 часть площади СССР, то можно получить энергию, равную работе 30 тыс. Днепрогэсов.

Люди издавна стремились использовать даровую энергию солнечной радиации для своих нужд. К настоящему времени создано много различных гелиотехнических установок, работающих на использовании солнечной радиации и получивших большое применение в промышленности и для удовлетворения бытовых нужд населения. В южных районах СССР в промышленности и в коммунальном хозяйстве на основе широкого использования солнечной радиации работают солнечные водонагреватели, кипятильники, опреснители соленой воды, гелиосушилки (для сушки фруктов), кухни, бани, теплицы, аппараты для лечебных целей. Широко используется солнечная радиация на курортах для лечения и укрепления здоровья людей.

Коротковолновое излучение Солнца

Ультрафиолетовое и рентгеновское излучения исходят исходят в основном от верхних слоев хромосферы и короны. Это установили, запуская ракеты с приборами во время солнечных затмений. Очень горячая солнечная атмосфера всегда испускает невидимое коротковолновое излучение, но особенно мощным оно бывает в годы максимума солнечной активности. В это время ультрафиолетовое излучение возрастает примерно в два раза, а рентгеновское – в десятки и сотни раз по сравнению с излучением в годы минимума. Интенсивность коротковолнового излучения изменяется изо дня в день, резко возрастая, когда на происходят вспышки.

Ультрафиолетовое и рентгеновское излучения частично ионизуют слои земной атмосферы, образуя на высотах 200 – 500 км от поверхности Земли ионосферу. Ионосфера играет важную роль в осуществлении дальней радиосвязи: радиоволны, идущие от радиопередатчика, прежде чем достичь антенны приемника, многократно отражаются от ионосферы и поверхности Земли. Состояние ионосферы меняется в зависимости от условий освещения ее Солнцем и от происходящих на нем явлений. Поэтому для обеспечения устойчивой радиосвязи приходится учитывать время суток, время года и состояние солнечной активности. После наиболее мощных вспышек на Солнце число ионизованных атомов в ионосфере возрастает и радиоволны частично или полностью поглощаются ею. Это приводит к ухудшению и даже к временному прекращению радиосвязи.

Особое влияние ученые уделяют исследованию озонового слоя в земной атмосфере. Озон образуется в результате фотохимических реакций (поглощение света молекулами кислорода) в стратосфере, и там сосредоточена его основная масса. Всего в земной атмосфере примерно 3 10 9 т озона. Это очень мало: толщина слоя чистого озона у поверхности Земли не превысила бы и 3 мм! Но роль озонового слоя, простирающегося на высоте нескольких десятков километров над поверхностью Земли, исключительно велика, потому что он защищает все живое от воздействия опасного коротковолнового (и прежде всего ультрафиолетового) излучения Солнца. Содержание озона непостоянно на разных широтах и в разные времена года. Оно может уменьшаться (иногда очень значительно) в результате различных процессов. Этому могут способствовать, например, выбросы в атмосферу большого количества разрушающих озон хлорсодержащих веществ промышленного происхождения или аэрозольные выбросы, а также выбросы, сопровождающие извержения вулканов. Области резкого снижения уровня озона (“озоновые дыры”) обнаруживались над разными регионами нашей планеты, причем не только над Антарктидой и рядом других территорий Южного полушария Земли, но и над Северным. В 1992 г. стали появляться тревожные сообщения о временном истощении озонового слоя над севером европейской части России и уменьшении содержания озона над Москвой и Санкт-Петербургом. Ученые, осознавая глобальный характер проблемы, организуют в масштабах всей планеты экологические исследования, включающие прежде всего глобальную систему непрерывного наблюдения за состоянием озонового слоя. Разработаны и подписаны международные соглашения по охране озонового слоя и ограничению производства озоноразрушающих веществ.

Радиоизлучение Солнца

Систематическое исследование радиоизлучения Солнца началось только после второй мировой войны, когда обнаружилось, что Солнце – мощный источник радиоизлучения. В межпланетное пространство проникают радиоволны, которые излучают хромосфера (сантиметровые волны) и корона (дециметровые и метровые волны). Это радиоизлучение и достигает Земли. Радиоизлучение Солнца имеет две составляющие – постоянную, почти не меняющуюся по интенсивности, и переменную (всплески, “шумовые бури”).

Радиоизлучение спокойного Солнца объясняется тем, что горячая солнечная плазма всегда излучает радиоволны наряду с электромагнитными колебаниями других длин волн (тепловое радиоизлучение). Во время больших вспышек радиоизлучение Солнца возрастает в тысячи и даже в миллионы раз по сравнению с радиоизлучением спокойного Солнца. Это радиоизлучение, порожденное быстропротекающими нестационарными процессами, имеет нетепловую природу.

Корпускулярное излучение Солнца

Ряд геофизических явлений (магнитные бури, т.е. кратковременные изменения магнитного поля Земли, полярные сияния и др.) тоже связан с солнечной активностью. Но эти явления происходят через сутки после вспышек на Солнце. Вызываются они не электромагнитным излучением, доходящим до Земли через 8,3 мин, а корпускулами (протонами и электронами, образующими разреженную плазму), которые с опозданием (на 1-2 сут) проникают в околоземное пространство, поскольку движутся со скоростями 400 – 1000 км/c.

Корпускулы испускаются Солнцем и тогда, когда на нем нет вспышек и пятен. Солнечная корона – источник постоянного истечения плазмы (солнечного ветра), которое происходит во всех направлениях. Солнечный ветер, создаваемый непрерывно расширяющейся короной, охватывает движущиеся вблизи Солнца планеты и . Вспышки сопровождаются “порывами” солнечного ветра. Эксперименты на межпланетных станциях и искусственных спутниках Земли позволили непосредственно обнаружить солнечный ветер в межпланетном пространстве. Во время вспышек и при спокойном истечении солнечного ветра в межпланетное пространство проникают не только корпускулы, но и связанное с движущейся плазмой магнитное поле.

Солнечная радиация (солнечное излучение) – это вся совокупность солнечной материи и энергии, поступающей на Землю. Солнечная радиация состоит из следующих двух основных частей: во-первых, тепловой и световой радиации, представляющей собой совокупность электромагнитных волн; во-вторых, корпускулярной радиации.

На Солнце тепловая энергия ядерных реакций переходит в лучистую энергию. При падении солнечных лучей на земную поверхность лучистая энергия снова превращается в тепловую энергию. Солнечная радиация, таким образом, несет свет и тепло.

Интенсивность солнечной радиации. Солнечная постоянная. Солнечная радиация – это важнейший источник тепла для географической оболочки. Вторым источником тепла для географической оболочки является тепло, идущее от внутренних сфер и слоев нашей планеты.

В связи с тем, что в географической оболочке один вид энергии (лучистая энергия ) эквивалентно переходит в другой вид (тепловая энергия ), то лучистую энергию солнечной радиации можно выражать в единицах тепловой энергии – джоулях (Дж).

Интенсивность солнечной радиации необходимо измерять в первую очередь за пределами атмосферы, т. к. при прохождении через воздушную сферу она преобразуется и ослабевает. Интенсивность солнечной радиации выражается солнечной постоянной.

Солнечная постоянная – это поток солнечной энергии за 1 минуту на площадь сечением в 1 см 2 , перпендикулярную солнечным лучам и расположенную вне атмосферы. Солнечная постоянная может быть также определена как количество тепла, которое получает в 1 минуту на верхней границе атмосферы 1 см 2 черной поверхности, перпендикулярной солнечным лучам.

Солнечная постоянная равна 1, 98 кал / (см 2 х мин), или 1, 352 кВт/ м 2 х мин .

Поскольку верхняя атмосфера поглощает значительную часть радиации, то важно знать величину ее на верхней границе географической оболочки, т. е. в нижней стратосфере. Солнечная радиация на верхней границе географической оболочки выражается условной солнечной постоянной . Величина условной солнечной постоянной равна 1, 90 – 1, 92 кал / (см 2 х мин), или 1,32 – 1, 34 кВт / (м 2 х мин).

Солнечная постоянная, вопреки своему названию, не остается постоянной. Она изменяется в связи с изменением расстояния от Солнца до Земли в процессе движения Земли по орбите. Как бы ни были малы эти колебания, они всегда сказываются на погоде и климате.

В среднем каждый квадратный километр тропосферы получает в год 10,8 х 10 15 Дж. (2,6 х 10 15 кал). Такое количество тепла может быть получено при сжигании 400 000 т каменного угля. Вся Земля за год получает такое количество тепла, которое определяется величиной 5, 74 х 10 24 Дж. (1, 37 х 10 24 кал).



Распределение солнечной радиации «на верхней границе атмосферы» или при абсолютно прозрачной атмосфере. Знание распределения солнечной радиации до ее вступления в атмосферу, или так называемого солярного (солнечного) климата , важно для определения роли и доли участия самой воздушной оболочки Земли (атмосферы) в распределении тепла по земной поверхности и в формировании ее теплового режима.

Количество солнечного тепла и света, поступающее на единицу площади, определяется, во-первых, углом падения лучей, зависящим от высоты Солнца над горизонтом, во-вторых, продолжительностью дня.

Распределение радиации у верхней границы географической оболочки, обусловленное только астрономическими факторами, более равномерно, чем ее реальное распределение у земной поверхности.

При условии отсутствия атмосферы годовая сумма радиации в экваториальных широтах составляла бы 13 480 МДж/см 2 (322 ккал/см 2), а на полюсах 5 560 МДж/м 2 (133 ккал/см 2). В полярные широты Солнце посылает тепла немного меньше половины (около 42 %) того количества, которое поступает на экватор.

Казалось бы, солнечное облучение Земли симметрично относительно плоскости экватора. Но это происходит только два раза в год, в дни весеннего и осеннего равноденствия. Наклон оси вращения и годовое движение Земли обусловливают ассиметричное ее облучение Солнцем. В январскую часть года больше тепла получает южное полушарие, в июльскую – северное. Именно в этом заключается главная причина сезонной ритмики в географической оболочке.

Разница между экватором и полюсом летнего полушария невелика: на экватор поступает 6 740 МДж/м 2 (161 ккал/см 2), а на полюс около 5 560 МДж/м 2 (133 ккал/см 2 в полугодие). Зато полярные страны зимнего полушария в это же время вовсе лишены солнечного тепла и света.

В день солнцестояния полюс получает тепла даже больше, чем экватор - 46,0 МДж/м 2 (1,1 ккал/см 2) и 33.9 МДж/м 2 (0,81 ккал/см 2).

В целом солярный климат на полюсах в годовом выводе в 2,4 раза холоднее, чем на экваторе. Однако надо иметь в виду, что зимой полюсы вообще не нагреваются Солнцем.

Реальный климат всех широт во многом обязан земным факторам. Важнейшими из этих факторов являются: во-первых, ослабление радиации в атмосфере, во-вторых, разная интенсивность усвоения солнечной радиации земной поверхностью в различных географических условиях.

Изменение солнечной радиации при прохождении через атмосферу. Прямые солнечные лучи, пронизывающие атмосферу при безоблачном небе, называются прямой солнечной радиацией . Максимальная ее величина при высокой прозрачности атмосферы на перпендикулярной лучам поверхности в тропическом поясе равна около 1,05 – 1, 19 кВт/м 2 (1,5 – 1,7 кал/см 2 х мин. В средних широтах напряжение полуденной радиации обычно составляет около 0,70 – 0,98 кВт /м 2 х мин (1,0 – 1,4 кал/см 2 х мин). В горах эта величина существенно увеличивается.

Часть солнечных лучей от соприкосновения с молекулами газов и аэрозолями рассеивается и переходит в рассеянную радиацию . На земную поверхность рассеянная радиация поступает уже не от солнечного диска, а от всего небосвода и создает повсеместную дневную освещенность. От нее в солнечные дни светло и там, куда не проникают прямые лучи, например под пологом леса. Наряду с прямой радиацией рассеянная радиация также служит источником тепла и света.

Абсолютная величина рассеянной радиации тем больше, чем интенсивнее прямая. Относительное значение рассеянной радиации возрастает с уменьшением роли прямой: в средних широтах летом она составляет 41%, а зимой 73% общего прихода радиации. Удельный вес рассеянной радиации в общей величине суммарной радиации зависит и от высоты Солнца. В высоких широтах на рассеянную радиацию приходится около 30%, а в полярных - примерно 70% от всей радиации.

В целом же на рассеянную радиацию приходится около 25 % всего потока солнечных лучей, приходящих на нашу планету.

На земную поверхность, таким образом, поступает прямая и рассеянная радиация. В совокупности прямая и рассеянная радиация образуют суммарную радиацию , которая определяет тепловой режим тропосферы .

Поглощая и рассеивая радиацию, атмосфера значительно ее ослабляет. Величина ослабления зависит от коэффициента прозрачности, показывающего, какая доля радиации доходит до земной поверхности. Если бы тропосфера состояла только из газов, то коэффициент прозрачности был бы равен 0,9, т. е. она пропускала бы около 90% идущей к Земле радиации. Однако в воздухе всегда присутствуют аэрозоли, снижающие коэффициент прозрачности до 0,7 – 0,8. Прозрачность атмосферы изменяется вместе с изменением погоды.

Так как плотность воздуха падает с высотой, то слой газа, пронизываемого лучами, не следует выражать в км толщины атмосферы. В качестве единицы измерения принята оптическая масса, равная мощности слоя воздуха при вертикальном падении лучей.

Ослабление радиации в тропосфере легко наблюдать в течение суток. Когда Солнце находится около горизонта, то его лучи пронизывают несколько оптических масс. Их интенсивность при этом так ослабевает, что на Солнце можно смотреть незащищенным глазом. С поднятием Солнца уменьшается число оптических масс, которые проходят его лучи, что приводит к увеличению радиации.

Степень ослабления солнечной радиации в атмосфере выражается формулой Ламберта :

I i = I 0 p m , где

I i – радиация, достигшая земной поверхности,

I 0 – солнечная постоянная,

p – коэффициент прозрачности,

m – число оптических масс.

Солнечная радиация у земной поверхности. Количество лучистой энергии, приходящее на единицу земной поверхности, зависит, прежде всего, от угла падения солнечных лучей. На одинаковые площади на экваторе, в средних и высоких широтах приходится различное количество радиации.

Солнечная инсоляция (освещение) сильно ослабляется облачностью. Большая облачность экваториальных и умеренных широт и малая облачность тропических широт вносят значительные коррективы в зональное распределение лучистой энергии Солнца.

Распределение солнечного тепла по земной поверхности изображается на картах суммарной солнечной радиации. Как показывают эти карты, наибольшее количество солнечного тепла – от 7 530 до 9 200 МДж/м 2 (180-220 ккал/см 2) получают тропические широты. Экваториальные широты из-за большой облачности получают тепла несколько меньше: 4 185 – 5 860 МДж/м 2 (100-140 ккал/см 2).

От тропических широт к умеренным радиация уменьшается. На островах Арктики она составляет не более 2 510 МДж/м 2 (60 ккал/см 2) в год. Распределение радиации по земной поверхности имеет зонально-региональный характер. Каждая зона распадается на отдельные районы (регионы), несколько отличающиеся друг от друга.

Сезонные колебания суммарной радиации.

В экваториальных и тропических широтах высота Солнца и угол падения солнечных лучей по месяцам изменяются незначительно. Суммарная радиация во все месяцы характеризуется большими величинами, сезонная смена тепловых условий или отсутствует, или весьма незначительна. В экваториальном поясе слабо намечаются два максимума, соответствующие зенитальному положению Солнца.

В умеренном поясе в годовом ходе радиации резко выражен летний максимум, в котором месячная величина суммарной радиации не меньше тропической. Число теплых месяцев уменьшается с широтой.

В полярных поясах радиационный режим резко изменяется. Здесь в зависимости от широты от нескольких суток до нескольких месяцев прекращается не только нагревание, но и освещение. Летом же освещение здесь непрерывно, что существенно повышает сумму месячной радиации.

Усвоение радиации земной поверхностью. Альбедо . Суммарная радиация, достигшая земной поверхности, частично поглощается почвой и водоемами и переходит в тепло. На океанах и морях суммарная радиация расходуется на испарение. Часть суммарной радиации отражается в атмосферу (отраженная радиация).



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта