Главная » Несъедобные грибы » Каноническая поверхность. Конические сечения

Каноническая поверхность. Конические сечения

С тем отличием, что вместо «плоских» графиков мы рассмотрим наиболее распространенные пространственные поверхности, а также научимся грамотно их строить от руки. Я довольно долго подбирал программные средства для построения трёхмерных чертежей и нашёл пару неплохих приложений, но, несмотря на всё удобство использования, эти программы плохо решают важный практический вопрос. Дело в том, что в обозримом историческом будущем студенты по-прежнему будут вооружены линейкой с карандашом, и, даже располагая качественным «машинным» чертежом, многие не смогут корректно перенести его на клетчатую бумагу. Поэтому в методичке особое внимание уделено технике ручного построения, и значительная часть иллюстраций страницы представляет собой handmade-продукт.

Чем отличается этот справочный материал от аналогов?

Обладая приличным практическим опытом, я очень хорошо знаю, с какими поверхностями чаще всего приходится иметь дело в реальных задачах высшей математики, и надеюсь, что эта статья поможет вам в кратчайшие сроки пополнить свой багаж соответствующими знаниями и прикладными навыками, которых в 90-95% случаев должно хватить.

Что нужно уметь на данный момент?

Самое элементарное:

Во-первых, необходимо уметь правильно строить пространственную декартову систему координат (см. начало статьи Графики и свойства функций ) .

Что вы приобретёте после прочтения этой статьи?

Бутылку После освоения материалов урока вы научитесь быстро определять тип поверхности по её функции и/или уравнению, представлять, как она расположена в пространстве, и, конечно же, выполнять чертежи. Ничего страшного, если не всё уложится в голове с 1-го прочтения – к любому параграфу по мере надобности всегда можно вернуться позже.

Информация по силам каждому – для её освоения не нужно каких-то сверхзнаний, особого художественного таланта и пространственного зрения.

Начинаем!

На практике пространственная поверхность обычно задаётся функцией двух переменных или уравнением вида (константа правой части чаще всего равна нулю либо единице) . Первое обозначение больше характерно для математического анализа, второе – для аналитической геометрии . Уравнение , по существу, является неявно заданной функцией 2 переменных, которую в типовых случаях легко привести к виду . Напоминаю простейший пример c :

уравнение плоскости вида .

– функция плоскости в явном виде .

Давайте с неё и начнём:

Распространенные уравнения плоскостей

Типовые варианты расположения плоскостей в прямоугольной системе координат детально рассмотрены в самом начале статьи Уравнение плоскости . Тем не менее, ещё раз остановимся на уравнениях, которые имеют огромное значение для практики.

Прежде всего, вы должны на полном автомате узнавать уравнения плоскостей, которые параллельны координатным плоскостям . Фрагменты плоскостей стандартно изображают прямоугольниками, которые в последних двух случаях выглядят, как параллелограммы. По умолчанию размеры можно выбрать любые (в разумных пределах, конечно), при этом желательно, чтобы точка, в которой координатная ось «протыкает» плоскость являлась центром симметрии:


Строго говоря, координатные оси местами следовало изобразить пунктиром, но во избежание путаницы будем пренебрегать данным нюансом.

(левый чертёж) неравенство задаёт дальнее от нас полупространство, исключая саму плоскость ;

(средний чертёж) неравенство задаёт правое полупространство, включая плоскость ;

(правый чертёж) двойное неравенство задаёт «слой», расположенный между плоскостями , включая обе плоскости.

Для самостоятельной разминки:

Пример 1

Изобразить тело, ограниченное плоскостями
Составить систему неравенств, определяющих данное тело.

Из-под грифеля вашего карандаша должен выйти старый знакомый прямоугольный параллелепипед . Не забывайте, что невидимые рёбра и грани нужно прочертить пунктиром. Готовый чертёж в конце урока.

Пожалуйста, НЕ ПРЕНЕБРЕГАЙТЕ учебными задачами, даже если они кажутся слишком простыми. А то может статься, раз пропустили, два пропустили, а затем потратили битый час, вымучивая трёхмерный чертёж в каком-нибудь реальном примере. Кроме того, механическая работа поможет гораздо эффективнее усвоить материал и развить интеллект! Не случайно в детском саду и начальной школе детей загружают рисованием, лепкой, конструкторами и другими заданиями на мелкую моторику пальцев. Простите за отступление, не пропадать же двум моим тетрадям по возрастной психологии =)

Следующую группу плоскостей условно назовём «прямыми пропорциональностями» – это плоскости, проходящие через координатные оси:

2) уравнение вида задаёт плоскость, проходящую через ось ;

3) уравнение вида задаёт плоскость, проходящую через ось .

Хотя формальный признак очевиден (какая переменная отсутствует в уравнении – через ту ось и проходит плоскость) , всегда полезно понимать суть происходящих событий:

Пример 2

Построить плоскость

Как лучше осуществить построение? Предлагаю следующий алгоритм:

Сначала перепишем уравнение в виде , из которого хорошо видно, что «игрек» может принимать любые значения. Зафиксируем значение , то есть, будем рассматривать координатную плоскость . Уравнения задают пространственную прямую , лежащую в данной координатной плоскости. Изобразим эту линию на чертеже. Прямая проходит через начало координат, поэтому для её построения достаточно найти одну точку. Пусть . Откладываем точку и проводим прямую.

Теперь возвращаемся к уравнению плоскости . Поскольку «игрек» принимает любые значения, то построенная в плоскости прямая непрерывно «тиражируется» влево и вправо. Именно так и образуется наша плоскость , проходящая через ось . Чтобы завершить чертёж, слева и справа от прямой откладываем две параллельные линии и поперечными горизонтальными отрезками «замыкаем» символический параллелограмм:

Так как условие не накладывало дополнительных ограничений, то фрагмент плоскости можно было изобразить чуть меньших или чуть бОльших размеров.

Ещё раз повторим смысл пространственного линейного неравенства на примере . Как определить полупространство, которое оно задаёт? Берём какую-нибудь точку, не принадлежащую плоскости , например, точку из ближнего к нам полупространства и подставляем её координаты в неравенство:

Получено верное неравенство , значит, неравенство задаёт нижнее (относительно плоскости ) полупространство, при этом сама плоскость не входит в решение.

Пример 3

Построить плоскости
а) ;
б) .

Это задания для самостоятельного построения, в случае затруднений используйте аналогичные рассуждения. Краткие указания и чертежи в конце урока.

На практике особенно распространены плоскости, параллельные оси . Частный случай, когда плоскость проходит через ось, только что был в пункте «бэ», и сейчас мы разберём более общую задачу:

Пример 4

Построить плоскость

Решение : в уравнение в явном виде не участвует переменная «зет», а значит, плоскость параллельна оси аппликат. Применим ту же технику, что и в предыдущих примерах.

Перепишем уравнение плоскости в виде из которого понятно, что «зет» может принимать любые значения. Зафиксируем и в «родной» плоскости начертим обычную «плоскую» прямую . Для её построения удобно взять опорные точки .

Поскольку «зет» принимает все значения, то построенная прямая непрерывно «размножается» вверх и вниз, образуя тем самым искомую плоскость . Аккуратно оформляем параллелограмм разумной величины:

Готово.

Уравнение плоскости в отрезках

Важнейшая прикладная разновидность. Если все коэффициенты общего уравнения плоскости отличны от нуля , то оно представимо в виде , который называется уравнением плоскости в отрезках . Очевидно, что плоскость пересекает координатные оси в точках , и большое преимущество такого уравнения состоит в лёгкости построения чертежа:

Пример 5

Построить плоскость

Решение : сначала составим уравнение плоскости в отрезках. Перебросим свободный член направо и разделим обе части на 12:

Нет, здесь не опечатка и все дела происходят именно в пространстве! Исследуем предложенную поверхность тем же методом, что недавно использовали для плоскостей. Перепишем уравнение в виде , из которого следует, что «зет» принимает любые значения. Зафиксируем и построим в плоскости эллипс . Так как «зет» принимает все значения, то построенный эллипс непрерывно «тиражируется» вверх и вниз. Легко понять, что поверхность бесконечна :

Данная поверхность называется эллиптическим цилиндром . Эллипс (на любой высоте) называется направляющей цилиндра, а параллельные прямые, проходящие через каждую точку эллипса называются образующими цилиндра (которые в прямом смысле слова его и образуют). Ось является осью симметрии поверхности (но не её частью!).

Координаты любой точки, принадлежащей данной поверхности, обязательно удовлетворяют уравнению .

Пространственное неравенство задаёт «внутренность» бесконечной «трубы», включая саму цилиндрическую поверхность, и, соответственно, противоположное неравенство определяет множество точек вне цилиндра.

В практических задачах наиболее популярен частный случай, когда направляющей цилиндра является окружность :

Пример 8

Построить поверхность, заданную уравнением

Бесконечную «трубу» изобразить невозможно, поэтому художества ограничиваются, как правило, «обрезком».

Сначала удобно построить окружность радиуса в плоскости , а затем ещё пару окружностей сверху и снизу. Полученные окружности (направляющие цилиндра) аккуратно соединяем четырьмя параллельными прямыми (образующими цилиндра):

Не забываем использовать пунктир для невидимых нам линий.

Координаты любой точки, принадлежащей данному цилиндру, удовлетворяют уравнению . Координаты любой точки, лежащей строго внутри «трубы», удовлетворяют неравенству , а неравенство задаёт множество точек внешней части. Для лучшего понимания рекомендую рассмотреть несколько конкретных точек пространства и убедиться в этом самостоятельно.

Пример 9

Построить поверхность и найти её проекцию на плоскость

Перепишем уравнение в виде из которого следует, что «икс» принимает любые значения. Зафиксируем и в плоскости изобразим окружность – с центром в начале координат, единичного радиуса. Так как «икс» непрерывно принимает все значения, то построенная окружность порождает круговой цилиндр с осью симметрии . Рисуем ещё одну окружность (направляющую цилиндра) и аккуратно соединяем их прямыми (образующими цилиндра). Местами получились накладки, но что делать, такой уж наклон:

На этот раз я ограничился кусочком цилиндра на промежутке и это не случайно. На практике зачастую и требуется изобразить лишь небольшой фрагмент поверхности.

Тут, к слову, получилось 6 образующих – две дополнительные прямые «закрывают» поверхность с левого верхнего и правого нижнего углов.

Теперь разбираемся с проекцией цилиндра на плоскость . Многие читатели понимают, что такое проекция, но, тем не менее, проведём очередную физкульт-пятиминутку. Пожалуйста, встаньте и склоните голову над чертежом так, чтобы остриё оси смотрело перпендикулярно вам в лоб. То, чем с этого ракурса кажется цилиндр – и есть его проекция на плоскость . А кажется он бесконечной полосой, заключенным между прямыми , включая сами прямые. Данная проекция – это в точности область определения функций (верхний «жёлоб» цилиндра), (нижний «жёлоб»).

Давайте, кстати, проясним ситуацию и с проекциями на другие координатные плоскости. Пусть лучи солнца светят на цилиндр со стороны острия и вдоль оси . Тенью (проекцией) цилиндра на плоскость является аналогичная бесконечная полоса – часть плоскости , ограниченная прямыми ( – любое), включая сами прямые.

А вот проекция на плоскость несколько иная. Если смотреть на цилиндр из острия оси , то он спроецируется в окружность единичного радиуса , с которой мы начинали построение.

Пример 10

Построить поверхность и найти её проекции на координатные плоскости

Это задача для самостоятельного решения. Если условие не очень понятно, возведите обе части в квадрат и проанализируйте результат; выясните, какую именно часть цилиндра задаёт функция . Используйте методику построения, неоднократно применявшуюся выше. Краткое решение, чертёж и комментарии в конце урока.

Эллиптические и другие цилиндрические поверхности могут быть смещены относительно координатных осей, например:

(по знакомым мотивам статьи о линиях 2-го порядка ) – цилиндр единичного радиуса с линией симметрии, проходящей через точку параллельно оси . Однако на практике подобные цилиндры попадаются довольно редко, и совсем уж невероятно встретить «косую» относительно координатных осей цилиндрическую поверхность.

Параболические цилиндры

Как следует из названия, направляющей такого цилиндра является парабола .

Пример 11

Построить поверхность и найти её проекции на координатные плоскости.

Не мог удержаться от этого примера =)

Решение : идём проторенной тропой. Перепишем уравнение в виде , из которого следует, что «зет» может принимать любые значения. Зафиксируем и построим обычную параболу на плоскости , предварительно отметив тривиальные опорные точки . Поскольку «зет» принимает все значения, то построенная парабола непрерывно «тиражируется» вверх и вниз до бесконечности. Откладываем такую же параболу, скажем, на высоте (в плоскости) и аккуратно соединяем их параллельными прямыми (образующими цилиндра ):

Напоминаю полезный технический приём : если изначально нет уверенности в качестве чертежа, то линии сначала лучше прочертить тонко-тонко карандашом. Затем оцениваем качество эскиза, выясняем участки, где поверхность скрыта от наших глаз, и только потом придаём нажим грифелю.

Проекции.

1) Проекцией цилиндра на плоскость является парабола . Следует отметить, что в данном случае нельзя рассуждать об области определения функции двух переменных – по той причине, что уравнение цилиндра не приводимо к функциональному виду .

2) Проекция цилиндра на плоскость представляет собой полуплоскость , включая ось

3) И, наконец, проекцией цилиндра на плоскость является вся плоскость .

Пример 12

Построить параболические цилиндры:

а) , ограничиться фрагментом поверхности в ближнем полупространстве;

б) на промежутке

В случае затруднений не спешим и рассуждаем по аналогии с предыдущими примерами, благо, технология досконально отработана. Не критично, если поверхности будут получаться немного корявыми – важно правильно отобразить принципиальную картину. Я и сам особо не заморачиваюсь над красотой линий, если получился сносный чертёж «на троечку», обычно не переделываю. В образце решения, кстати, использован ещё один приём, позволяющий улучшить качество чертежа;-)

Гиперболические цилиндры

Направляющими таких цилиндров являются гиперболы . Этот тип поверхностей, по моим наблюдениям, встречается значительно реже, чем предыдущие виды, поэтому я ограничусь единственным схематическим чертежом гиперболического цилиндра :

Принцип рассуждения здесь точно такой же – обычная школьная гипербола из плоскости непрерывно «размножается» вверх и вниз до бесконечности.

Рассмотренные цилиндры относятся к так называемым поверхностям 2-го порядка , и сейчас мы продолжим знакомиться с другими представителями этой группы:

Эллипсоид. Сфера и шар

Каноническое уравнение эллипсоида в прямоугольной системе координат имеет вид , где – положительные числа (полуоси эллипсоида), которые в общем случае различны . Эллипсоидом называют как поверхность , так и тело , ограниченное данной поверхностью. Тело, как многие догадались, задаётся неравенством и координаты любой внутренней точки (а также любой точки поверхности) обязательно удовлетворяют этому неравенству. Конструкция симметрична относительно координатных осей и координатных плоскостей:

Происхождение термина «эллипсоид» тоже очевидно: если поверхность «разрезать» координатными плоскостями, то в сечениях получатся три различных (в общем случае)

Поверхности второго порядка – это поверхности, которые в прямоугольной системе координат определяются алгебраическими уравнениями второй степени.

1. Эллипсоид.

Эллипсоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением :

Уравнение (1) называется каноническим уравнением эллипсоида.

Установим геометрический вид эллипсоида. Для этого рассмотрим сечения данного эллипсоида плоскостями, параллельными плоскости Oxy. Каждая из таких плоскостей определяется уравнением вида z=h , где h – любое число, а линия, которая получается в сечении, определяется двумя уравнениями

(2)

Исследуем уравнения (2) при различных значениях h .

> c (c>0), то и уравнения (2) определяют мнимый эллипс, т. е. точек пересечения плоскости z=h с данным эллипсоидом не существует. , то и линия (2) вырождается в точки (0; 0; + c ) и (0; 0; - c ) (плоскости касаются эллипсоида). , то уравнения (2) можно представить в виде

откуда следует, что плоскость z=h пересекает эллипсоид по эллипсу с полуосями

и . При уменьшении значения и увеличиваются и достигают своих наибольших значений при , т. е. в сечении эллипсоида координатной плоскостью Oxy получается самый большой эллипс с полуосями и .

Аналогичная картина получается и при пересечении данной поверхности плоскостями, параллельными координатным плоскостям Oxz и Oyz .

Таким образом, рассмотренные сечения позволяют изобразить эллипсоид как замкнутую овальную поверхность (рис. 156). Величины a, b, c называются полуосями эллипсоида. В случае a=b=c эллипсоид является сферо й .

2. Однополосный гиперболоид.

Однополосным гиперболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением (3)

Уравнение (3) называется каноническим уравнением однополосного гиперболоида.

Установим вид поверхности (3). Для этого рассмотрим сечение ее координатными плоскостями Oxy (y=0) и Oyx (x=0). Получаем соответственно уравнения

и

Теперь рассмотрим сечения данного гиперболоида плоскостями z=h, параллельными координатной плоскости Oxy . Линия, получающаяся в сечении, определяется уравнениями

или (4)

из которых следует, что плоскость z=h пересекает гиперболоид по эллипсу с полуосями

и ,

достигающими своих наименьших значений при h=0, т.е. в сечении данного гиперболоида координатной осью Oxy получается самый маленький эллипс с полуосями a*=a и b*=b. При бесконечном возрастании

величины a* и b* возрастают бесконечно.

Таким образом, рассмотренные сечения позволяют изобразить однополосный гиперболоид в виде бесконечной трубки, бесконечно расширяющейся по мере удаления (по обе стороны) от плоскости Oxy.

Величины a, b, c называются полуосями однополосного гиперболоида.

3. Двуполостный гиперболоид.

Двуполостным гиперболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением

Уравнение (5) называется каноническим уравнением двуполостного гиперболоида.

Установим геометрический вид поверхности (5). Для этого рассмотрим его сечения координатными плоскостями Oxy и Oyz. Получаем соответственно уравнения

и

из которых следует, что в сечениях получаются гиперболы.

Теперь рассмотрим сечения данного гиперболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, полученная в сечении, определяется уравнениями

или (6)

из которых следует, что при

>c (c>0) плоскость z=h пересекает гиперболоид по эллипсу с полуосями и . При увеличении величины a* и b* тоже увеличиваются. уравнениям (6) удовлетворяют координаты только двух точек: (0;0;+с) и (0;0;-с) (плоскости касаются данной поверхности). уравнения (6) определяют мнимый эллипс, т.е. точек пересечения плоскости z=h с данным гиперболоидом не существует.

Величина a, b и c называются полуосями двуполостного гиперболоида.

4. Эллиптический параболоид.

Эллиптическим параболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением

(7)

где p>0 и q>0.

Уравнение (7) называется каноническим уравнением эллиптического параболоида.

Рассмотрим сечения данной поверхности координатными плоскостями Oxy и Oyz. Получаем соответственно уравнения

и

из которых следует, что в сечениях получаются параболы, симметричные относительно оси Oz, с вершинами в начале координат. (8)

из которых следует, что при . При увеличении h величины a и b тоже увеличиваются; при h=0 эллипс вырождается в точку (плоскостьz=0 касается данного гиперболоида). При h<0 уравнения (8) определяют мнимый эллипс, т.е. точек пересечения плоскости z=h с данным гиперболоидом нет.

Таким образом, рассмотренные сечения позволяют изобразить эллиптический параболоид в виде бесконечно выпуклой чаши.

Точка (0;0;0) называется вершиной параболоида; числа p и q – его параметрами.

В случае p=q уравнение (8) определяет окружность с центром на оси Oz, т.е. эллиптический параболоид можно рассматривать как поверхность, образованную вращением параболы вокруг её оси (параболоид вращения).

5. Гиперболический параболоид.

Гиперболическим параболоидом называется поверхность, которая в некоторой прямоугольной системе координат, определяется уравнением

(9)

Определение 1. Конической поверхностью или конусом с вершиной в точке М 0 называется поверхность, образованная всеми прямыми, каждая из которых проходит через точку М 0 и через некоторую точку линии γ. Точка М 0 называется вершиной конуса, линия γ – направляющей. Прямые, проходящие через вершину конуса и лежащие на нем, называются образующими конуса.

Теорема. Поверхностью 2-го порядка с каноническим уравнением

является конусом с вершиной в начале координат, направляющей которой служит эллипс

Доказательство.

Пусть M 1 (x 1 ; y 1 ; z 1) – некоторая точка поверхности α, отличная от начала координат; ?=ОM 1 – прямая, M (x; y; z) принадлежит?. Так как | | , то, такое что

Так как, то ее координаты x 1 ; y 1 ; z 1 удовлетворяют уравнению (1). Учитывая условия (3) имеем, где t ≠ 0. Разделив обе части уравнения на t 2 ≠ 0, получим, что координаты произвольной точки M (x; y; z) прямой m=ОM 1 удовлетворяют уравнению (1). Ему также удовлетворяют и координаты точки О(0,0,0).

Таким образом, любая точка M (x; y; z) прямой m=ОM 1 лежит на поверхности α с уравнением (1), то есть прямая ОM 1 =m – прямолинейная образующая поверхности α.

Рассмотрим теперь сечение поверхности α плоскостью, параллельной плоскости Oxy с уравнением z = c ≠ 0:

Это сечение является эллипсом с полуосями а и b . Следовательно, она пересекает этот эллипс. Согласно определению 1 поверхность α является конусом с вершиной О (0,0,0) (Все прямые m проходят через начало координат); образующие этого конуса есть прямые m, направляющая – указанный выше эллипс.

Теорема доказана.

Определение 2. Поверхность 2-го порядка с каноническим уравнением (1) называется конусом второго порядка.

Свойства конуса 2-го порядка .

Конус с уравнением (1) симметричен относительно всех координатных плоскостей, всех координатных осей и начала координат (так как все переменные содержатся в уравнении (1) во второй степени).

Все координатные оси имеют с конусом (1) единственную общую точку – начало координат, которая служит его вершиной и центром одновременно

Сечение конуса (1) плоскостями Oxz и Oyz – пары пересекающихся в начале координат прямых; плоскостью Oxy – точка О (0,0,0).

Сечения конуса (1) плоскостями, параллельными координатным плоскостям, но не совпадающими с ними, являются либо эллипсами, либо гиперболами.

Если а = b , то эти эллипсы являются окружностями, а сам конус – поверхностью вращения. Он называется в этом случае круговым конусом.

Определение 3 : коническим сечением называется линия по которой пересекается круговой конус с произвольной плоскостью не проходящей через его вершину. Таким образом, каноническими сечениями является эллипс, гипербола и парабола.

С поверхностями 2-го порядка студент чаще всего встречается на первом курсе. Сначала задачи на эту тему могут казаться простыми, но, по мере изучения высшей математики и углубления в научную сторону, можно окончательно перестать ориентироваться в происходящем. Для того чтобы такого не произошло, надо не просто заучить, а понять, как получается та или иная поверхность, как изменение коэффициентов влияет на нее и ее расположение относительно изначальной системы координат и как найти новую систему (такую, в которой ее центр совпадает с началом координат, а параллельна одной из координатных осей). Начнем с самого начала.

Определение

Поверхностью 2 порядка называется ГМТ, координаты которого удовлетворяют общему уравнению следующего вида:

Ясно, что каждая точка, принадлежащая поверхности, должна иметь три координаты в каком-либо обозначенном базисе. Хотя в некоторых случаях геометрическое место точек может вырождаться, например, в плоскость. Это лишь значит, что одна из координат постоянна и равна нулю во всей области допустимых значений.

Полная расписанная форма упомянутого выше равенства выглядит так:

A 11 x 2 +A 22 y 2 +A 33 z 2 +2A 12 xy+2A 23 yz+2A 13 xz+2A 14 x+2A 24 y+2A 34 z+A 44 =0.

A nm - некоторые константы, x, y, z - переменные, отвечающие аффинным координатам какой-либо точки. При этом хотя бы один из множителей-констант должен быть не равен нулю, то есть не любая точка будет отвечать уравнению.

В подавляющем большинстве примеров многие числовые множители все же тождественно равняются нулю, и уравнение значительно упрощается. На практике определение принадлежности точки к поверхности не затруднено (достаточно подставить ее координаты в уравнение и проверить, соблюдается ли тождество). Ключевым моментом в такой работе является приведение последней к каноническому виду.

Написанное выше уравнение задает любые (все указанные далее) поверхности 2 порядка. Примеры рассмотрим далее.

Виды поверхностей 2 порядка

Уравнения поверхностей 2 порядка различаются только значениями коэффициентов A nm . Из общего вида при определенных значениях констант могут получиться различные поверхности, классифицируемые следующим образом:

  1. Цилиндры.
  2. Эллиптический тип.
  3. Гиперболический тип.
  4. Конический тип.
  5. Параболический тип.
  6. Плоскости.

У каждого из перечисленных видов есть естественная и мнимая форма: в мнимой форме геометрическое место вещественных точек либо вырождается в более простую фигуру, либо отсутствует вовсе.

Цилиндры

Это самый простой тип, так как относительно сложная кривая лежит только в основании, выступая в качестве направляющей. Образующими являются прямые, перпендикулярные плоскости, в которой лежит основание.

На графике показан круговой цилиндр - частный случай эллиптического цилиндра. В плоскости XY его проекция будет эллипсом (в нашем случае - кругом) - направляющей, а в XZ - прямоугольником - так как образующие параллельны оси Z. Чтобы получить его из общего уравнения, необходимо придать коэффициентам следующие значения:

Вместо привычных обозначений икс, игрек, зет использованы иксы с порядковым номером - это не имеет никакого значения.

По сути, 1/a 2 и другие указанные здесь постоянные являются теми самыми коэффициентами, указанными в общем уравнении, но принято записывать их именно в таком виде - это и есть каноническое представление. Далее будет использоваться исключительно такая запись.

Так задается гиперболический цилиндр. Схема та же - направляющей будет гипербола.

Параболический цилиндр задается несколько иначе: его канонический вид включает в себя коэффициент p, называемый параметром. На самом деле, коэффициент равен q=2p, но принято разделять его на представленные два множителя.

Есть еще один вид цилиндров: мнимые. Такому цилиндру не принадлежит ни одна вещественная точка. Его описывает уравнение эллиптического цилиндра, но вместо единицы стоит -1.

Эллиптический тип

Эллипсоид может быть растянут вдоль одной из осей (вдоль которой именно зависит от значений постоянных a, b, c, указанных выше; очевидно, что большей оси будет соответствовать больший коэффициент).

Также существует и мнимый эллипсоид - при условии, что сумма координат, помноженная на коэффициенты, равна -1:

Гиперболоиды

При появлении минуса в одной из констант уравнение эллипсоида превращается в уравнение однополостного гиперболоида. Надо понимать, что этот минус не обязательно должен располагаться перед координатой x 3 ! Он лишь определяет, какая из осей будет осью вращения гиперболоида (или параллельна ей, так как при появлении дополнительных слагаемых в квадрате (например, (x-2) 2) смещается центр фигуры, как следствие, поверхность перемещается параллельно осям координат). Это относится ко всем поверхностям 2 порядка.

Кроме этого, надо понимать, что уравнения представлены в каноническом виде и они могут быть изменены с помощью варьирования констант (с сохранением знака!); при этом их вид (гиперболоид, конус и так далее) останется тем же.

Такое уравнение задает уже двуполостный гиперболоид.

Коническая поверхность

В уравнении конуса единица отсутствует - равенство нулю.

Конусом называется только ограниченная коническая поверхность. На картинке ниже видно, что, по сути, на графике окажется два так называемых конуса.

Важное замечание: во всех рассматриваемых канонических уравнениях константы по умолчанию принимаются положительными. В ином случае знак может повлиять на итоговый график.

Координатные плоскости становятся плоскостями симметрии конуса, центр симметрии располагается в начале координат.

В уравнении мнимого конуса стоят только плюсы; ему принадлежит одна единственная вещественная точка.

Параболоиды

Поверхности 2 порядка в пространстве могут принимать различные формы даже при схожих уравнениях. К примеру, параболоиды бывают двух видов.

x 2 /a 2 +y 2 /b 2 =2z

Эллиптический параболоид, при расположении оси Z перпендикулярно чертежу, будет проецироваться в эллипс.

x 2 /a 2 -y 2 /b 2 =2z

Гиперболический параболоид: в сечениях плоскостями, параллельными ZY, будут получаться параболы, а в сечениях плоскостями, параллельными XY - гиперболы.

Пересекающиеся плоскости

Есть случаи, когда поверхности 2-ого порядка вырождаются в плоскости. Эти плоскости могут располагаться различными способами.

Сначала рассмотрим пересекающиеся плоскости:

x 2 /a 2 -y 2 /b 2 =0

При такой модификации канонического уравнения получаются просто две пересекающиеся плоскости (мнимые!); все вещественные точки находятся на оси той координаты, которая отсутствует в уравнении (в каноническом - оси Z).

Параллельные плоскости

При наличии только одной координаты поверхности 2-го порядка вырождаются в пару параллельных плоскостей. Не забывайте, на месте игрека может стоять любая другая переменная; тогда будут получаться плоскости, параллельные другим осям.

В этом случае они становятся мнимыми.

Совпадающие плоскости

При таком простом уравнении пара плоскостей вырождается в одну - они совпадают.

Не забывайте, что в случае трехмерного базиса представленное выше уравнение не задает прямую y=0! В нем отсутствуют две другие переменные, но это всего лишь значит, что их значение постоянно и равно нулю.

Построение

Одной из самых сложных задач для студента является именно построение поверхностей 2 порядка. Еще более затруднительно переходить от одной системы координат к другой, учитывая углы наклона кривой относительно осей и смещение центра. Давайте повторим, как последовательно определить будущий вид чертежа аналитическим способом.

Чтобы построить поверхность 2 порядка, необходимо:

  • привести уравнение к каноническому виду;
  • определить вид исследуемой поверхности;
  • построить, опираясь на значения коэффициентов.

Ниже представлены все рассмотренные виды:

Для закрепления подробно распишем один пример такого типа задания.

Примеры

Допустим, имеется уравнение:

3(x 2 -2x+1)+6y 2 +2z 2 +60y+144=0

Приведем его к каноническому виду. Выделим полные квадраты, то есть скомпонуем имеющиеся слагаемые таким образом, чтобы они были разложением квадрата суммы или разности. Например: если (a+1) 2 =a 2 +2a+1, то a 2 +2a+1=(a+1) 2 . Мы будем проводить вторую операцию. Скобки в данном случае раскрывать не обязательно, так как это только усложнит вычисления, а вот вынести общий множитель 6 (в скобке с полным квадратом игрека) необходимо:

3(x-1) 2 +6(y+5) 2 +2z 2 =6

Переменная зэт встречается в этом случае только один раз - ее можно пока не трогать.

Анализируем уравнение на данном этапе: перед всеми неизвестными стоит знак «плюс»; при делении на шесть остается единица. Следовательно, перед нами уравнение, задающее эллипсоид.

Заметьте, что 144 было разложено на 150-6, после чего -6 перенесли вправо. Почему надо было сделать именно так? Очевидно, что самый большой делитель в данном примере -6, следовательно, чтобы после деления на него справа осталась единица, необходимо «отложить» от 144 именно 6 (о том, что справа должна оказаться единица, говорит наличие свободного члена - константы, не помноженной на неизвестную).

Поделим все на шесть и получим каноническое уравнение эллипсоида:

(x-1) 2 /2+(y+5) 2 /1+z 2 /3=1

В использованной ранее классификации поверхностей 2 порядка рассматривается частный случай, когда центр фигуры находится в начале координат. В данном примере он смещен.

Полагаем, что каждая скобка с неизвестными - это новая переменная. То есть: a=x-1, b=y+5, c=z. В новых координатах центр эллипсоида совпадает с точкой (0,0,0), следовательно, a=b=c=0, откуда: x=1, y=-5, z=0. В изначальных координатах центр фигуры лежит в точке (1,-5,0).

Эллипсоид будет получаться из двух эллипсов: первого в плоскости XY и второго в плоскости XZ (или YZ - это не имеет значения). Коэффициенты, на которые делятся переменные, стоят в каноническом уравнении в квадрате. Следовательно, в приведенном примере правильнее было бы делить на корень из двух, единицу и корень из трех.

Меньшая ось первого эллипса, параллельная оси Y, равняется двум. Большая ось, параллельная оси X - двум корням из двух. Меньшая ось второго эллипса, параллельная оси Y, остается той же - она равна двум. А большая ось, параллельная оси Z, равняется двум корням из трех.

С помощью полученных из первоначального уравнения путем преобразования к каноническому виду данных мы можем начертить эллипсоид.

Подводя итоги

Освещенная в этой статье тема довольно обширная, но, на самом деле, как вы можете теперь видеть, не очень сложная. Ее освоение, по сути, заканчивается на том моменте, когда вы заучиваете названия и уравнения поверхностей (и, конечно, как они выглядят). В примере выше мы подробно рассматривали каждый шаг, но приведение уравнения к каноническому виду требует минимальных познаний в высшей математике и не должно вызывать никаких затруднений у студента.

Анализ будущего графика по имеющемуся равенству уже более сложная задача. Но для ее удачного решения достаточно понимать, как строятся соответствующие кривые второго порядка - эллипсы, параболы и прочие.

Случаи вырождения - еще более простой раздел. Из-за отсутствия некоторых переменных упрощаются не только вычисления, как уже было сказано ранее, но и само построение.

Как только вы сможете уверенно назвать все виды поверхностей, варьировать постоянные, превращая график в ту или иную фигуру - тема будет освоена.

Успехов в обучении!



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта