Главная » Несъедобные грибы » Магнитное поле норма для человека. Расчет электромагнитных полей, часто используемых в производственных условиях

Магнитное поле норма для человека. Расчет электромагнитных полей, часто используемых в производственных условиях

  • 5. Учет длительности пребывания человека в эмп при нормировании интенсивности электромагнитных полей.
  • 6. Понятие "дозы" излучения эмп. Нормирование длительности пребывания в зоне воздействия эмп по показателю дозы.
  • Дозовые уровни.
  • Предельно допустимые уровни электромагнитного поля частотой 50 Гц
  • Предельно допустимые уровни электромагнитных полей диапазона частот
  • 7. Экранирование как способ защиты от эмп.
  • 8. Санитарное нормирование шума. Принципы нормирования.
  • 9. Понятие "Уровень звукового давления". Физический смысл нулевого уровня звукового давления.
  • 10. Опасность и вред производственного шума. Нормирование широкополосного и тонального шума.
  • 11. Предельный спектр шума. Различия в предельных спектрах шума для различных видов деятельности.
  • Семейство нормировочных кривых шума (пс), рекомендованных iso:
  • СанПиН 2.2.2/2.4.1340-03
  • V. Требования к уровням шума и вибрации на рабочих местах, оборудованных пэвм
  • Приложение 1 Допустимые значения уровней звукового давления в октавных полосах частот и уровня звука, создаваемого пэвм
  • 13. Звукоизоляция. Принцип снижения шума. Примеры материалов и конструкций.
  • 13. Звукопоглощение. Принцип снижения шума. Примеры материалов и конструкций.
  • Звукопоглощение
  • Принцип снижения шума
  • Примеры материалов и конструкций
  • 15. Принципы нормирования освещенности рабочего места.
  • VI. Требования к освещению на рабочих местах, оборудованных пэвм
  • 16. Естественное освещение. Общие требования. Нормируемые показатели.
  • 17. Достоинства и недостатки освещения рабочих мест люминесцентными лампами
  • 18. Пульсации светового потока ламп. Причины появления и способы защиты.
  • 19. Напряженность зрительной работы и характеризующие ее показатели. Использование при нормировании освещенности.
  • 20. Показатели, характеризующие качество освещения рабочего места.
  • 21. Способы предотвращения слепящего действия систем освещения
  • 22. Требования к освещению на рабочих местах, оборудованных пэвм
  • 23. Требования к помещениям для работы с пэвм
  • 24. Требования к организации рабочих мест пользователей пэвм
    1. Нормируемые параметры ЭМП .

    СанПиН 2.2.4.1191-03

    ЭЛЕКТРОМАГНИТНЫЕ ПОЛЯ В ПРОИЗВОДСТВЕННЫХ УСЛОВИЯХ

    Устанавливают на рабочих местах:

      временные допустимые уровни (ВДУ) ослабления геомагнитного поля (ГМП),

      ПДУ электростатического поля (ЭСП),

      ПДУ постоянного магнитного поля (ПМП),

      ПДУ электрического и магнитного полей промышленной частоты 50 Гц (ЭП и МП ПЧ),

      ПДУ электромагнитных полей в диапазоне частот >= 10 кГц - 30 кГц,

      ПДУ электромагнитных полей в диапазоне частот >= 30 кГц - 300 ГГц.

    Временные допустимые уровни (вду) ослабления геомагнитного поля (гмп)

    Изменение вредности (А) в зависимости от интенсивности ЭМП (В).

    Временный допустимый коэффициент ослабления интенсивности геомагнитного поля на рабочих местах персонала в помещениях (объектах, технических средствах) в течение смены

    где |Но | - модуль вектора напряженности магнитного поля в открытом пространстве;

    |Нв | - модуль вектора напряженности магнитного поля на рабочем месте в помещении.

    Пду электростатического поля (эсп)

    Предельно допустимый уровень напряженности ЭСП равен 60 кВ/м в течение£1 ч.

    При напряженности менее 20 кВ/м время пребывания в ЭСП не регламентируется.

    В
    диапазоне напряженности 20...60 кВ/м допустимое время пребывания персонала в ЭСП без средств защиты (ч)

    где Е- фактическое значение напряженности ЭСП, кВ/м.

    Пду постоянного магнитного поля (пмп)

    1 А/м ~ 1,25 мкТл, 1 мкТл ~ 0,8 А/м.

    Напряженность МП линии электропередачи напряжением до 750 кВ

    обычно не превышает 20...25 А/м.

    Пду эмп промышленной частоты

    ПДУ ЭП

    Предельно допустимый уровень напряженности ЭП на рабочем месте в течение всей смены устанавливается равным 5 кВ/м.

    При E= 5 … 20 кВ/м допустимое время пребывания в ЭП Т = (50/Е) - 2, час

    При 20 < Е < 25 кВ/м допустимое время пребывания в ЭП составляет 10 мин.

    Пребывание в ЭП с напряженностью более 25 кВ/м без применения средств защиты не допускается.

    Внутри жилых зданий 0,5 кВ/м;

    На территории жилой застройки 1 кВ/м;

    В населенной местности, вне зоны жилой застройки, а также на территории огородов и садов 5 кВ/м;

    На участках пересечения воздушных линий (ВЛ) с автомобильными дорогами 10 кВ/м;

    В ненаселенной местности (незастроенные местности, хотя бы и частично посещаемые людьми, доступные для транспорта, и сель­скохозяйственные угодья) 15 кВ/м;

    В труднодоступной местности (не доступной для транспорта и сельскохозяйственных машин) и на участках, специально выгороженных для исключения доступа населения 20 кВ/м.

    ПДУ МП

    ПДУ воздействия периодического магнитного поля частотой 50 Гц

    Пду эмп радиочастотного диапазона

    (НЧ – ВЧ: 30 кГц-300 МГц)

    (СВЧ: 300 МГц - 300 ГГц)

    В основу гигиенического нормирования положен принцип действующей дозы.

    Оценка и нормирование ЭМП диапазона частот >= 30 кГц - 300 ГГц осуществляется по величине энергетической экспозиции (ЭЭ).

    Энергетическая экспозиция в диапазоне частот

    - >= 30 кГц - 300 МГц:

    ЭЭ F =
    ,

    ЭЭН =
    .

    - >= 300 МГц - 300 ГГц:

    ЭЭ ППЭ = ППЭ*Т, (Вт/м2)ч,(мкВт/см2)ч,

    где Е - напряженность электрического поля (В/м),

    Н - напряженность магнитного поля (А/м),

    Т - время воздействия за смену (час.).

    ППЭ - плотность потока энергии (Вт/м2, мкВт/см2).

    Предельно допустимые значения

    энергетической экспозиции для рабочих мест

    Диапазоны частот

    По электрической составляющей

    По магнитной составляющей

    По плотности потока энергии.

    (мкВт/см2) ч

    30 кГц-3 МГц

    300 МГц-300 ГГц

      Виды действия электромагнитных полей на человека.

    Характер воздействия ЭМП на организм определяется:

      частотой излучения;

      интенсивностью потока энергии (Е, Н, ППЭ)

      продолжительностью и режимом воздействия;

      размером облучаемой поверхности тела;

      индивидуальными особенностями организма;

      наличием сопутствующих вредных факторов, таких как: температура окружающей среды, шум, загазованность и другие факторы, которые снижают сопротивляемость организма.

    ВИДЫ ВОЗДЕЙСТВИЯ ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ НА ЖИВОЙ ОРГАНИЗМ

      Тепловое

      Нетепловое (информационное)

    Думаю найдутся единицы пользователей разной бытовой техники не знающие, что любая техника, подключённая к обычной бытовой электросети ~220В 50Гц, является источником электромагнитного поля(ЭМП). Да, ЭМП есть, но немногие знают, превышает оно предельно-допустимые нормы(ПДН) или нет. Я являюсь работником одной лаборатории в составе организации, занимающийся Аттестацией рабочих место по условиям труда, возможно, многие слышали, у кого-то она проводилась. В последние пару лет, когда меня допустили до проведения измерений повидал многие рабочие места. Где-то отлично, где-то ужасно. По просьбам трудящихся, расскажу о некоторых результатах измерения ЭМП. Сразу оговорюсь, что не являюсь физиком по образованию и уж совсем тонкостей ЭМП не знаю, тем не менее техническое образование имею.

    Итак, средство измерения: Измеритель параметров электрического и магнитного полей «ВЕ-метр-АТ-002», не является супер точным прибором. Прибор позволяет делать одновременные измерения электрической и магнитной составляющих электромагнитного поля в двух полосах частот: от 5 Гц до 2 кГц и от 2 кГц до 400 кГц. Документ, в котором указаны ПДН при работе на компьютере СанПиН 2.2.2/2.4.1340-03 .
    Предельно-допустимые нормы ЭМП

    В теории если бытовая техника заземлена, то показания ЭМП должны соответствовать ПДН. На практике оно в большинстве случаев так и бывает. Но даже при наличии заземления попадаются исключения.

    Пример 1

    Имеем контур заземления во всём здании. В каждом кабинете по два-три компьютера. Когда мы начали измерять, то сразу заметили, что показания в общем укладываются в ПДН, но находятся, так сказать, на грани. На некоторых рабочих местах отдельные показатели превышали в два, а то и три раза. Не сразу было понятно в чём дело. Каждый компьютер подключен через источник бесперебойного питания, некоторые беспербойники были включены в сеть через удлинители(Пилоты). На некоторых рабочих местах количество удлинителей доходило до трёх штук))). Сами бесперебойники в основном располагались под ногами у работников, а где и на самом системном блоке. В начале избавились от удлинителя, показания не изменились. Решили попробовать подключить компьютер в обход бесперебойника и О чудо, показания в норме. Недавно эта организация закупила большую партию бесперебойников фирмы APC, на вид они выглядят подобным образом im2-tub-ru.yandex.net/i?id=81960965-39-72
    Было непонятно почему от бесперебойника такой уровень ЭМП. Вроде сам имеет заземляющий провод, все розетки также с заземлением. Тем не менее итог таков.

    Пример 2

    Та же организация, тоже здание. Во многих кабинетах, чтобы скрасить серые будни работников стояли простенькие FM-радиоприёмнки с питанием от электросети, шнур питания без заземления. Некоторые стояли поодаль от компьютеров, какие-то стояли на рабочем столе, рядом с монитором. Проработав некоторые время на замерах уже набираешь опыт и при каких либо отклонениях начинаешь проверять подключение, искать потребителей тока без заземления. Так вот отключив приёмник, показания пришли в норму. Ещё один интересный случай с приёмником там же. Сам радиоприёмник находился от компьютера метрах в двух. Мне непонятно каким образом были распределены электромагнитные поля, но на расстоянии двух метров показания превышали в два раза. Повторили измерения три раза и без изменений. Выключив радиоприёмник, показания пришли в норму.

    Пример 3

    Другая организация. Ситуация похожая на Пример 2. Обычная ситуация на каждом рабочем месте стоит настольная лампа. В случае даже когда лампа выключена, есть превышения ПДН. Выключаем лампу из розетки, всё приходит в норму.

    У нас в офисе два типа ламп, одни дают превышение в 2 раза, другие в 1.5. Это при условии, что они подключены в электрическую сеть, но выключены.
    Специально для Вас продемонстрирую результаты с лампой на рабочем месте и без. Используется энергосберегающая лампа. Лампы накаливания в наличии нет.

    Пример 4

    Есть такие беспроводные мышки, более того без питания. Так называемая индукционная мышь. Она работает с помощью специального индукционного коврика, и питаются индукционным способом. При замере я можно сказать офигел, потому что никогда не видел таких показаний по магнитной составляющей. Превышение в 15 раз. Отключаем мышь, т.е. коврик и показания в норме. Если не ошибаюсь, многие графические планшеты работают на том же принципе.

    Излучение от телефона

    Несколько слов про это. Прибор: Измеритель уровней электромагнитных излучений «ПЗ-31».
    Делали измерения чисто для себя. В момент соединения базовой станции с телефоном, телефон в этот момент ещё не подаёт признаков звонка, идёт сильное превышение, далее через несколько секунд излучение приходит в норму. Вывод один, при наборе номера, в первые секунды не стоит держать телефон у головы. Да, время воздействия достаточно мало, но лично мне теперь боязно сразу же после набора номера прислонять телефон к уху.

    Итог

    Я привёл наиболее частые и интересные примеры. Часто встречается такой вариант, есть заземляющий контур, но компьютеры подключены через обычный удлинитель без земли, соответственно присутствуют превышения. Меняем на удлинитель с землёй и всё приходит в норму. Не могу высказать никаких предпочтений по поводу качественных удлинителей с землёй, все они в той или иной мере справляются со своими задачами. Как видите, существуют проблемы с источниками бесперебойного питания и с настольными лампами. Даже звуковые колонки не вносят таких помех как настольные лампы. Тут тоже не выскажу ни каких рекомендаций, так как каждый образец нужно исследовать отдельно.

    По поводу ЖК мониторов и с ЭЛТ. Если заземление имеется, то неважно, какой тип монитора, показатели должны быть в норме. Без заземления у мониторов с ЭЛТ показатели несколько выше ЖК мониторов.

    Специально для трудящихся из поста , которые подкинули идею написать эту статью, померил розетку, куда подключены свитч и роутер. Конечно, применение ПДН для мониторов чисто условно. Сделал только по одному замеру, чтобы хотя бы оценить величину.

    Как видим превышает магнитная составляющая из-за наличия в блоках питания трансформаторов. Что делать? Помимо того, что я не физик, я ещё и не радио-техник)). Видимо каким-то образом нужно экранировать трансформаторы.

    PS Ввиду того, что сами медики не могут определиться какой же вред наносит ЭМП. Поэтому в том же СанПиНе рекомендуется при активной работе за компьютером после каждого часа делать 5-15 минут перерыва.
    По поводу мифа, что кактус уменьшает излучение. Хочу вас расстроить, но это не так.

    UPD: исправлено на электромагнитные поля, так будет правильно.

    Нормирование радиочастотного диапазона (РЧ-диапазона ) осуществляется в соответствии с ГОСТ 12.1.006-84*. Для частотного диапазона 30 кГц...300 МГц предельно допустимые уровни излучения определяются по энергетической нагрузке, создаваемой электрическим и магнитным полями

    где Т - время воздействия излучения в часах.

    Предельно допустимая энергетическая нагрузка зависит от частотного диапазона и представлена в табл. 1.

    Таблица 1. Предельно допустимая энергетическая нагрузка

    Диапазоны частот*

    Предельно допустимая энергетическая нагрузка

    30 кГц...З МГц

    Не разработаны

    Не разработаны

    *Каждый диапазон исключает нижний и включает верхний пределы частот.

    Максимальное значение для ЭН E составляет 20 000 В 2 . ч/м 2 , для ЭН H — 200 А 2 . ч/м 2 . Используя указанные формулы, можно определить допустимые напряженности электрического и магнитного полей и допустимое время воздействия облучения:

    Для частотного диапазона 300 МГц...300 ГГц при непрерывном облучении допустимая ППЭ зависит от времени облучения и определяется по формуле

    где Т - время воздействия в часах.

    Для излучающих антенн, работающих в режиме кругового обзора, и локального облучения кистей рук при работе с микроволновыми СВЧ-устройствами предельно допустимые уровни определяются по формуле

    где к = 10 для антенн кругового обзора и 12,5 — для локального облучения кистей рук, при этом независимо от продолжительности воздействия ППЭ не должна превышать 10 Вт/м 2 , а на кистях рук — 50 Вт/м 2 .

    Несмотря на многолетние исследования, сегодня ученым еще далеко не все известно о на здоровье человека. Поэтому лучше ограничивать облучение ЭМИ, даже если их уровни не превышают установленные нормативы.

    При одновременном воздействии на человека различных РЧ-диапазонов должно выполняться условие

    где E i , H i , ППЭ i — соответственно реально действующие на человека напряженность электрического и магнитного поля, плотность потока энергии ЭМИ; ПДУ Ei ., ПДУ Hi , ПДУ ППЭi . — предельно допустимые уровни для соответствующих диапазонов частот.

    Нормирование промышленной частоты (50 Гц) в рабочей зоне осуществляется по ГОСТ 12.1.002-84 и СанПиН 2.2.4.1191-03. Расчеты показывают, что в любой точке электромагнитного поля, возникающего в электроустановках промышленной частоты, напряженность магнитного поля существенно меньше напряженности электрического поля. Так, напряженность магнитного поля в рабочих зонах распределительных устройств и линий электропередач напряжением до 750 кВ не превышает 20-25 А/м. Вредное же действие магнитного поля (МП) на человека установлено лишь при напряженности поля свыше 80 А/м. (для периодических МП) и 8 кА/м (для остальных). Поэтому для большинства электромагнитных полей промышленной частоты вредное действие обусловлено электрическим полем. Для ЭМП промышленной частоты (50 Гц) установлены предельно допустимые уровни напряженности электрического поля.

    Допустимое время пребывания персонала, обслуживающего установки промышленной частоты определяется по формуле

    где Т — допустимое время нахождения в зоне с напряженностью электрического поля Е в часах; Е — напряженность электрического поля в кВ/м.

    Из формулы видно, что при напряженности 25 кВ/м пребывание в зоне недопустимо без применения индивидуальных средств защиты человека, при напряженности 5 кВ/м и менее допустимо нахождение человека в течение всей 8-часовой рабочей смены.

    При нахождении персонала в течение рабочего дня в зонах с различной напряженностью допустимое время пребывания человека можно определить по формуле

    где t Е1 , t Е2 , ... t Еn - время пребывания в контролируемых зонах соответственно напряженностью — допустимое время пребывания в зонах соответствующей напряженности, рассчитанное по формуле (каждое значение не должно превышать 8 ч).

    Для ряда электроустановок промышленной частоты, например, генераторов, силовых трансформаторов, могут создаваться синусоидальные МП с частотой 50 Гц, которые вызывают функциональные изменения иммунной, нервной и сердечно сосудистой систем.

    Для переменных МП в соответствии с СанПиН 2.2.4.1191-03 устанавливаются предельно допустимые значения напряженности Н магнитного поля или магнитной индукции В в зависимости от длительности пребывания человека в зоне МП (табл. 2).

    Магнитная индукция В связана с напряженностью Н соотношением:

    где μ 0 = 4 * 10 -7 Гн/м — магнитная постоянная. Поэтому 1 А/м ≈ 1,25 мкТл (Гн — генри, мкТл — микротесла, которая равна 10 -6 тесла). Под общим воздействием понимается воздействие на все тело, под локальным — на конечности человека.

    Таблица 2. Предельно допустимые уровни переменного (периодического) МП

    Предельно допустимое значение напряженности электростатических полей (ЭСП) устанавливается в ГОСТ 12.1.045-84 и не должно превышать 60 кВ/м при действии в течение 1 ч. При напряженности ЭСП менее 20 кВ/м время пребывания в поле не регламентируется.

    Напряженность магнитного поля (МП) в соответствии с СанПиН 2.2.4.1191-03 на рабочем месте не должна превышать 8 кА/м (за исключением периодических МП).

    Нормирование инфракрасного (теплового) излучения (ИК-излучения) осушсствлястся по интенсивности допустимых суммарных потоков излучения с учетом длины волны, размера облучаемой площади, защитных свойств спецодежды в соответствии с ГОСТ 12.1.005-88* и СанПиН 2.2.4.548-96.

    Гигиеническое нормирование ультрафиолетового излучения (УФИ) в производственных помещениях осуществляется по СН 4557-88, в которых установлены допустимые плотности потока излучения в зависимости от длины волны при условии зашиты органов зрения и кожи.

    Гигиеническое нормирование лазерного излучения (ЛИ) осуществляется по СанПиН 5804-91. Нормируемыми параметрами являются энергетическая экспозиция (H, Дж/см 2 — отношение энергии излучения, падающей на рассматриваемый участок поверхности, к площади этого участка, т. е. плотность потока энергии). Значения предельно допустимых уровней различаются в зависимости от длины волны ЛИ, длительности одиночного импульса, частоты следования импульсов излучения, длительности воздействия. Установлены различные уровни для глаз (роговицы и сетчатки) и кожи.

    Научно-технический прогресс сопровождается резким увеличением мощности электромагнитных полей (ЭМП), созданных человеком, которые в отдель-ных случаях в сотни и тысячи раз выше уровня естественных полей.

    Спектр электромагнитных колебаний включает волны длиной от 1000 км до 0,001 мкм и по частоте f от 3×10 2 до 3×10 20 Гц. Электромагнитное поле характеризуется совокупностью векторов электрических и магнитных со-ставляющих. Разные диапазоны электромагнитных волн имеют общую фи-зическую природу, но различаются энергией, характером распространения, поглощения, отражения и действием на среду, человека. Чем короче длина волны, тем больше энергии несет в себе квант.

    Основными характеристиками ЭМП являются:

    Напряженность электрического поля Е , В/м.

    Напряженность магнитного поля Н , А/м.

    Плотность потока энергии, переносимый электромагнитными волна-ми I , Вт/м 2 .

    Связь между ними определяется зависимостью:

    Связь энергии I и частоты f колебаний определяется как:

    где: f = с/l, а с = 3 × 10 8 м/с (скорость распространения электромагнит-ных волн), h = 6,6 × 10 34 Вт/см 2 (постоянная Планка).

    В пространстве. окружающем источник ЭМП выделяют 3 зоны (рис.9):

    а) Ближняя зона (индукции), где нет распространения волны, нет переноса энергии, а следовательно электрическая и магнитная со-ставляющая ЭМП рассматриваются независимо. Граница зоны R < l/2p.

    б) Промежуточная зона (дифракции), где волны накладываются друг на друга, образуя максимумы и стоячие волны. Границы зоны l/2p < R < 2pl. Основная характеристика зоны суммарная плотность потоков энергии волн.

    в) Зона излучения (волновая) с границей R > 2pl. Есть распространение волны, следовательно характеристикой зоны излучения является плотность потока энергии, т.е. коли-чество энергии, падающей на единицу поверхности I (Вт/м 2).

    Рис. 1.9 . Зоны существования электромагнитного поля

    Электромагнитное поле по мере удаления от источников излучения затухает обратно пропорционально квадрату расстояний от источника. В зоне индукции напряженность электрического поля убывает обратно пропорционально расстоянию в третьей степени, а маг-нитного поля обратно пропорционально квадрату расстояния.

    По характеру воздействия на организм человека ЭМП разделяют на 5 диапазонов:

    Электромагнитные поля промышленной частоты (ЭМП ПЧ): f < 10 000 Гц.

    Электромагнитные излучения радиочастотного диапазона (ЭМИ РЧ) f 10 000 Гц.

    Электромагнитные поля радиочастотной части спектра разбиваются на четыре поддиапазона:

    1) f от 10 000 Гц до 3 000 000 Гц (3 МГц);


    2) f от 3 до 30 МГц;

    3) f от 30 до 300 МГц;

    4) f от 300 МГц до 300 000 МГЦ (300 ГГц).

    Источниками электромагнитных полей промышленной частоты являются линии электропередач высокого напряжения, открытые распре-делительные устройства, все электрические сети и приборы, питающиеся переменным током 50 Гц. Опасность воздействия линий растет с увеличе-нием напряжения вследствие возрастания заряда, сосредоточенного на фазе. Напряженность электрического поля в районах прохождения высоко-вольтных линий электропередач может достигать нескольких тысяч вольт на метр. Волны этого диапазона сильно поглощаются почвой и на удале-нии 50-100 м от линии напряженность падает до нескольких десятков вольт на метр. При систематическом воздействии ЭП наблюдаются функцио-нальные нарушения в деятельности нервной и сердечно-сосудистой систе-мы. С возрастанием напряженности поля в организме наступают стойкие функциональные изменения в ЦНС . Наряду с биологическим действием электрического поля между человеком и металлическим предметом могут возникнуть разряды, обусловленные потенциалом тела, который достигает нескольких киловольт, если человек изолирован от Земли.

    Допустимые уровни напряженности электрических полей на рабочих местах устанавливаются ГОСТом 12.1.002-84 «Электрические поля промышленной частоты». Предельно до-пустимый уровень напряженности ЭМП ПЧ устанавливается в 25 кВ/м. Допустимое время пребывания в таком поле составляет 10 мин. Пребыва-ние в ЭМП ПЧ напряженностью более 25 кВ/м без средств защиты не допускает-ся, а в ЭМП ПЧ напряженностью до 5 кВ/м пребывание допускается в течение всего рабочего дня. Для расчета допустимого времени пребывания в ЭП при напряженно-сти свыше 5 до 20 кВ/м включительно используется формула Т = (50/Е ) - 2, где: Т - допустимое время пребывания в ЭМП ПЧ, (час); Е - напряженность электрической составляющей ЭМП ПЧ, (кВ/м).

    Санитарные нормы СН 2.2.4.723-98 регламентируют ПДУ магнитной составляющей ЭМП ПЧ на рабочих местах. Напряженность магнитной составляющей Н не должна превышать 80 А/м при 8-ми часовом пребывании в условиях этого поля.

    Напряженность электрической составляющей ЭМП ПЧ в жилой застройке и квартирах регламентируется СанПиН 2971-84 «Санитарными нормами и правилами защиты населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты». Согласно этому документу, величина Е не должна превышать 0,5 кВ/м внутри жилых помещений и 1 кВ/м на территории городской застройки. Нормы ПДУ магнитной составляющей ЭМП ПЧ для жилой и городской среды в настоящее время не разработаны.

    ЭМИ РЧ используются для термообработки, плавки металлов, в радио-связи, медицине. Источниками ЭМП в производственных помещениях яв-ляются ламповые генераторы, в радиотехнических установках - антенные системы, в СВЧ-печах - утечки энергии при нарушении экрана рабочей камеры.

    ЭМИ РЧ придействии на организм вызывает поляризацию атомов и мо-лекул тканей, ориентацию полярных молекул, появление в тканях ионных токов, нагрев тканей за счет поглощения энергии ЭМП. Это нарушает структуру электрических потенциалов, циркуляцию жидкости в клетках ор-ганизма, биохимическую активность молекул, состав крови.

    Биологический эффектЭМИ РЧ зависит от его параметров: длины вол-ны, интенсивности и режима излучения (импульсный, непрерывный, пре-рывистый), от площади облучаемой поверхности, продолжительности об-лучения. Электромагнитная энергия частично поглощается тканями и пре-вращается в тепловую, происходит локальный нагрев тканей, клеток. ЭМИ РЧ ока-зывает неблагоприятное действие на ЦНС, вызывает нарушения в нервно-эндокринной регуляции, изменения в крови, помутнение хрусталика глаз (исключительно 4 поддиапазон), нарушения обменных процессов.

    Гигиеническое нормирование ЭМИ РЧ осуществляется со-гласно ГОСТ 12.1.006-84 «Электромагнитные поля радиочастот. Допусти-мые уровни на рабочих местах и требования к проведению контроля». Уровни ЭМП на рабочих местах контролируются измерением в диапа-зоне частот 60 кГц-300 МГц напряженности электрической и магнитных составляющих, а в диапазоне частот 300 МГц-300 ГГц плотности потока энергии (ППЭ) ЭМП с учетом времени пребывания в зоне облучения.

    Для ЭМП радиочастот от 10 кГц до 300 МГц регламентируется напряженность электрической и магнитной составляющей поля в зависимости от диапазо-на частот: чем выше частоты, тем меньше допускаемая величина напря-женности. Например, электрическая составляющая ЭМП для частот 10 кГц - 3МГц составляет 50 В/м, а для частот 50 МГц - 300 МГц только 5 В/м. В диапазоне частоты 300 МГц - 300 ГГц регламентируется плотность потока энергии излучения и создаваемая им энергетическая нагрузка, т.е. поток энергии, проходящий через единицу облучаемой поверхности за время действия. Максимальное значение плотности потока энергии не должно превышать 1000 мкВт/см 2 . Время пребывания в таком поле не должно превышать 20 мин. Пребывание в поле в ППЭ равном 25 мкВт/см 2 допускается в течение 8-ми часовой рабочей смены.

    В городской и бытовой среде нормирование ЭМИ РЧ осуществляется согласно СН 2.2.4/2.1.8-055-96 «Электромагнитные излучения радиочастотного диапазона». В жилых помещениях ППЭ ЭМИ РЧ не должна превышать 10 мкВт/см 2 .

    В машиностроении широко используется магнитно-импульсная и электрогидравлическая обработка металлов низкочастотным импульсным током 5-10 кГц (резка и обжатие трубчатых заготовок, штамповка, вырубка отверстий, очистка отливок). Источниками импульсного магнитного по-ля на рабочих местах являются открытые рабочие индукторы, электроды, тоководящие шины. Импульсное магнитное поле оказывает влияние на обмен веществ в тканях головного мозга, на эндокринные системы регуляции.

    Электростатическое поле (ЭСП) - это поле неподвижных электриче-ских зарядов, взаимодействующих между собой. ЭСП характеризуется на-пряженностью Е , то есть отношением силы, действующей в поле на то-чечный заряд, к величине этого заряда. Напряженность ЭСП измеряется в В/м. ЭСП возникают в энергетических установках, в электротехнологиче-ских процессах. ЭСП используется в электрогазоочистке, при нанесении лакокрасочных покрытий. ЭСП оказывает негативное влияние на ЦНС; у работающих в зоне ЭСП возникает головная боль, нарушение сна и др. В источниках ЭСП, помимо биологического воздействия, определенную опасность представляет аэроионы. Источником аэроионов является корона, возникающая на проводах при напряженности Е >50 кВ/м.

    Допустимые уровни напряженности ЭСП установлены ГОСТ 12.1.045-84 «Электростатические поля. Допустимые уровни на рабочих местах и требования к проведению контроля». Допустимый уровень напряженности ЭСП устанавливается в зависимости от времени пребывания на рабочих местах. ПДУ напряженности ЭСП устанавливается равный 60 кВ/м в течение 1 часа. При напряженности ЭСП менее 20 кВ/м время пре-бывания в ЭСП не регламентируется.

    Основными характеристиками лазерного излучения являются: длина волны l, (мкм), интенсивность излучения, определяемая по величине энергии или мощно-сти выходного пучка и выражаемая в джоулях (Дж) или ваттах (Вт): дли-тельность импульса (сек), частота повторения импульса (Гц). Глав-ными критериями опасности лазера являются его мощность, длина волны, длительность импульса и экспозиция облучения.

    По степени опасности лазеры разделены на 4 класса: 1 - выходное излучение не опасно для глаз, 2 - опасно для глаз прямое и зеркально от-раженное излучение, 3 - опасно для глаз диффузно отраженное излуче-ние, 4 - опасно для кожи диффузно отраженное излучение.

    Класс лазера по степени опасности генерируемого излучения опреде-ляется предприятием-изготовителем. При работе с лазерами персонал под-вергается воздействию вредных и опасных производственных факторов.

    К группе физических вредных и опасных факторов при работе лазеров относят:

    Лазерное излучение (прямое, рассеянное, зеркальное или диффузно отраженное),

    Повышенное значение напряжения электропитания лазеров,

    Запыленность воздуха рабочей зоны продуктами взаимодействия ла-зерного излучения с мишенью, повышенный уровень ультрафиолетовой и инфракрасной радиации,

    Ионизирующие и электромагнитные излучения в рабочей зоне, по-вышенная яркость света от импульсных ламп накачки и взрывоопасность систем накачки лазеров.

    На персонал, обслуживающий лазеры, действуют химически опасные и вредные факторы, как-то: озон, окислы азота и другие газы, обусловлен-ные характером производственного процесса.

    Действие лазерного излучения на организм зависит от параметров излучения (мощности, длины волны, длительности импульса, частоты следования им-пульсов, времени облучения и площади облучаемой поверхности), локали-зация воздействия и особенности облучаемого объекта. Лазерное излуче-ние вызывает в облучаемых тканях органические изменения (первичные эффекты) и специфические изменения в самом организме (вторичные эф-фекты). При действии излучения происходит быстрый нагрев облучаемых тканей, т.е. термический ожог. В результате быстрого нагрева до высоких температур происходит резкое повышение давления в облучаемых тканях, что приводит к их механическому повреждению. Действия лазерного излу-чения на организм могут вызвать функциональные нарушения и даже пол-ную потерю зрения. Характер поврежденной кожи варьирует от легких до разной степени ожогов, вплоть до некрозов. Помимо изменений тканей, ла-зерное излучение вызывает функциональные сдвиги в организме.

    Предельно допустимые уровни облучения регламентируются «Сани-тарными нормами и правилами устройства и эксплуатации лазеров» 2392-81. Предельно допустимые уровни облучения дифференцированы с учетом режима работы лазеров. Для каждого режима работы, участка оптического диапазона величина ПДУ определяется по специальным таблицам. Дози-метрический контроль лазерного излучения осуществляют в соответствии с ГОСТ 12.1.031-81. При контроле измеряются плотность мощности непре-рывного излучения, плотность энергии импульсного и импульсно-модулированного излучения и другие параметры.

    Ультрафиолетовое излучение - это невидимое глазом электромаг-нитное излучение, занимающее промежуточное положение между светом и рентгеновским излучением. Биологически активную часть УФ-излучения делят на три части: А с длиной волны 400-315 нм, В с длиной волны 315-280 нм и С 280-200 нм. УФ-лучи обладают способностью вызывать фото-электрический эффект, люминесценцию, развитие фотохимических реак-ций, а также обладают значительной биологической активностью.

    УФ-излучения характеризуется бактерицидными и эритемными свойствами. Мощность эритемного излучения - это величина, характери-зующая полезное воздействие УФ-излучений на человека. За единицу эритемного излучения принят Эр, соответствующий мощности в 1 Вт для дли-ны волны 297 нм. Единица эритемной освещенности (облученности) Эр на квадратный метр (Эр/м 2) или Вт/м 2 . Доза облучения Нэр измеря-ется в Эр×ч/м 2 , т.е. это облучение поверхности за определенное время. Бактерицидность потока УФ-излучения измеряется в бакт. Соответственно бактерицидная облученность-бакт на м 2 , а доза бакт в час на м 2 (бк×ч/м 2).

    Источниками УФ-излучения на производстве являются электрическая дуга, автогенное пламя, ртутно-кварцевые горелки и другие температурные излучатели.

    Естественные УФ-лучи оказывают положительное влияние на организм. При недос-татке солнечного света возникает "световое голодание", авитаминоз Д, ос-лабление иммунитета, функциональные расстройства нервной системы. Вместе с тем УФ-излучение от производственных источников может стать причиной острых и хронических профессиональных заболеваний глаз. Острое поражение глаз называется электроофтальмия. Нередко обнаружи-вается эритема кожи лица и век. К хроническим поражениям следует отне-сти хронический коньюнктивит, катаракту хрусталика, кожные поражения (дерматиты, отеки с образованием пузырей).

    Нормирование УФ-излучения осуществляется согласно «Санитарные нормы ультрафиолетового излучения в производственных помещениях» 4557-88. При нормирова-нии устанавливается интенсивность излучения в Вт/м 2 . При поверхности облучения 0,2 м 2 в течение до 5 мин с перерывом 30 мин при общей про-должительности до 60 мин норма для УФ-А 50 Вт/ м 2 , для УФ-В 0,05 Вт/ м 2 и для УФ-С 0,01 Вт/ м 2 . При общей продолжительности облуче-ния 50% рабочей смены и однократном облучении 5 мин норма для УФ-А 10 Вт/ м 2 , для УФ-В 0,01 Вт/ м 2 при площади облучения 0,1 м 2 , а об-лучение УФ-С не допускается.

  • Дозовые уровни.
  • Предельно допустимые уровни электромагнитного поля частотой 50 Гц
  • Предельно допустимые уровни электромагнитных полей диапазона частот
  • 7. Экранирование как способ защиты от эмп.
  • 8. Санитарное нормирование шума. Принципы нормирования.
  • 9. Понятие "Уровень звукового давления". Физический смысл нулевого уровня звукового давления.
  • 10. Опасность и вред производственного шума. Нормирование широкополосного и тонального шума.
  • 11. Предельный спектр шума. Различия в предельных спектрах шума для различных видов деятельности.
  • Семейство нормировочных кривых шума (пс), рекомендованных iso:
  • СанПиН 2.2.2/2.4.1340-03
  • V. Требования к уровням шума и вибрации на рабочих местах, оборудованных пэвм
  • Приложение 1 Допустимые значения уровней звукового давления в октавных полосах частот и уровня звука, создаваемого пэвм
  • 13. Звукоизоляция. Принцип снижения шума. Примеры материалов и конструкций.
  • 13. Звукопоглощение. Принцип снижения шума. Примеры материалов и конструкций.
  • Звукопоглощение
  • Принцип снижения шума
  • Примеры материалов и конструкций
  • 15. Принципы нормирования освещенности рабочего места.
  • VI. Требования к освещению на рабочих местах, оборудованных пэвм
  • 16. Естественное освещение. Общие требования. Нормируемые показатели.
  • 17. Достоинства и недостатки освещения рабочих мест люминесцентными лампами
  • 18. Пульсации светового потока ламп. Причины появления и способы защиты.
  • 19. Напряженность зрительной работы и характеризующие ее показатели. Использование при нормировании освещенности.
  • 20. Показатели, характеризующие качество освещения рабочего места.
  • 21. Способы предотвращения слепящего действия систем освещения
  • 22. Требования к освещению на рабочих местах, оборудованных пэвм
  • 23. Требования к помещениям для работы с пэвм
  • 24. Требования к организации рабочих мест пользователей пэвм
  • Предельно допустимые уровни электромагнитных полей диапазона частот

    >= 10 - 30 кГц

    1. Оценка и нормирование ЭМП осуществляется раздельно по напряженности электрического (Е), в В/м, и магнитного (Н), в А/м, полей в зависимости от времени воздействия.

    2. ПДУ напряженности электрического и магнитного поля при воздействии в течение всей смены составляет 500 В/м и 50 А/м, соответственно.

    3. ПДУ напряженности электрического и магнитного поля при продолжительности воздействия до 2-х часов за смену составляет 1000 В/м и 100 А/м, соответственно.

    Предельно допустимые уровни электромагнитных полей диапазона частот >= 30 кГц - 300 ГГц

    1. Оценка и нормирование ЭМП диапазона частот >= 30 кГц - 300 ГГц осуществляется по величине энергетической экспозиции (ЭЭ).

    2. Энергетическая экспозиция в диапазоне частот >= 30 кГц - 300 МГц рассчитывается по формулам:

    ЭЭе = Е 2 х Т, (В/м) 2 .ч,

    ЭЭн = Н 2 х Т, (А/м) 2 .ч,

    Е - напряженность электрического поля (В/м),

    Н - напряженность магнитного поля (А/м), плотности потока энергии (ППЭ, Вт/м 2 , мкВт/см 2), Т - время воздействия за смену (час.).

    3. Энергетическая экспозиция в диапазоне частот >= 300 МГц - 300 ГГц рассчитывается по формуле:

    ЭЭппэ = ППЭ х Т, (Вт/м 2).ч, (мкВт/см 2).ч, где ППЭ - плотность потока энергии (Вт/м 2 , мк Вт/см 2).

    В табл. 2 приведены предельно допустимые плотности потока энергии электромагнитных полей (ЭМП) в диапазоне частот 300 МГц-300000 ГГц и

    Таблица 2. Нормы облучения УВЧ и СВЧ

    время пребывания на рабочих местах и в местах возможного нахожде­ния персонала, профессионально связанного с воздей­ствием ЭМП.

    В табл. 3 приведено допустимое время пребывания человека в электрическом поле промышленной частоты сверхвысокого напряжения (400 кВ и выше).

    Таблица 3. Предельно допустимое время c напряжением 400 кВ и выше

    7. Экранирование как способ защиты от эмп.

    Инженерные защитные мероприятия строятся на использовании явления экранирования электромагнитных полей , либо наограничении эмиссионных параметров источника поля (снижении интенсивности излучения). При этом второй метод применяется в основном на этапе проектирования излучающего объекта. Электромагнитные излучения могут проникать в помещения через оконные и дверные проемы (явление дисперсии электромагнитных волн).

    При экранировании ЭМП в радиочастотных диапазонах используются разнообразные радиоотражающие и радиопоглощающие материалы.

    К радиоотражающим материалам относятся различные металлы. Чаще всего используются железо, сталь, медь, латунь, алюминий. Эти материалы используются в виде листов, сетки, либо в виде решеток и металлических трубок. Экранирующие свойства листового металла выше, чем сетки, сетка же удобнее в конструктивном отношении, особенно при экранировании смотровых и вентиляционных отверстий, окон, дверей и т.д. Защитные свойства сетки зависят от величины ячейки и толщины проволоки: чем меньше величина ячеек, чем толще проволока, тем выше ее защитные свойства. Отрицательным свойством отражающих материалов является то, что они в некоторых случаях создают отраженные радиоволны, которые могут усилить облучение человека.

    Более удобными материалами для экранировки являются радиопоглощающие материалы. Листы поглощающих материалов могут быть одно- или многослойными. Многослойные - обеспечивают поглощение радиоволн в более широком диапазоне. Для улучшения экранирующего действия у многих типов радиопоглощающих материалов с одной стороны впрессована металлическая сетка или латунная фольга. При создании экранов эта сторона обращена в сторону, противоположную источнику излучения.

    Характеристики некоторых радиопоглощающих материалов приведены в табл.1.

    Таблица1

    Характеристики некоторых радиопоглощающих материалов

    Наименование материалов

    Тип марок

    Диапазон поглощенных волн, см

    Коэффициент отражения по мощности, %

    Ослабление проходящей мощности, %

    Резиновые коврики

    Магнитодиэлектри-ческие пластины

    Поглощающие покрытия на основе поролона

    «Болото»

    Ферритовые пластины

    Несмотря на то, что поглощающие материалы во многих отношениях более надежны, чем отражающие, применение их ограничивается высокой стоимостью и узостью спектра поглощения.

    В некоторых случаях стены покрывают специальными красками. В качестве токопроводящих пигментов в этих красках применяют коллоидное серебро, медь, графит, алюминий, порошкообразное золото. Обычная масляная краска обладает довольно большой отражающей способностью (до 30%), гораздо лучше в этом отношении известковое покрытие.

    Радиоизлучения могут проникать в помещения, где находятся люди через оконные и дверные проемы. Для экранирования смотровых окон, окон помещений, застекления потолочных фонарей, перегородок применяется либо мелкоячеистая металлическая сетка (этот метод защиты не распространён по причине неэстетичности самой сетки и значительного ухудшения вентиляционного газообмена в помещении), либо металлизированное стекло, обладающее экранирующими свойствами. Такое свойство стеклу придает тонкая прозрачная пленка либо окислов металлов, чаще всего олова, либо металлов - медь, никель, серебро и их сочетания. Пленка обладает достаточной оптической прозрачность и химической стойкостью. Будучи нанесенной на одну сторону поверхности стекла она ослабляет интенсивность излучения в диапазоне 0,8 – 150 см на 30 дБ (в 1000 раз). При нанесении пленки на обе поверхности стекла ослабление достигает 40 дБ (в 10000 раз). Металлизированное стекло горячего прессования имеет кроме экранирующих свойств повышенную механическую прочность и используется в особых случаях (например, для наблюдательных окон на атомных регенерационных установках).

    Экранирование дверных проемов в основном достигается за счет использования дверей из проводящих материалов (стальные двери).

    Для защиты населения от воздействия электромагнитных излучений могут применяться специальные строительные конструкции: металлическая сетка, металлический лист или любое другое проводящее покрытие, а также специально разработанные строительные материалы. В ряде случаев (защита помещений, расположенных относительно далеко от источников поля) достаточно использования заземленной металлической сетки, помещаемой под облицовку стен помещения или заделываемой в штукатурку.

    Ослабление ЭМП с помощью строительных материалов

    Материал

    Толщина, см

    Ослабление ППЭ, дБ

    Длина волны, см

    Кирпичная стена

    Шлакобетонная стена

    Штукатурная стена или деревянная перегородка

    Слой штукатурки

    Древесноволокнистая плита

    Окно с двойными рамами, стекло силикатное

    В сложных случаях (защита конструкций, имеющих модульную или некоробчатую структуру) могут применяться также различные пленки и ткани с электропроводящим покрытием.

    В последние годы в качестве радиоэкранирующих материалов получили металлизированные ткани на основе синтетических волокон. Их получают методом химической металлизации (из растворов) тканей различной структуры и плотности. Существующие методы получения позволяет регулировать количество наносимого металла в диапазоне от сотых долей до единиц мкм и изменять поверхностное удельное сопротивление тканей от десятков до долей Ом. Экранирующие текстильные материалы обладают малой толщиной, легкостью, гибкостью; они могут дублироваться другими материалами (тканями, кожей, пленками), хорошо совмещаются со смолами и латексами.

    Механизм "отражения" ЭМП. Виды используемых материалов.

    Механизм отражения

    Отражение обусловлено в основном несоответствием волновых характеристик воздуха и материала, из которого изготовлен экран. Отражение электромагнитной энергии определяется через величины, выражаемые как отношение падающей энергии к отраженной (Вотр), которые обычно выражаются в децибелах, либо через коэффициент отражения, определяемый как величина, обратная (Вотр) .

    К радиоотражающим материалам относятся различные металлы. Чаще всего используются железо, сталь, медь, латунь, алюминий. Эти материалы используются в виде листов, сетки, либо в виде решеток и металлических трубок. Экранирующие свойства листового металла выше, чем сетки, сетка же удобнее в конструктивном отношении, особенно при экранировании смотровых и вентиляционных отверстий, окон, дверей и т.д. Защитные свойства сетки зависят от величины ячейки и толщины проволоки: чем меньше величина ячеек, чем толще проволока, тем выше ее защитные свойства.Отрицательным свойством отражающих материалов является то, что они в некоторых случаях создают отраженные радиоволны, которые могут усилить облучение человека.

    Отражающие ЭМП РЧ экраны выполняются из металлических листов, сетки, проводящих пленок, ткани с микропроводом, металлизированных тканей на основе синтетических волокон или любых других материалов, имеющих высокую электропроводность.

    Механизм "поглощения" ЭМП. Виды используемых материалов.

    Поглощение ЭМП обусловлено диэлектрическими и магнитными потерями при взаимодействии электромагнитного излучения с радиопоглощающими материалами. В последних также имеют место рассеяние (вследствие структурной неоднородности Р. м.) и интерференция.

    Виды радиопоглощающих материалов (Р. м.)

      Немагнитные Р. м. подразделяют на интерференционные, градиентные и комбинированные.

      Интерференционные Р. м. состоят из чередующихся диэлектрических и проводящих слоев. В них интерферируют между собой волны, отразившиеся от электропроводящих слоев и от металлической поверхности защищаемого объекта.

      Градиентные Р. м. (наиболее обширный класс) имеют многослойную структуру с плавным или ступенчатым изменением комплексной диэлектрической проницаемости по толщине (обычно по гиперболическому закону). Их толщина сравнительно велика и составляет > 0,12 - 0,15 λмакс, где λмакс - максимальная рабочая длина волны. Внешний (согласующий) слой изготавливают из твёрдого диэлектрика с большим содержанием воздушных включений (пенопласт и др.), с диэлектрической проницаемостью, близкой к единице, остальные (поглощающие) слои - из диэлектриков с высокой диэлектрической проницаемостью (стеклотекстолит и др.) с поглощающим проводящим наполнителем (сажа, графит и т.п.). Условно к градиентным Р. м. относят также материалы с рельефной внешней поверхностью (образуемой выступами в виде шипов, конусов и пирамид), называемые шиловидными Р. м.; уменьшению коэффициента отражения в них способствует многократное отражение волн от поверхностей шипов (с поглощением энергии волн при каждом отражении).

      Комбинированные Р. м. - сочетание Р. м. градиентного и интерференционного типов. Они отличаются эффективностью действия в расширенном диапазоне волн.

    Различают Р. м. широкодиапазонные (λмакс/λмин > 3 - 5), узкодиапазонные (λмакс/λмин ~ 1,5 - 2,0) и рассчитанные на фиксированную (дискретную) длину волны (ширина диапазона < 10-15% λраб); λмин и λраб - минимальная и рабочая длины волн.

    Обычно Р. м. отражают 1 - 5 % электромагнитной энергии (некоторые - не более 0,01%) и способны поглощать потоки энергии плотностью 0,15 - 1,50 вт/см2 (пенокерамические - до 8 вт/см2). Интервал рабочих температур Р. м. с воздушным охлаждением от минус 60°С до плюс 650°С (у некоторых до 1315°С).



    Предыдущая статья: Следующая статья:

    © 2015 .
    О сайте | Контакты
    | Карта сайта