Главная » Несъедобные грибы » Рабочая формула для дифференциала функции. Дифференциалы - это что такое? Как найти дифференциал функции? Функции, заданные параметрически, их дифференцирование

Рабочая формула для дифференциала функции. Дифференциалы - это что такое? Как найти дифференциал функции? Функции, заданные параметрически, их дифференцирование

Обыкновенными дифференциальными уравнениями называются такие уравнения, которые содержат одну или несколько производных от искомой функции y=y(x)

F(x,y,y 1 ,…,y (n)) = 0, где x-независимая переменная.

Решением дифференциального уравнения называется функция , которая после её подстановки в уравнение превращает его в торжество.

Некоторые методы решения известны по курсу дифференциальных уравнений. Для ряда уравнений первого порядка (с разделяющимися переменных однородных, линейных и др) удается получить решение в виде формул путем аналитических преобразований.

В большинстве случаев для решения дифференциальных уравнений используются приближенные методы, которые можно разделить на две группы:

1)аналитические методы, дающие решение в виде аналитического выражения;

2)численные методы, дающие приближенное решение в виде таблицы.

Рассмотрим перечисленные методы в виде следующих примеров.

8.1 Метод последовательного дифференцирования.

Рассмотрим уравнение:

с начальными условиями , где – заданные числа.

Предположим, что искомое решение y=f(x) может быть решено в ряд Тейлора по степеням разности (x-x 0):

2 n +….

Начальные условия (8.2) дают нам значения y (k) (x 0) при k=0,1,2,...,(n-1). Значения y (n) (x 0) найдем из уравнения (8.1), подставляя (x-x 0) и используя начальные условия (8.2):

y (n) (x 0) = f(x 0 ,y 0 ,y " 0 ,...,y 0 (n-1))

Значения y (n+1) (x 0), y (n+2) (x 0)... последовательно определяются дифференцированием уравнение (8.1) и подстановкой x=x 0 , y (k) (x 0)=y 0k (k – 0,1,2).

ПРИМЕР: Найти первые семь членов разложения в степенной ряд решения y=y(x) уравнения y "" +0,1(y ") 2 +(1+0,1x)y=0 с начальными условиями y(0)=1; y " (0)=2.

РЕШЕНИЕ: Решение уравнения ищем в виде ряда:

y(x)=y(0)+y"(0)x/1!+y""(0)x 2 /2!+...+y (n) (0)x n /n!...

Из начальных условий имеем y(0)=1, y " (0)=2. Для определения y "" (0) разрешим данное уравнение относительно y"":

y""(0)= – 0,1(y ") 2 – (1+0,1x)y (8.3)

Используя начальные условия, получим

y""(0)= –0,1*4 – 1*1= –1,4

Дифференцируя по x левую и правую части уравнения (8.3)

y"""= – 0,2y"y"" – 0,1(xy"+y) – y",

y (4) = – 0,2(y"y"""+y"" 2) – 0,1(xy""+2y") – y"",

y (5) = – 0,2(y"y (4) +3y""y""") – 0,1(xy"""+3y"") – y""",

y (6) = – 0,2(y"y (5) +4y""y (4) +3y""" 2) – 0,1(xy (4) +4y""" – y (4))

Подставляя начальные условия и значение y""(0), находим y"""(0)= – 1,54;

y (4) (0)= – 1,224; y (5) (0)=0,1768; y (6) (0)= – 0,7308. Таким образом, искомое приближенное решение запишется в виде: y(x) ≈ 1 + 2x – 0,7x 2 – 0,2567x 3 + 0,051x 4 + 0,00147x 5 – 0,00101x 6 .

8.2 Метод эйлера

Простейшими из численных методов решения дифференциальных уравнений является метод Эйлера, который основан на замене искомой функции многочленом первой степени, т.е. линейной экстраполяцией. Речь идет о нахождении значений функции в соседних точках аргумента x не между ними.

Выберем шаг h малым, чтобы для всех x между x 0 и x 1 =x 0 +h значение функции y мало отличалось от линейной функции. Тогда на указанном интервале y = y 0 + (x – x 0)y" = y 0 + (x –

Продолжая таким же способом определять значения функции, убеждаемся, что метод Эйлера представляется в виде последовательного выполнения формул:

∆y k = y" k h

y k+1 = y k + ∆y k

ПРИМЕР

Решим методом Эйлера уравнения y" = x – y с начальным условием х 0 =0, у 0 =0 на отрезке с шагом h=0,1.

Вычисления приведены в таблице.

Первая строка в столбцах 1 и 2 заполнена по начальным данным. Затем вычисляется у" по заданному уравнению (в столбце 4), затем ∆y = y"h – в столбце (4).

Столбец (5) содержит таблицу значений точного решения заданного уравнения.

Из таблицы видно что при х=1 относительная ошибка метода Эйлера составляет

δ=0,37 - 0,35/0,37*100%≈5,4%

УТОЧНЕННЫЙ МЕТОД ЭЙЛЕРА

При том же объеме вычислительной работы дает более высокую точность.

Ранее мы считали подынтегральную функцию постоянной, равной её значению f(x k ,y k) на левом конце участка. Более точное значение получится если полагать f(x,y(x)) равной значению в центре участка. Для этого надо брать двойной участок (x k-1 ,x k+1), заменив формулу

y k+1 =y k +∆y k на y k+1 =y k-1 +2hy" k (8.5)

Эта формула и выражает уточненный метод Эйлера. Но в этом случае надо придерживать следующей последовательности действий:

ПРИМЕР Для сравнения рассмотрим то же уравнение y" = x – y с начальными условиями x 0 =0, y 0 =0. Уточненный метод, как видно из таблицы дает более высокую точность относительная погрешность при х=1, у=0,370, а у точн 0,368.

Являясь неразрывно связанными между собой, оба они уже несколько столетий активно используются при решении практически всех задач, которые возникали в процессе научно-технической деятельности человека.

Возникновение понятия о дифференциале

Впервые разъяснил, что такое дифференциал, один из создателей (наряду с Исааком Ньютоном) дифференциального исчисления знаменитый немецкий математик Готфрид Вильгельм Лейбниц. До этого математиками 17 ст. использовалось весьма нечеткое и расплывчатое представление о некоторой бесконечно малой «неделимой» части любой известной функции, представлявшей очень малую постоянную величину, но не равную нулю, меньше которой значения функции быть просто не могут. Отсюда был всего один шаг до введения представления о бесконечно малых приращениях аргументов функций и соответствующих им приращениях самих функций, выражаемых через производные последних. И этот шаг был сделан практически одновременно двумя вышеупомянутыми великими учеными.

Исходя из необходимости решения насущных практических задач механики, которые ставила перед наукой бурно развивающаяся промышленность и техника, Ньютон и Лейбниц создали общие способы нахождения скорости изменения функций (прежде всего применительно к механической скорости движения тела по известной траектории), что привело к введению таких понятий, как производная и дифференциал функции, а также нашли алгоритм решения обратной задачи, как по известной (переменной) скорости найти пройденный путь, что привело к появлению понятия интеграла.

В трудах Лейбница и Ньютона впервые появилось представление о том, что дифференциалы - это пропорциональные приращениям аргументов Δх основные части приращений функций Δу, которые могут быть с успехом применены для вычисления значений последних. Иначе говоря, ими было открыто, что приращение функции может быть в любой точке (внутри области ее определения) выражено через ее производную как Δу = y"(x) Δх + αΔх, где α Δх - остаточный член, стремящийся к нулю при Δх→0, гораздо быстрее, чем само Δх.

Согласно основоположникам матанализа, дифференциалы - это как раз и есть первые члены в выражениях приращений любых функций. Еще не обладая четко сформулированным понятием предела последовательностей, они интуитивно поняли, что величина дифференциала стремится к производной функции при Δх→0 - Δу/Δх→ y"(x).

В отличие от Ньютона, который был прежде всего физиком, и рассматривал математический аппарат как вспомогательный инструмент исследования физических задач, Лейбниц уделял большее внимание самому этому инструментарию, включая и систему наглядных и понятных обозначений математических величин. Именно он предложил общепринятые обозначения дифференциалов функции dy = y"(x)dx, аргумента dx и производной функции в виде их отношения y"(x) = dy/dx.

Современное определение

Что такое дифференциал с точки зрения современной математики? Он тесно связан с понятием приращения переменной величины. Если переменная y принимает сначала значение y = y 1 , а затем y = y 2 , то разность y 2 ─ y 1 называется приращением величины y.

Приращение может быть положительным. отрицательным и равным нулю. Слово «приращение» обозначается Δ, запись Δу (читается «дельта игрек») обозначает приращение величины y. так что Δу = y 2 ─ y 1 .

Если величину Δу произвольной функции y = f (x) возможно представить в виде Δу = A Δх + α, где у A нет зависимости от Δх, т. е. A = const при данном х, а слагаемое α при Δх→0 стремится к нему же еще быстрее, чем само Δх, тогда первый («главный») член, пропорциональный Δх, и является для y = f (x) дифференциалом, обозначаемымdy или df(x) (читается «дэ игрек», «дэ эф от икс»). Поэтому дифференциалы - это «главные» линейные относительно Δх составляющие приращений функций.

Механическое истолкование

Пусть s = f (t) - расстояние прямолинейно движущейся от начального положения (t - время пребывания в пути). Приращение Δs - это путь точки за интервал времени Δt, а дифференциал ds = f" (t) Δt - это путь, который точка прошла бы за то же время Δt, если бы она сохранила скорость f"(t), достигнутую к моменту t. При бесконечно малом Δt воображаемый путь ds отличается от истинного Δs на бесконечно малую величину, имеющую высший порядок относительно Δt. Если скорость в момент t не равна нулю, то ds дает приближенную величину малого смещения точки.

Геометрическая интерпретация

Пусть линия L является графиком y = f (x). Тогда Δ х= MQ, Δу = QM" (см. рисунок ниже). Касательная MN разбивает отрезок Δу на две части, QN и NM". Первая пропорциональна Δх и равна QN = MQ∙tg (угла QMN) = Δх f "(x), т. е QN есть дифференциал dy.

Вторая часть NM"дает разность Δу ─ dy, при Δх→0 длина NM" уменьшается еще быстрее, чем приращение аргумента, т.е у нее порядок малости выше, чем у Δх. В рассматриваемом случае, при f "(x) ≠ 0 (касательная не параллельна ОХ), отрезки QM"и QN эквивалентны; иными словами NM" уменьшается быстрее (порядок малости ее выше), чем полное приращение Δу = QM". Это видно на рисунке (с приближением M"к М отрезок NM"составляет все меньший процент отрезка QM").

Итак, графически дифференциал произвольной функции равен величине приращения ординаты ее касательной.

Производная и дифференциал

Коэффициент A в первом слагаемом выражения приращения функции равен величине ее производной f "(x). Таким образом, имеет место следующее соотношение - dy = f "(x)Δх, или же df (x) = f "(x)Δх.

Известно, что приращение независимого аргумента равно его дифференциалу Δх = dx. Соответственно, можно написать: f "(x) dx = dy.

Нахождение (иногда говорят, «решение») дифференциалов выполняется по тем же правилам, что и для производных. Перечень их приведен ниже.

Что более универсально: приращение аргумента или его дифференциал

Здесь необходимо сделать некоторые пояснения. Представление величиной f "(x)Δх дифференциала возможно при рассмотрении х в качестве аргумента. Но функция может быть сложной, в которой х может быть функцией некоторого аргумента t. Тогда представление дифференциала выражением f "(x)Δх, как правило, невозможно; кроме случая линейной зависимости х = at + b.

Что же касается формулы f "(x)dx= dy, то и в случае независимого аргумента х (тогда dx = Δх), и в случае параметрической зависимости х от t, она представляет дифференциал.

Например, выражение 2 x Δх представляет для y = x 2 ее дифференциал, когда х есть аргумент. Положим теперь х= t 2 и будем считать t аргументом. Тогда y = x 2 = t 4 .

Это выражение не пропорционально Δt и потому теперь 2xΔх не является дифференциалом. Его можно найти из уравнения y = x 2 = t 4 . Он оказывается равен dy=4t 3 Δt.

Если же взять выражение 2xdx, то оно представляет дифференциал y = x 2 при любом аргументе t. Действительно, при х= t 2 получим dx = 2tΔt.

Значит 2xdx = 2t 2 2tΔt = 4t 3 Δt, т. е. выражения дифференциалов, записанные через две разные переменные, совпали.

Замена приращений дифференциалами

Если f "(x) ≠ 0, то Δу и dy эквивалентны (при Δх→0); при f "(x) = 0 (что означает и dy = 0), они не эквивалентны.

Например, если y = x 2 , то Δу = (x + Δх) 2 ─ x 2 = 2xΔх + Δх 2 , а dy=2xΔх. Если х=3, то имеем Δу = 6Δх + Δх 2 и dy = 6Δх, которые эквивалентны вследствие Δх 2 →0, при х=0 величины Δу = Δх 2 и dy=0 не эквивалентны.

Этот факт, вместе с простой структурой дифференциала (т. е. линейности по отношению к Δх), часто используется в приближенных вычислениях, в предположении, что Δу ≈ dy для малых Δх. Найти дифференциал функции, как правило, легче, чем вычислить точное значение приращения.

Например, имеем металлический куб с ребром х=10,00 см. При нагревании ребро удлинилось на Δх = 0,001 см. Насколько увеличился объем V куба? Имеем V = х 2 , так что dV = 3x 2 Δх = 3∙10 2 ∙0/01 = 3 (см 3). Увеличение объема ΔV эквивалентно дифференциалу dV, так что ΔV = 3 см 3 . Полное вычисление дало бы ΔV =10,01 3 ─ 10 3 = 3,003001. Но в этом результате все цифры, кроме первой ненадежны; значит, все равно, нужно округлить его до 3 см 3 .

Очевидно, что такой подход является полезным, только если возможно оценить величину привносимой при этом ошибки.

Дифференциал функции: примеры

Попробуем найти дифференциал функции y = x 3 , не находя производной. Дадим аргументу приращение и определим Δу.

Δу = (Δх + x) 3 ─ x 3 = 3x 2 Δх + (3xΔх 2 + Δх 3).

Здесь коэффициент A= 3x 2 не зависит от Δх, так что первый член пропорционален Δх, другой же член 3xΔх 2 + Δх 3 при Δх→0 уменьшается быстрее, чем приращение аргумента. Стало быть, член 3x 2 Δх есть дифференциал y = x 3:

dy=3x 2 Δх=3x 2 dx или же d(x 3) = 3x 2 dx.

При этом d(x 3) / dx = 3x 2 .

Найдем теперь dy функции y = 1/x через ее производную. Тогда d(1/x) / dx = ─1/х 2 . Поэтому dy = ─ Δх/х 2 .

Дифференциалы основных алгебраических функций приведены ниже.

Приближенные вычисления с применением дифференциала

Вычислить функцию f (x), а также ее производную f "(x) при x=a часто нетрудно, а вот сделать то же самое в окрестности точки x=a бывает нелегко. Тогда на помощь приходит приближенное выражение

f(a + Δх) ≈ f "(a)Δх + f(a).

Оно дает приближенное значение функции при малых приращениях Δх через ее дифференциал f "(a)Δх.

Следовательно, данная формула дает приближенное выражение для функции в конечной точке некоторого участка длиной Δх в виде суммы ее значения в начальной точке этого участка (x=a) и дифференциала в той же начальной точке. Погрешность такого способа определения значения функции иллюстрирует рисунок ниже.

Однако известно и точное выражение значения функции для x=a+Δх, даваемое формулой конечных приращений (или, иначе, формулой Лагранжа)

f(a+ Δх) ≈ f "(ξ) Δх + f(a),

где точка x = a+ ξ находится на отрезке от x = a до x = a + Δх, хотя точное положение ее неизвестно. Точная формула позволяет оценивать погрешность приближенной формулы. Если же в формуле Лагранжа положить ξ = Δх /2, то хотя она и перестает быть точной, но дает, как правило, гораздо лучшее приближение, чем исходное выражение через дифференциал.

Оценка погрешности формул при помощи применения дифференциала

В принципе неточны, и привносят в данные измерений, соответствующие ошибки. Их характеризуют предельной или, короче, предельной погрешностью - положительным числом, заведомо превышающим эту ошибку по абсолютной величине (или в крайнем случае равным ей). Предельной называют частное от ее деления на абсолютное значение измеренной величины.

Пусть точная формула y= f (x) использована для вычисляения функции y, но значение x есть результат измерения и поэтому привносит в y ошибку. Тогда, чтобы найти предельную абсолютную погрешность │‌‌Δу│функции y, используют формулу

│‌‌Δу│≈│‌‌dy│=│ f "(x)││Δх│,

где │Δх│является предельной погрешностью аргумента. Величину │‌‌Δу│ следует округлить в сторону увеличения, т.к. неточной является сама замена вычисления приращения на вычисление дифференциала.

ЛЕКЦИЯ 10. ДИФФЕРЕНЦИАЛ ФУНКЦИИ. ТЕОРЕМЫ ФЕРМА, РОЛЛЯ, ЛАГРАНЖА И КОШИ.

1. Дифференциал функции

1.1. Определение дифференциала функции

С понятием производной теснейшим образом связано другое фундаментальное понятие математического анализа – дифференциал функции.

Определение 1. Функция y = f (x), определенная в некоторой окрестности точки x , называется дифференцируемой в точке x , если ее приращение в этой точке

y = f (x + x) − f (x)

имеет вид

y = A · x + α(Δx) · x,

где A – постоянная, а функция α(Δx) → 0 при x → 0.

Пусть y = f (x) – дифференцируемая функция, тогда дадим следующее определение.

Определение 2. Главная линейная

часть A · x

приращения

функции f (x)

называется дифференциалом функции в точке x и обозначается dy.

Таким образом,

y = dy + α(Δx) · x.

Замечание 1. Величина dy =

x называется

главной линейной частью

приращения y в связи с тем, что другая часть приращения α(Δx) ·

x при малых

x становится гораздо меньше A ·

Утверждение 1. Для того чтобы функция y = f (x) была дифференцируемой в точке x необходимо и достаточно, чтобы она имела в этой точке производную.

Доказательство. Необходимость. Пусть функция f (x) дифференцируема в точке

x + α(Δx) · x, при

x → 0. Тогда

A + lim α(Δx) = A.

Поэтому производная f ′ (x) существует и равна A.

Достаточность. Пусть существует

f ′ (x), т. е. существует предел lim

F ′ (x).

F ′ (x) + α(Δx),

y = f ′ (x)Δx + α(Δx) · x.

Последнее равенство означает дифференцируемость функции y = f (x).

1.2. Геометрический смысл дифференциала

Пусть l касательная к графику функции y = f (x) в точке M (x, f (x)) (рис. 1). Покажем, что dy величина отрезка P Q. Действительно,

dy = f ′ (x)Δx = tg α x =

" "l

"" " "

" α

Итак, дифференциал dy функции f (x) в точке x равен приращению ординаты касательной l в этой точке.

1.3. Инвариантность формы дифференциала

Если x независимая переменная, то

dy = f ′ (x)dx.

Допустим, что x = ϕ(t), где t независимая переменная, y = f (ϕ(t)). Тогда

dy = (f (ϕ(t))′ dt = f′ (x)ϕ′ (t)dt = f′ (x)dx (ϕ′ (t)dt = dx).

Итак, форма дифференциала не изменилась, несмотря на то, что x не является независимой переменной. Это свойство и называется инвариантностью формы дифференциала.

1.4. Применение дифференциала в приближенных вычислениях

Из формулы y = dy + α(Δx) · x, отбрасывая α(Δx) · x, видно, что при малых

y ≈ dy = f ′ (x)Δx.

Отсюда получим

f (x + x) − f (x) ≈ f ′ (x)Δx,

f (x + x) ≈ f (x) + f ′ (x)Δx. (1) Формула (1) и используется в приближенных вычислениях.

1.5. Дифференциалы высших порядков

По определению, вторым дифференциалом от функции y = f (x) в точке x называется дифференциал от первого дифференциала в этой точке, который обозначается

d2 y = d(dy).

Вычислим второй дифференциал:

d2 y = d(dy) = d(f′ (x)dx) = (f′ (x)dx)′ dx = (f′′ (x)dx)dx = f′′ (x)dx2

(при вычислении производной (f ′ (x)dx)′ учтено, что величина dx не зависит от x и, следовательно, при дифференцировании является постоянной).

Вообще, дифференциалом порядка n функции y = f (x) называется первый

дифференциал

от дифференциала

этой функции, который

обозначается через

dn y = d(dn−1 y)

dn y = f(n) (x)dxn .

Найти дифференциал функции y = arctg x .

Решение. dy = (arctg x)′ · dx =

1+x2

Найти дифференциалы первого и второго порядков функции v = e2t .

Решение. dv = 2e2t dt , d2 v = 4e2t dt2 .

Сравнить приращение и дифференциал функции y = 2x3 + 5x2 .

Решение. Находим

5x2 =

10x)Δx + (6x + 5)Δx

dy = (6x2 + 10x)dx.

Разность между приращением

y и дифференциалом dy есть бесконечно малая высшего

порядка по сравнению с

x , равная (6x + 5)Δx2 + 2Δx3 .

Пример 4. Вычислить приближенное значение площади круга, радиус которого равен 3, 02 м.

Решение. Воспользуемся формулой S = πr2 . Полагая r = 3 , r = 0, 02 , имеем

S ≈ dS = 2πr · r = 2π · 3 · 0, 02 = 0, 12π.

Следовательно, приближенное значение площади круга составляет 9π + 0, 12π = 9, 12π ≈

28, 66 (м 2 ).

Пример 5. Вычислить приближенное значение arcsin 0, 51 c точностью до 0,001. Решение. Рассмотрим функцию y = arcsin x . Полагая x = 0, 5 , x = 0, 01 и

применяя формулу (1)

x) ≈ arcsin x + (arcsin x)′ ·

(arcsin x)′

≈ arcsin 0, 5 +

0, 011 = 0, 513.

1 − (0, 5)2

Пример 6. Вычислить приближенно √ 3

c точностью до 0,0001.

Решение. Рассмотрим функцию y = √ 3

и положим x = 8,

x = 0, 01. Аналогично

по формуле (1)

(√ 3 x)′ =

√3

√ x + x ≈√ 3 x + (√ 3 x)′ · x,

3√ 3 64

· 0, 01 = 2 + 3 · 4 · 0, 01 ≈ 2, 0008.

p 8, 01 ≈√ 8 +

2. Теоремы Ферма, Ролля, Лагранжа и Коши

Определение 3. Говорят, что функция y = f (x) имеет (или достигает) в точке α локальный максимум (минимум), если найдется такая окрестность U (α) точки α, что для всех x U (α) :

f (α) ≥ f (x) (f (α) ≤ f (x)).

Локальный максимум и локальный минимум объединяются общим названием

локальный экстремум.

Функция, график которой изображен на рис. 4, имеет локальный максимум в точках β, β1 и локальный минимум в точках α, α1 .

Утверждение 2. (Ферма) Пусть функция y = f (x) дифференцируема в точке α и имеет в этой точке локальный экстремум. Тогда f ′ (α) = 0.

Идея доказательства теоремы Ферма следующая. Пусть для определенности f (x) имеет в точке α локальный минимум. По определению f ′ (α) есть предел при x → 0 отношения

f (α + x) − f (α)

Но при достаточно малых (по абсолютной величине) x

f (α + x) − f (α) ≥ 0.

Следовательно, при таких

x получаем

Отсюда и следует, что

f ′ (α) = lim g(Δx) = 0.

Проведите полное доказательство самостоятельно.

Утверждение 3. (Ролля)

Если y = f (x) непрерывна на

Дифференцируема на

(a, b) и f (a) = f (b), то существует такая точка α (a, b),

что f ′ (α) = 0.

Доказательство. По свойству функций, непрерывных на отрезке, найдутся такие точки x1 , x2 , что

экстремум. По условию теоремы f (x) дифференцируема в точке α. По теореме Ферма f ′ (α) = 0. Теорема доказана.

Теорема Ролля имеет простой геометрический смысл (рис. 5): если крайние ординаты кривой y = f (x) равны, то на кривой y = f (x) найдется точка, в которой касательная к кривой параллельна оси Ox.

Доказательство. Заметим, что g(a) =6 g(b). Действительно, в противном случае для функции g(x) были бы выполнены все условия теоремы Ролля. Следовательно, нашлась бы такая точка β (a, b), что g′ (β) = 0. Но это противоречит условию теоремы.

Рассмотрим следующую вспомогательную функцию:

F (x) = f (x) − f (a) − f (b) − f (a) (g(x) − g(a)). g(b) − g(a)

Функция F (x) непрерывна на ,

дифференцируема на (a, b). Кроме того, очевидно,

что′

F (a) = F (b) = 0. Поэтому по теореме Ролля найдется такая точка α (a, b), что

F (α) = 0, т. е.

f ′ (α)

g′ (α) = 0.

− g(b)

Отсюда следует

f ′ (α)

g′ (α)

Теорема доказана.

Утверждение 5. (Лагранжа) Если y = f (x) непрерывна на , дифференцируема на (a, b), то найдется такое α (a, b), что

F ′ (α).

Доказательство. Теорема Лагранжа прямо следует из теоремы Коши при g(x) =

Геометрически теорема Лагранжа означает, что на кривой y = f (x) между точками

A и B найдется такая точка C, касательная в которой параллельна хорде AB. y

теорема Ролля на этом отрезке

выполняется. Значение c

определяем

уравнения

f ′ (x) = 2x − 6 = 0, т. е. c = 3.

найти точку

M, в которой

Пример 8. На дуге

AB кривой y = 2x − x

касательная параллельна хорде

Решение. Функция y = 2x −x

непрерывна и дифференцируема при всех значениях

x. По теореме Лагранжа между двумя значениями a = 1,

b = 3 существует значение

x = c, удовлетворяющее равенству y(b) − y(a) = (b − a) ·y′ (c), где y′ = 2 − 2x. Подставив соответствующие значения, получим

y(3) − y(1) = (3 − 1) · y′ (c),

(2 · 3 − 32 ) − (2 · 1 − 12 ) = (3 − 1) · (2 − 2c),

отсюда c = 2, y(2) = 0.

Таким образом, точка M имеет координаты (2; 0).

Пример 9. На дуге AB кривой, заданной параметрическими уравнениями

x = t2 , y = t3 , найти точку

M, в которой касательная параллельна хорде AB, если

точкам A и B соответствуют значения t = 1 и t = 3.

Решение. Угловой коэффициент хорды AB равен

А угловой коэффициент

касательной в точке M (при

t = c) равен

y′

(c)/x′

x′ = 2t,

y′ = 3t2 . Для

определения c по теореме Коши получаем уравнение

yt ′ (c)

xt ′ (c)

т. е. c = 13/6.

Найденное значение c удовлетворяет неравенству 1 < c < 3. Подставив значение t = c в параметрические уравнения кривой, получаем x = 169/36, y = 2197/216. Итак искомая точка M (169/36; 2197/216).

Если функция дифференцируема в точке, то её приращение можно представить в виде суммы двух слагаемых

. Эти слагаемые являются бесконечно малыми функциями при
.Первое слагаемое линейно относительно
,второе является бесконечно малой более высокого порядка, чем
.Действительно,

.

Таким образом второе слагаемое при
быстрее стремится к нулю и при нахождении приращения функции
главную роль играет первое слагаемое
или (так как
)
.

Определение . Главная часть приращения функции
в точке , линейная относительно
,называется дифференциалом функции в этой точке и обозначается dy или df (x )

. (2)

Таким образом, можно сделать вывод: дифференциал независимой переменной совпадает с её приращением, то есть
.

Соотношение (2) теперь принимает вид

(3)

Замечание . Формулу (3) для краткости часто записывают в виде

(4)

Геометрический смысл дифференциала

Рассмотрим график дифференцируемой функции
. Точки
ипринадлежат графику функции. В точкеМ проведена касательная К к графику функции, угол которой с положительным направлением оси
обозначим через
. Проведем прямыеMN параллельно оси Ox и
параллельно осиOy . Приращение функции равно длине отрезка
. Из прямоугольного треугольника
, в котором
, получим

Изложенные выше рассуждения позволяют сделать вывод:

Дифференциал функции
в точке изображается приращением ординаты касательной к графику этой функции в соответствующей её точке
.

Связь дифференциала с производной

Рассмотрим формулу (4)

.

Разделим обе части этого равенства на dx , тогда

.

Таким образом, производная функции равна отношению её дифференциала к дифференциалу независимой переменной .

Часто это отношение рассматривается просто как символ, обозначающий производную функцииу по аргументу х .

Удобными обозначениями производной также являются:

,
и так далее.

Употребляются также записи

,
,

особенно удобные, когда берется производная от сложного выражения.

2. Дифференциал суммы, произведения и частного.

Так как дифференциал получается из производной умножением её на дифференциал независимой переменной, то, зная производные основных элементарных функций, а также правила для отыскания производных, можно прийти к аналогичным правилам для отыскания дифференциалов.

1 0 . Дифференциал постоянной равен нулю

.

2 0 . Дифференциал алгебраической суммы конечного числа дифференцируемых функций равен алгебраической сумме дифференциалов этих функций

3 0 . Дифференциал произведения двух дифференцируемых функций равен сумме произведений первой функции на дифференциал второй и второй функции на дифференциал первой

.

Следствие . Постоянный множитель можно выносить за знак дифференциала

.

Пример . Найти дифференциал функции .

Решение.Запишем данную функцию в виде

,

тогда получим

.

4. Функции, заданные параметрически, их дифференцирование.

Определение . Функция
называется заданной параметрически, если обе переменныех и у определяются каждая в отдельности как однозначные функции от одной и той же вспомогательной переменной – параметра t :


где t изменяется в пределах
.

Замечание . Параметрическое задание функций широко применяется в теоретической механике, где параметр t обозначает время, а уравнения
представляют собой законы изменения проекций движущейся точки
на оси
и
.

Замечание . Приведем параметрические уравнения окружности и эллипса.

а) Окружность с центром в начале координат и радиусом r имеет параметрические уравнения:

где
.

б) Запишем параметрические уравнения для эллипса:

где
.

Исключив параметр t из параметрических уравнений рассматриваемых линий, можно прийти к их каноническим уравнениям.

Теорема . Если функция у от аргумента х задана параметрически уравнениями
, где
и
дифференцируемые по
t функции и
, то

.

Пример . Найти производную функции у от х , заданной параметрическими уравнениями.

Решение.
.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта