Главная » Съедобные грибы » Рассчитать среднюю арифметическую по способу моментов. Свойства средней арифметической

Рассчитать среднюю арифметическую по способу моментов. Свойства средней арифметической

Вариационные ряды

3. Методы вычисления средней арифметической (средней арифметической простой и взвешенной, по способу моментов)

Определяем средние величины:

Мода (Мо) =11, т.к. данная варианта встречается в вариационном ряду наиболее часто (р=6).

Медиана (Ме) - порядковый номер варианты занимающей срединное положение = 23, это место в вариационном ряду занимает варианта равная 11. Средняя арифметическая (М) позволяет наиболее полно охарактеризовать средний уровень изучаемого признака. Для вычисления средней арифметической используется два способа: среднеарифметический способ и способ моментов.

Если частота встречаемости каждой варианты в вариационном ряду равна 1, то рассчитывают среднюю арифметическую простую, используя среднеарифметический способ: М = .

Если частота встречаемости вариант в вариационном ряду отличается от 1, то рассчитывают среднюю арифметическую взвешенную, по среднеарифметическому способу:

По способу моментов: А - условная средняя,

М = A + =11 += 10.4 d=V-A, A=Mo=11

Если число вариант в вариационном ряду более 30, то строится сгруппированный ряд. Построение сгруппированного ряда:

1) определение Vmin и Vmax Vmin=3, Vmax=20;

2) определение количества групп (по таблице);

3) расчет интервала между группами i = 3;

4) определение начала и конца групп;

5) определение частоты вариант каждой группы (таблица 2).

Таблица 2

Методика построения сгруппированного ряда

Длительность

лечения в днях

n=45 p=480 p=30 2 p=766

Преимущество сгруппированного вариационного ряда заключается в том, что исследователь работает не с каждой вариантой, а только с вариантами, являющимися средними для каждой группы. Это позволяет в значительной степени облегчить расчеты средней.

Величина того или иного признака неодинакова у всех членов совокупности, несмотря на ее относительную однородность. Данную особенность статистической совокупности характеризует одно из групповых свойств генеральной совокупности - разнообразие признака. Например, возьмем группу мальчиков 12 лет и измерим их рост. После проведенных расчетов средний уровень данного признака составит 153 см. Но средняя характеризует общую меру изучаемого признака. Среди мальчиков данного возраста есть мальчики, рост которых составляет 165 см или 141 см. Чем больше мальчиков будут иметь рост отличный от 153 см, тем больше будет разнообразие этого признака в статистической совокупности.

Статистика позволяет охарактеризовать данное свойство следующим критериями:

лимит (lim),

амплитуда (Amp),

среднеквадратическое отклонение (у),

коэффициент вариации (Сv).

Лимит (lim) определяется крайними значениями вариант в вариационном ряду:

lim=V min /V max

Амплитуда (Amp) - разность крайних вариант:

Amp=V max -V min

Данные величины учитывают только разнообразие крайних вариант и не позволяют получить информацию о разнообразии признака в совокупности с учетом ее внутренней структуры. Поэтому данными критериями можно пользоваться для приближенной характеристики разнообразия, особенно при малом числе наблюдений (n<30).

вариационный ряд медицинская статистика

Вариационные ряды

Наиболее полную характеристику разнообразию признака в совокупности дает среднеквадратическое отклонение (у). Существует два способа расчета среднеквадратического отклонения: среднеарифметический и способ моментов...

Вариационные ряды

Для сравнения разнообразия двух средних величин, выраженных в различных единицах измерения или имеющих различия в величине признаков, используется относительная величина, коэффициент вариации (CV), выпаженный в процентах: Cv = * 100%, Если CV>20%...

Вирус иммунодефицита

Мы видим стремительное распространение ВИЧ в России и других странах бывшего восточного блока. В Румынии, перед революцией 1990 года, каждый десятый ребенок в детских домах был ВИЧ инфицированным. После революции ситуация не изменилась...

Культивування Clostridium tetani для одержання правцевого анатоксину

По відношенню до кисню бактерія C. tetani є облігатним анаеробом, тому можливим методом культивування є глибинне культивування, відповідно, відпадає необхідність у підготовці аераційного повітря, проте необхідно подавати інертний газ...

Лекарственные растения и лекарственное растительное сырье, применяемое при лечении гастрита

Острый простой гастрит встречается особенно часто. Причинами развития острого простого (катарального) гастрита являются пренебрежительное отношение к питанию, употребление большого количества крепких алкогольных напитков, в том числе пива...

Методика подбора зубных паст для населения с учетом стоматологического статуса и общего состояния здоровья

Проблема здоров’я у валеології

Процес біосинтезу аміноглікозидного антибіотика тобраміцину

Вибір способу проведення біосинтезу відіграє важливу роль в процесі росту мікроорганізмів. Наявні різні види культивування: глибинне, поверхневе, періодичне, безперервне ...

Роль фельдшера в диагностике, лечении и профилактике столбняка. Противоэпидемические мероприятия в очаге инфекционных заболеваний. Динамика и сравнительный анализ заболеваний столбняка в Сальском районе за период 2013-2014 гг.

Лабораторная диагностика при сгущении крови из-за выраженного и постоянного чрезмерного потоотделения, а также при вторичных бактериальных осложнениях возможна нейтрофилия...

Сестринский процесс при остром гастрите

· Гастроскопия (эндоскопическое исследование, которое проводится с помощью специального оптического прибора, эндоскопа...

Создание прибора для исследования биомеханики дыхания в условиях космического полета

В разработанном приборе предусмотрено 2 режима измерений и вычислений: первый режим -- измерение импеданса всей системы дыхания Zrs во время спокойного- дыхания в - течение 75 с (по 15 с на каждую из пяти частот); второй режим--измерение импеданса...

Стабильная стенокардия

Прогноз Прогноз для выздоровления неблагоприятный, т.к. изменения, произошедшие в сердечно-сосудистой системе необратимы, а патологический процесс быстропрогрессирующий...

Тромбоз и облитерация мозговых сосудов

При ишемии мозга либо сам больной, либо лицо его сопровождающее расскажет, что уже за несколько дней до заболевания больной стал отмечать резкое головокружение, помутнение в глазах, головную боль и общую слабость...

Фармакогностический анализ сырья лекарственных растений, содержащих эфирные масла

1. Методы макро- и микроскопического анализа сырья Макроскопический анализ состоит в определении морфологических (внешних) признаков испытуемого сырья визуально -- невооруженным глазом или с помощью лупы (х 10)...

Челюстно-лицевые переломы

Поскольку такие переломы можно разделить на несколько категорий в зависимости от их анатомической локализации, каждый тип перелома будет рассматриваться отдельно. Очевидно...

4. Четные и нечетные.

В чётных вариационных рядах сумма частот или общее число наблюдений выражено чётным числом, в нечётных ― нечётным.

5. Симметричные и асимметричные.

В симметричном вариационном ряду все виды средних величин совпадают или очень близки (мода, медиана, среднее арифметическое).

В зависимости от характера изучаемых явлений, от конкретных задач и целей статистического исследования, а также от содержания исходного материала, в санитарной статистике применяются следующие виды средних величин:

· структурные средние (мода, медиана);

· средняя арифметическая;

· средняя гармоническая;

· средняя геометрическая;

· средняя прогрессивная.

Мода (М о) - величина варьирующего признака, которая более часто встречается в изучаемой совокупности т.е. варианта, соответствующая наибольшей частоте. Находят ее непосредственно по структуре вариационного ряда, не прибегая к каким-либо вычислениям. Она обычно является величиной очень близкой к средней арифметической и весьма удобна в практической деятельности.

Медиана (М е) - делящая вариационный ряд (ранжированный, т.е. значения вариант располагаются в порядке возрастания или убывания) на две равные половины. Медиана вычисляется при помощи так называемого нечетного ряда, который получают путем последовательного суммирования частот. Если сумма частот соответствует четному числу, тогда за медиану условно принимают среднюю арифметическую из двух средних значений.

Мода и медиана применяются в случае незамкнутой совокупности, т.е. когда наибольшая или наименьшая варианты не имеют точной количественной характеристики (например, до 15 лет, 50 и старше и т.п.). В этом случае среднюю арифметическую (параметрические характеристики) рассчитать нельзя.

Средня я арифметическая - самая распространенная величина. Средняя арифметическая обозначается чаще через М .

Различают среднюю арифметическую простую и взвешенную.

Средняя арифметическая простая вычисляется:

― в тех случаях, когда совокупность представлена простым перечнем знаний признака у каждой единицы;

― если число повторений каждой варианты нет возможности определить;

― если числа повторений каждой варианты близки между собой.

Средняя арифметическая простая исчисляется по формуле:

где V - индивидуальные значения признака; n - число индивидуальных значений; - знак суммирования.

Таким образом, простая средняя представляет собой отношение суммы вариант к числу наблюдений.

Пример: определить среднюю длительность пребывания на койке 10 больных пневмонией:

16 дней - 1 больной; 17–1; 18–1; 19–1; 20–1; 21–1; 22–1; 23–1; 26–1; 31–1.

койко-дня.

Средняя арифметическая взвешенная исчисляется в тех случаях, когда индивидуальные значения признака повторяются. Ее можно вычислять двояким способом:

1. Непосредственным (среднеарифметическим или прямым способом) по формуле:

где P - частота (число случаев) наблюдений каждой варианты.

Таким образом, средняя арифметическая взвешенная представляет собой отношение суммы произведений вариант на частоты к числу наблюдений.

2. С помощью вычисления отклонений от условной средней (по способу моментов).

Основой для вычисления взвешенной средней арифметической является:

― сгруппированный материал по вариантам количественного признака;

― все варианты должны располагаться в порядке возрастания или убывания величины признака (ранжированный ряд).

Для вычисления по способу моментов обязательным условием является одинаковый размер всех интервалов.

По способу моментов средняя арифметическая вычисляется по формуле:

,

где М о - условная средняя, за которую чаще принимают величину признака, соответствующую наибольшей частоте, т.е. которая чаще повторяется (Мода).

i - величина интервала.

a - условное отклонение от условий средней, представляющее собой последовательный ряд чисел (1, 2 и т.д.) со знаком + для вариант больших условной средней и со знаком–(–1, –2 и т.д.) для вариант, которые ниже условной средней. Условное же отклонение от варианты, принятой за условную среднюю равно 0.

P - частоты.

Общее число наблюдений или n.

Пример: определить средний рост мальчиков 8 лет непосредственным способом (таблица1).

Т а б л и ц а 1

Рост в см

мальчиков P

Центральная

варианта V

Центральная варианта ― середина интервала ― определяется как полу сумма начальных значений двух соседних групп:

; и т.д.

Произведение VP получают путем умножения центральных вариант на частоты ; и т.д. Затем полученные произведения складывают и получают , которую делят на число наблюдений (100) и получают среднюю арифметическую взвешенную.

см.

Эту же задачу решим по способу моментов, для чего составляется следующая таблица 2:

Т а б л и ц а 2

Рост в см (V)

мальчиков P

В качестве М о принимаем 122, т.к. из 100 наблюдений у 33 человек рост был 122см. Находим условные отклонения (a) от условной средней в соответствии с вышесказанным. Затем получаем произведение условных отклонений на частоты (aP) и суммируем полученные величины (). В итоге получится 17. Наконец, данные подставляем в формулу.

Средняя арифметическая обладает рядом математических свойств, которые можно использовать, чтобы упростить ее расчеты. Основные свойства средней арифметической такие.

1. Средняя арифметическая постоянной величины равна этой постоянной:

2. Сумма квадратов отклонений от средней арифметической всегда меньше, чем сумма квадратов отклонений от любой другой величины:

X (х X)2 / < (х-А)2 /.

3. Величина средней не изменится, если частоты ряда распределения заменить частостями.

4. Сумма отклонений отдельных значений признака от средней, перемножених на веса (частоты), равна нулю:

£ (х - х) = х - пх = 0 - для простой средней;

£ (х - х)/ = £ х/ - х£ / = 0 - для взвешенной средней.

5. Если все значения признаков увеличить или уменьшить в одинаковое число раз (к), то средняя (х) увеличится или уменьшится во столько же раз:

/ и у_/ ь-

то есть средняя уменьшилась в (к) раз.

6. Если из всех значений вариант (х) отнять или добавить к ним ту же постоянную величину (х0), то средняя (х) уменьшится или увеличится на такую же величину (хо):

В, (х-хо)/ = 2Х В, хо/ = -_ хо В, / = -_ И/ И/ И/ х И/ х°"

то есть средняя уменьшилась на постоянное число х0.

7. Если частоты (веса) разделить или умножить на какое-либо постоянное число ), то средняя не изменится:

Вхк/ кУх/ Ух/ -2Ж / £ /

то есть значение средней не изменилось.

8. Произведение средней на сумму частот равно сумме произведений вариант на частоты:

XI / = £X/.

Это равенство вытекает из определяющей свойства средней арифметической, согласно которой, сравнивая варианты, предоставляя им одинаковые значения путем замены их средним значением, неизменным остается общий объем признака.

9. Общая средняя равна средней из частных средних, взвешенных по численности соответствующих частей (групп) совокупности:

Изложенные выше свойства средней арифметической позволяют упростить ее расчеты: можно из всех значений признака вычесть произвольную постоянную величину, полученную разницу разделить на величину интервала, а затем вычисленную среднюю умножить на величину интервала и добавить произвольную постоянную величину, которая принята за начало отсчета.

Формула вычисления средней арифметической упрощенным способом имеет такой вид:

где х = --уменьшена средняя арифметическая;

ф

х= х к° - отклонения в интервалах; х0 - начало отсчета;

к - величина интервала.

Средняя х с значение - называется моментом первого порядка, а к способ вычисления средней способом моментов или способом отсчета от условного начала.

За условное начало отсчета (х0) обычно принимают одно из значений варіючої признаки, которое, как правило, находится в центре ряда распределения или такое, которое имеет наибольшую частоту.

Рассмотрим пример определения средней арифметической в интервальном ряду распределения способом моментов, используя данные о распределении 100 хозяйств по надою молока на корову (табл. 4.7).

За условное начало отсчета (х0) возьмем одно из значений интервала, расположенного в центре ряда распределения и которое имеет наибольшую частоту. В нашей задаче таким значением х0 = 33 ц. Величина интервала к = 2 ц.

По данным таблицы определим условную (уменьшенную) среднюю арифметическую:

Таблица 4.7. Данные для расчета средней арифметической в интервальном ряду распределения способом моментов

Чтобы получить действительную среднюю продуктивность коров, необходимо внести соответствующие поправки:

Таким образом получен такой же результат как и по данным табл. 4.2. Результаты расчетов средней арифметической двумя способами полностью совпали.

Методы вычисления средней арифметической (средней арифметической простой и взвешенной, по способу моментов)

Определяем средние величины:

Мода (Мо) =11, т.к. данная варианта встречается в вариационном ряду наиболее часто (р=6).

Медиана (Ме) - порядковый номер варианты занимающей срединное положение = 23, это место в вариационном ряду занимает варианта равная 11. Средняя арифметическая (М) позволяет наиболее полно охарактеризовать средний уровень изучаемого признака. Для вычисления средней арифметической используется два способа: среднеарифметический способ и способ моментов.

Если частота встречаемости каждой варианты в вариационном ряду равна 1, то рассчитывают среднюю арифметическую простую, используя среднеарифметический способ: М = .

Если частота встречаемости вариант в вариационном ряду отличается от 1, то рассчитывают среднюю арифметическую взвешенную, по среднеарифметическому способу:

По способу моментов: А - условная средняя,

М = A + =11 += 10.4 d=V-A, A=Mo=11

Если число вариант в вариационном ряду более 30, то строится сгруппированный ряд. Построение сгруппированного ряда:

1) определение Vmin и Vmax Vmin=3, Vmax=20;

2) определение количества групп (по таблице);

3) расчет интервала между группами i = 3;

4) определение начала и конца групп;

5) определение частоты вариант каждой группы (таблица 2).

Таблица 2

Методика построения сгруппированного ряда

Длительность

лечения в днях

n=45 p=480 p=30 2 p=766

Преимущество сгруппированного вариационного ряда заключается в том, что исследователь работает не с каждой вариантой, а только с вариантами, являющимися средними для каждой группы. Это позволяет в значительной степени облегчить расчеты средней.

Величина того или иного признака неодинакова у всех членов совокупности, несмотря на ее относительную однородность. Данную особенность статистической совокупности характеризует одно из групповых свойств генеральной совокупности - разнообразие признака . Например, возьмем группу мальчиков 12 лет и измерим их рост. После проведенных расчетов средний уровень данного признака составит 153 см. Но средняя характеризует общую меру изучаемого признака. Среди мальчиков данного возраста есть мальчики, рост которых составляет 165 см или 141 см. Чем больше мальчиков будут иметь рост отличный от 153 см, тем больше будет разнообразие этого признака в статистической совокупности.

Статистика позволяет охарактеризовать данное свойство следующим критериями:

лимит (lim),

амплитуда (Amp),

среднеквадратическое отклонение (у),

коэффициент вариации (Сv).

Лимит (lim) определяется крайними значениями вариант в вариационном ряду:

lim=V min /V max

Амплитуда (Amp) - разность крайних вариант:

Amp=V max -V min

Данные величины учитывают только разнообразие крайних вариант и не позволяют получить информацию о разнообразии признака в совокупности с учетом ее внутренней структуры. Поэтому данными критериями можно пользоваться для приближенной характеристики разнообразия, особенно при малом числе наблюдений (n<30).

вариационный ряд медицинская статистика

Средняя арифметическая обладает некоторыми свойствами, которые определяют ее широкое применение в экономических расчетах и в практике статистического исследования.

Свойство 1. Средняя арифметическая постоянной величины равна этой постоянной:

Свойство 2 (нулевое). Алгебраическая сумма линейных отклонений (разностей) индивидуальных значений признака от средней арифметической равна нулю:

для первичного ряда и для сгруппированных данных (d i - линейные (индивидуальные) отклонения от средней, т.е. x i - ).

Это свойство можно сформулировать следующим образом: сумма положительных отклонений от средней равна сумме отрицательных отклонений.

Логически оно означает, что все отклонения от средней в ту и в другую сторону, обусловленные случайными причинами, взаимно погашаются.

Свойство 3 (минимальное). Сумма квадратов отклонений индивидуальных значений признака от средней арифметической есть число минимальное:

что означает: сумма квадратов отклонений индивидуальных значений признака каждой единицы совокупности от средней арифметической всегда меньше суммы квадратов отклонений вариантов признака от любого значения (А), сколь угодно мало отличающегося от средней у выбранной единицы исследуемой совокупности.

Для сгруппированных данных имеем:

Минимальное и нулевое свойства средней арифметической применяются для проверки правильности расчета среднего уровня признака; при изучении закономерностей изменения уровней ряда динамики; для нахождения параметров уравнения регрессии при изучении корреляционной связи между признаками.

Рассмотренные свойства выражают сущностные черты средней арифметической. Существуют также расчетные (вычислительные) свойства средней арифметической, имеющие прикладное значение:

  • если значения признака каждой единицы совокупности (все усредняемые варианты) уменьшить или увеличить на одну и ту же величину А, то и со средней арифметической произойдут аналогичные изменения;
  • если значения признака каждой единицы совокупности разделить или умножить на какое-либо постоянное число А, то средняя арифметическая уменьшится или увеличится в А раз;
  • если вес (частоту) каждого значения признака разделить на какое-либо постоянное число А, то средняя арифметическая не изменится.

В настоящее время вычислительные свойства средней арифметической потеряли свою актуальность в связи с использованием ЭВМ при расчете обобщающих статистических показателей.



18.Упрощенный способ расчета средней арифметической .

Способ моментов

Часто мы сталкиваемся с расчетом средней арифметической упрощенным способом. В этом случае используются свойства средней величины. Метод упрощенного расчета называется способом моментов, либо способом отсчета от условного нуля.

Способ моментов предполагает следующие действия :

1) Если возможно, то уменьшаются веса.

2) Выбирается начало отсчета – условный нуль. Обычно выбирается с таким расчетом, чтобы выбранное значение признака было как можно ближе к середине распределения. Если распределение по своей форме близко к нормальному, но за начало отсчета выбирают признак, обладающий наибольшим весом.

3) Находятся отклонения вариантов от условного нуля.

4) Если эти отклонения содержат общий множитель, то рассчитанные отклонения делятся на этот множитель.

5) Находится среднее значение признака по следующей формуле

Пример :


до 70 -30 -3 -45
70-80 -20 -2 -34
80-90 -10 -1 -13
90-100
100-110
110-120
120-130
130-140
140 и более
Сумма -12

▲ 19 Мода и медиана и их использование в статистике.

Модой распределения называется такая величина изучаемого признака, которая в данной совокупности встречается наиболее часто, т.е. один из вариантов признака повторяется чаще, чем все другие. Мода - значение варьирующего признака, имеющего наибольшую частоту. Мода в интервальном ряду распределения с равными интервалами.
Mo=xMo+iMo*(fMo-f(Mo-1))/((fMo-f(Mo-1))+(fMo-f(Mo-1)) Мода в интервальном ряду с неравными интервалами.
100-120 10 0,5
120-140 30 1,5 <- Mo (мода)
140-180 40 1
180-220 20 0,5
Всего: 100
Для упорядоченного дискретного ряда распределения мода, являющаяся характеристикой вариационного ряда, определяется по частотам вариантов и соответствует варианту с наибольшей частотой.
Медиана – значение варьирующегося признака у той единицы совокупности, которая находится в середине рентированного ряда.
Медиана в дискретном ряду: 23 28 30 35 37 (30 медиана)
Медиана в интервальном ряду распределения: Me = xMe+iMe*(суммаf/2-fиск)/fиск
В дискретном ряду распределения мода определяется визуально. Главное свойство медианы в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины. Квартили представляют собой значение признака, делящее ранжированную совокупность на четыре равновеликие части. Вычисление квартилей аналогично вычислению медианы. Децили – это значение вариант, которые делят ранжированный ряд на десять равных частей: 1-й дециль делит совокупность в соотношении 1/10 к 9/10, 2-й дециль – в соотношении 2/10 к 8/10 и т. д. вычисляются децили по той же схеме, что и медиана, и квартили.

▲ 20 Причины, порождающие вариацию признаков, изучаемых статистикой. Необходимость изучения вариации.

18 Причины, порождающие вариацию признаков, изучаемых статистикой. Необходимость изучения вариации.
При изучении явлений и процессов общественной жизни статистика встречается с разнообразной вариацией (изменчивостью) признаков, характеризующих отдельные единицы совокупности. Величины признаков изменяются под действием различных факторов. Очевидно, что чем разнообразнее условия, влияющие на размер данного признака, тем больше его вариация. Например, размер заработной платы рабочих зависит от нескольких факторов: специальности, разряда, стажа работы, образования, состояния здоровья и т.д. Чем больше различия между значениями факторов, тем больше вариация в уровне заработной платы.
При характеристике колеблемости признака используют систему абсолютных и относительных показателей.
При изучении явлений и процессов общественной жизни статистика встречается с разнообразной вариацией (изменчивостью) признаков, характеризующих отдельные единицы совокупности.
Вариация - это различие в значениях, какого - либо признака у разных единиц данной совокупности в один и тот же момент времени. Величины признаков изменяются под действием различных факторов. И, следовательно, чем разнообразнее условия, влияющие на размер данного признака, тем больше его вариация. Исследование вариации в статистике имеет большое значение, т. к. помогает изучить сущность явления. Измерение вариации, выяснение ее причины, выявление влияния отдельных факторов дает важную информацию (продолжительность жизни, доходы и расходы населения и т. д.) для принятия научно-обоснованных управленческих решений.

▲ 21 Показатели вариации абсолютные и относительные, общие, внутригрупповые и межгрупповые, их смысл и значение. Правило сложения дисперсий.

(122.51 КБ) Скачиваний: 0

▲ 22 Среднелинейное отклонение, средний квадрат отклонения (дисперсия), средвнеквадратическое отклонение, коэффициент вариаций.

23. Математические свойства дисперсии. Упрощенные способы расчета дисперсии

Дисперсия представляет собой средний квадрат отклонений индивидуальных значений признака от их средней величины и вычисляется по формулам простой и взвешенной дисперсий (в зависимости от исходных данных):

среднее квадратическое отклонение (σ):

(простое среднеквадратическое отклонение),

(взвешенное среднеквадратическое отклонение).

Среднее квадратическое отклонение – это обобщающая характеристика размеров вариации признака в совокупности. Оно выражается в тех же единицах, что и признак.

Расчет дисперсии может быть упрощен. В случае равных интервалов в вариационном ряду распределения используется способ отсчета от условного нуля (способ моментов). Для его понимания необходимо знать следующие свойства дисперсии :
Свойство 1 . Дисперсия постоянной величины равна нулю.
Свойство 2 . Уменьшение всех значений признака на одну и ту же величину A не меняет величины дисперсии . Значит, средний квадрат отклонений можно вычислить не по заданным значениям признака, а по отклонениям их от какого-либо постоянного числа.
Свойство 3 . Уменьшение всех значений признака в K раз уменьшает дисперсию в K 2 раз, а среднее квадратическое отклонение в K раз . Значит, все значения признака можно разделить на какое-то постоянное число, например, на величину интервала ряда, исчислить среднее квадратическое отклонение, а затем умножить его на постоянное число: .
Свойство 4 . Если вычислить средний квадрат отклонений от любой величины A, в той или иной степени отличающейся от средней арифметической (), то он всегда будет больше среднего квадрата отклонений, вычисленного от средней арифметической . Средний квадрат отклонений при этом будет больше на величину (– A) 2:
.
Значит, дисперсия от средней величины всегда меньше дисперсий, вычисленных от любых других величин, т.е. она имеет свойство минимальности.
На этих математических свойствах дисперсии основываются способы, которые позволяют упростить ее вычисление. Например, расчет дисперсии по способу моментов или способу отсчета от условного нуля применяется в вариационных рядах с равными интервалами. Расчет производится по формуле:

,
где K – ширина интервала;
A – условный нуль, в качестве которого удобно использовать середину интервала, обладающего наибольшей частотой;
– момент второго порядка.
Между средним линейным и средним квадратическим отклонениями существует примерное соотношение если фактическое распределение близко к нормальному.
В условиях нормального распределения существует следующая зависимость между величиной среднего квадратического отклонения и количеством наблюдений:
1) в пределах ± 1σ располагается 68,3 % количества наблюдений;
2) в пределах ± 2σ – 95,4 %;
3) в пределах ± 3σ – 99,7 %;
В действительности, на практике почти не встречаются отклонения, которые превышают ±3σ. Отклонение 3σ может считаться максимально возможным. Это положение называют «правилом трех сигм».

▲ 24 Дисперсия альтернативного признака.

21 Дисперсия альтернативного признака.
Альтернативный признак – это признак, характеризующий обладание или не обладание чем-то (см.п.1.2.).
В статистике при изучении вариации альтернативных признаков наличия изучаемого признака обозначаются «1», а его отсутствие – «0».
Доля единиц совокупности, обладающих изучаемым признаком – «p” , а не обладающих им “q”, следовательно, p + q = 1
Дисперсия альтернативного признака равна произведению доли на дополняющее эту долю до единицы число. Корень квадратный из этого показателя соответствует среднему квадратическому отклонению альтернативного признака.
Показатели вариации альтернативных признаков широко используются в статистике, в частности при проектировании выборочного наблюдения, обработке данных социологических обследований, статистическом контроле качества продукции, в ряде других случаев.

▲ 25 Выборочное наблюдение, значение и условия применения.

22 Выборочное наблюдение, значение и условия применения.
статистическое наблюдение, при котором исследованию подвергают не все элементы изучаемой совокупности (называемой при этом «генеральной»), а только некоторую, определённым образом отобранную их часть. Отобранная часть элементов совокупности (выборка) будет представлять всю совокупность с приемлемой точностью при двух условиях: она должна быть достаточно многочисленной, чтобы в ней могли проявиться закономерности, существующие в генеральной совокупности; элементы выборки должны быть отобраны объективно, независимо от воли исследователя, так чтобы каждый из них имел одинаковые шансы быть отобранным или же чтобы шансы эти были известны исследователю. Эти условия устанавливаются математической теорией выборочного метода. Она основана на ряде важнейших теорем теории вероятностей, составляющих так называемый закон больших чисел (см. Больших чисел закон). Лишь при соблюдении этих условий возникает объективная возможность оценить точность Выборочное наблюдение на основании самих выборочных данных. Точность Выборочное наблюдение измеряется с помощью средней ошибки выборки, величина которой прямо пропорциональна степени вариации изучаемых признаков и обратно пропорциональна объёму выборки. Выборочное наблюдение можно произвести быстрее сплошного, с меньшими затратами и получить результаты, по точности мало уступающие результатам сплошного наблюдения, а с учётом же возможности более тщательного наблюдения - даже нередко превосходящие их.

▲ 26 Ошибки выборочного наблюдения.

23 Ошибки выборочного наблюдения.
Между признаками выборочной совокупности и признаками генеральной совокупности, как правило, существует некоторое расхождение, которое называют ошибкой статистического наблюдения. При массовом наблюдении ошибки неизбежны, но возникают они в результате действия различных причин. Величина возможной ошибки выборочного признака слагается из ошибок регистрации и ошибок репрезентативности. Ошибки регистрации, или технические ошибки, связаны с недостаточной квалификацией наблюдателей, неточностью подсчетов, несовершенством приборов и т. п.
Под ошибкой репрезентативности (представительства) понимают расхождение между выборочной характеристикой и предполагаемой характеристикой генеральной совокупности. Ошибки репрезентативности бывают случайными и систематическими.
Систематические ошибки связаны с нарушением установленных правил отбора. Случайные ошибки объясняются недостаточно равномерным представлением в выборочной совокупности различных категорий единиц генеральной совокупности
. В результате первой причины выборка легко может оказаться смещенной, так как при отборе каждой единицы допускается ошибка, всегда направленная в одну и ту же сторону. Эта ошибка получила название ошибки смещения. Ее размер может превышать величину случайной ошибки. Особенность ошибки смещения состоит в том, что, представляя собой постоянную часть ошибки репрезентативности, она увеличивается с увеличением объема выборки. Случайная же ошибка с увеличением объема выборки уменьшается. Кроме того, величину случайной ошибки можно определить, тогда, как размер ошибки смещения непосредственно практически определить очень сложно, а иногда и невозможно. Поэтому важно знать причины, вызывающие ошибку смещения, и предусмотреть мероприятия по ее устранению.

▲ 27 Методы определения ошибки выборки для средней и для частости, при различных способах и методах отбора.

24 Методы определения ошибки выборки для средней и для частости, при различных способах и методах отбора.
-Отклонение результатов, полученных с помощью выборочного наблюдения от истинных данных генеральной совокупности.
Ошибка выборки бывает двух видов – статистическая и систематическая. Статистическая ошибка зависит от размера выборки. Чем больше размер выборки, тем она ниже.

▲ 28 Определение численности выборки.

25 Определение численности выборки.
Определение необходимого объема выборки – это важная задача, с которой сталкивается исследователь, организующий выборочное наблюдение.
При этом ему, как правило, известно: какие характеристики генеральной совокупности он хотел бы оценить, какую величину ошибки он считал бы несущественной, какой метод выбора данных он использует. Известно также расположение генеральной совокупности и часто (но не всегда) количество элементов в ней.
Расчет численности выборки основывается на статистическом подходе обработки данных и за ним стоит множество вычислений, но для простоты, ниже мы представим формулу, следуя которой можно достичь хороших результатов.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта