Главная » Несъедобные грибы » Углеводы их классификация и значение. Углеводы: Их классификация и состав

Углеводы их классификация и значение. Углеводы: Их классификация и состав

Углеводами

Виды углеводов.

Углеводы бывают:

1) Моносахариды

2) Олигосахариды

3) Сложные углеводы

крахмал12.jpg

Основные функции.

Энергетическая.

Пластическая.

Запас питательных веществ.

Специфическая.

Защитная.

Регуляторная.

Химические свойства

Моносахариды проявляют свойства спиртов и карбонильных соединений.

Окисление.

a) Как и у всех альдегидов, окисление моносахаридов приводит к соответствующим кислотам. Так, при окислении глюкозы аммиачным раствором гидрата окиси серебра образуется глюконовая кислота (реакция "серебряного зеркала").

b) Реакция моносахаридов с гидроксидом меди при нагревании так же приводит к альдоновым кислотам.

c) Более сильные окислительные средства окисляют в карбоксильную группу не только альдегидную, но и первичную спиртовую группы, приводя к двухосновным сахарным (альдаровым) кислотам. Обычно для такого окисления используют концентрированную азотную кислоту.

Восстановление.

Восстановление сахаров приводит к многоатомным спиртам. В качестве восстановителя используют водород в присутствии никеля, алюмогидрид лития и др.

III. Специфические реакции

Кроме приведенных выше, глюкоза характеризуется и некоторыми специфическими свойствами - процессами брожения. Брожением называется расщепление молекул сахаров под воздействием ферментов (энзимов). Брожению подвергаются сахара с числом углеродных атомов, кратным трем. Существует много видов брожения, среди которых наиболее известны следующие:

a) спиртовое брожение

b) молочнокислое брожение

c) маслянокислое брожение

Упомянутые виды брожения, вызываемые микроорганизмами, имеют широкое практическое значение. Например, спиртовое – для получения этилового спирта, в виноделии, пивоварении и т.д., а молочнокислое – для получения молочной кислоты и кисломолочных продуктов.

3. Стереоизомерия моносахаридов D- и L-ряды. Открытые и циклические формулы. Пиранозы и фуранозы. α- и β-аномеры. Циклоцепная таутомерия. Явление муторотации.

Способность ряда органических соединений вращать плоскость поляризации поляризованного света вправо или влево называют оптической активностью. Исходя из сказанного выше, следует, что органические вещества могут существовать в виде правовращающих и левовращающих изомеров. Такие изомеры получили название стереоизомеров, а само явление стереоизомерии.

В основе более строгой системы классификации и обозначения стереоизомеров лежит не вращение плоскости поляризации света, а абсолютная конфигурация молекулы стереоизомера, т.е. взаимное расположение четырех обязательно разных замещающих групп, находящихся в вершинах тетраэдра, вокруг локализованного в центре атома углерода, который получил название асимметрического атома углерода или хирального центра. Хиральные или, как их еще называют, оптически активные атомы углерода обозначают в структурных формулах звездочками

Таким образом, под термином стереоизомерия следует понимать различную пространственную конфигурацию заместителей у соединений, имеющих одну и ту же структурную формулу и обладающих одинаковыми химическими свойствами. Такой вид изомерии называют также зеркальной изомерией. Наглядным примером зеркальной изомерии могут служить правая и левая ладони руки. Ниже приведены структурные формулы стереоизомеров глицеринового альдегида и глюкозы.

Если у асимметрического атома углерода в проекционной формуле глицеринового альдегида ОН-группа располагается справа, такой изомер называют D-стереоизомером, а если ОН-группа расположена слева –L-стереоизомером.

В случае тетроз, пентоз, гексоз и других моноз, которые обладают двумя и более асимметрическими атомами углерода, принадлежность стереоизомера к D- или L-ряду определяют по расположению ОН-группы у предпоследнего атома углерода в цепи – он же является последним асимметрическим атомом. Например, для глюкозы оценивают ориентацию ОН-группы у 5-ого атома углерода. Абсолютно зеркальные стереоизомеры называют энантиомерами или антиподами.

Стереоизомеры не отличаются по своим химическим свойствам, но отличаются по биологическому действию (биологической активности). Большая часть моносахаридов в организме млекопитающих относится к D-ряду – именно к этой конфигурации специфичны ферменты, ответственные за их метаболизм. В частности D-глюкоза воспринимается как сладкое вещество, благодаря способности взаимодействовать с вкусовыми рецепторами языка, в то время как L-глюкоза безвкусна, поскольку ее конфигурация не воспринимается вкусовыми рецепторами.

В общем виде строение альдоз и кетоз можно представить следующим образом.

Стереоизомерия. Молекулы моносахаридов содержат несколько центров хиральности, что служит причиной существования многих стереоизомеров, отвечающих одной и той же структурной формуле. Например, в альдогексозе имеются четыре асимметрических атома углерода и ей соответствуют 16 стереоизомеров (24), т. е. 8 пар энантиомеров. По сравнению с соответствующими альдозами кетогексозы содержат на один хиральный атом углерода меньше, поэтому число стереоизомеров (23) уменьшается до 8 (4 пары энантиомеров).

Открытые (нециклические) формы моносахаридов изображают в виде проекционных формул Фишера. Углеродную цепь в них записывают вертикально. У альдоз наверху помещают альдегидную группу, у кетоз - соседнюю с карбонильной первичную спиртовую группу. С этих групп начинают нумерацию цепи.

Для обозначения стереохимии используется D,L-система. Отнесение моносахарида к D- или L-ряду проводят по конфигурации хирального центра, наиболее удаленного от оксогруппы, независимо от конфигурации остальных центров! Для пентоз таким «определяющим» центром является атом С-4, а для гексоз - С-5. Положение группы ОН у последнего центра хиральности справа свидетельствует о принадлежности моносахарида к D-ряду, слева - к L-ряду, т. е. по аналогии со стереохимическим стандартом - глицериновым альдегидом

Циклические формы. Открытые формы моносахаридов удобны для рассмотрения пространственных отношений между стереоизомерными моносахаридами. В действительности моносахариды по строению являются циклическими полуацеталями. Образование циклических форм моносахаридов можно представить как результат внутримолекулярного взаимодействия карбонильной и гидроксильной групп, содержащихся в молекуле моносахарида.

Впервые циклическую полуацетальную формулу глюкозы предложил А. А. Колли (1870). Он объяснил отсутствие некоторых альдегидных реакций у глюкозы наличием трехчленного этиленоксидного (α-окисного) цикла:

Позже Толленс (1883) предложил аналогичную полуацетальную формулу глюкозы, но с пятичленным (γ-окисным) бутиленоксидным кольцом:

Формулы Колли - Толленса громоздки и неудобны, не отражают строения циклической глюкозы, поэтому были предложены формулы Хеуорса.

В результате циклизации образуются термодинамически более устойчивые фуранозные (пятичленные) и пиранозные (шестичленные) циклы. Названия циклов происходят от названий родственных гетероциклических соединений - фурана и пирана.

Образование этих циклов связано со способностью углеродных цепей моносахаридов принимать достаточно выгодную клешневидную конформацию. Вследствие этого в пространстве оказываются сближенными альдегидная (или кетонная) и гидроксильная при С-4 (или при С-5) группы, т. е. те функциональные группы, в результате взаимодействия которых осуществляется внутримолекулярная циклизация.

В циклической форме создается дополнительный центр хиральности - атом углерода, ранее входивший в состав карбонильной группы (у альдоз это С-1). Этот атом называют аномерным, а два соответствующих стереоизомера - α- и β-аномерами (рис. 11.1). Аномеры представляют собой частный случай эпимеров.

У α-аномера конфигурация аномерного центра одинакова с конфигурацией «концевого» хирального центра, определяющего принадлежность к d- или l-ряду, а у β-аномера - противоположна. В проекционных формулах Фишера у моносахаридов d-ряда в α-аномере гликозидная группа ОН находится справа, а в β-аномере - слева от углеродной цепи.

Рис. 11.1. Образование α- и β-аномеров на примере d-глюкозы

Формулы Хеуорса. Циклические формы моносахаридов изображают в виде перспективных формул Хеуорса, в которых циклы показывают в виде плоских многоугольников, лежащих перпендикулярно плоскости рисунка. Атом кислорода располагают в пиранозном цикле в дальнем правом углу, в фуранозном - за плоскостью цикла. Символы атомов углерода в циклах не указывают.

Для перехода к формулам Хеуорса циклическую формулу Фишера преобразуют так, чтобы атом кислорода цикла располагался на одной прямой с атомами углерода, входящими в цикл. Это показано ниже на примере a-d-глюкопиранозы путем двух перестановок у атома С-5, что не изменяет конфигурацию этого асимметрического центра (см. 7.1.2). Если преобразованную формулу Фишера расположить горизонтально, как требуют правила написания формул Хеуорса, то заместители, находившиеся справа от вертикальной линии углеродной цепи, окажутся под плоскостью цикла, а те, что были слева, - над этой плоскостью.

У d-альдогексоз в пиранозной форме (и у d-альдопентоз в фуранозной форме) группа СН2ОН всегда располагается над плоскостью цикла, что служит формальным признаком d-ряда. Гликозидная гидроксильная группа у a-аномеров d-альдоз оказывается под плоскостью цикла, у β-аномеров - над плоскостью.

D-ГЛЮКОПИРАНОЗА

По аналогичным правилам осуществляется переход и у кетоз, что показано ниже на примере одного из аномеров фуранозной формы d-фруктозы.

Циклоцепная таутомерия обусловлена переходом открытых форм моносахаридов в циклические и наоборот.

Изменение во времени угла вращения плоскости поляризации света растворами углеводов называют мутаротацией.

Химическая сущность мутаротации состоит в способности моносахаридов к существованию в виде равновесной смеси таутомеров - открытой и циклических форм. Такой вид таутомерии называется цикло-оксо-таутомерией.

В растворах равновесие между четырьмя циклическими таутомерами моносахаридов устанавливается через открытую форму - оксоформу. Взаимопревращение a- и β-аномеров друг в друга через про- межуточную оксоформу называется аномеризацией.

Таким образом, в растворе d-глюкоза существует в виде таутомеров: оксоформы и a- и β-аномеров пиранозных и фуранозных циклических форм.

ЛАКТИМ-ЛАКТАМНАЯ ТАУТОМЕРИЯ

Этот вид таутомерии характерен для азотсодержащих гетероциклов с фрагментом N=C-ОН.

Взаимопревращение таутомерных форм связано с переносом протона от гидроксильной группы, напоминающей фенольную ОН-группу, к основному центру - пиридиновому атому азота и наоборот. Обычно лактамная форма в равновесии преобладает.

Моноаминомонокарбоновые.

По полярности радикала:

С неполярным радикалом:(Аланин,валин, лейцин, фенилаланин)Моноамино,монокарбоновые

С полярным незаряженным радикалом(Глицин, серин, аспарагин, глутамин)

С отрицательно заряженным радикалом(Аспарагиновая,глутаминовая кислота)моноамино,дикарбоновые

С положительно заряженным радикалом(лизин,гистидин) диамино,монокарбоновые

Стереоизомерия

Все природные α-аминокислоты, кроме глицина (NH 2 -CH 2 - COOH), имеют асимметрический атом углерода (α-углеродный атом), а некоторые из них даже два хиральных центра, например, треонин. Таким образом, все аминокислоты могут существовать в виде пары несовместимых зеркальных антиподов (энантиомеров).

За исходное соединение, с которым принято сравнивать строение 
α-аминокислот, условно принимают D- и L-молочные кислоты, конфигурации которых, в свою очередь, установлены по D- и L-глицериновым альдегидам.

Все превращения, которые осуществляются в этих рядах при переходе от глицеринового альдегида к α-аминокислоте, выполняются в соответствии с главным требованием − они не создают новых и не разрывают старых связей у асимметрического центра.

Для определения конфигурации α-аминокислоты в качестве эталона часто используют серин (иногда аланин).

Природные аминокислоты, входящие в состав белков, относятся к L-ряду. 
D-формы аминокислот встречаются сравнительно редко, они синтезируются только микроорганизмами и называются «неприродными» аминокислотами. Животными организмами D-аминокислоты не усваиваются. Интересно отметить действие D- и L-аминокислот на вкусовые рецепторы: большинство аминокислот L-ряда имеют сладкий вкус, а аминокислоты D-ряда − горькие или безвкусные.

Без участия ферментов самопроизвольный переход L-изомеров в D-изомеры с образованием эквимолярной смеси (рацемическая смесь) осуществляется в течение достаточно длительного промежутка времени.

Рацемизация каждой L-кислоты при данной температуре идет с определенной скоростью. Это обстоятельство можно использовать для установления возраста людей и животных. Так, например, в твердой эмали зубов имеется белок дентин, в котором L-аспартат переходит в D-изомер при температуре тела человека со скоростью 0,01% в год. В период формирования зубов в дентине содержится только L-изомер, поэтому по содержанию D-аспартата можно рассчитать возраст человека или животного.

I. Общие свойства

1. Внутримолекулярная нейтрализация → образуется биполярный цвиттер-ион:

Водные растворы электропроводны. Эти свойства объясняются тем, что молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса протона от карбоксила к аминогруппе:

цвиттер-ион

Водные растворы аминокислот имеют нейтральную, кислую или щелочную среду в зависимости от количества функциональных групп.

2. Поликонденсация → образуются полипептиды (белки):


При взаимодействии двух α-аминокислот образуется дипептид .

3. Разложение → Амин + Углекислый газ:

NH 2 -CH 2 -COOH → NH 2 -CH 3 + CO 2

IV. Качественная реакция

1. Все аминокислоты окисляются нингидрином с образованием продуктов сине-фиолетового цвета!

2. С ионами тяжелых металлов α-аминокислоты образуют внутрикомплексные соли. Комплексы меди (II), имеющие глубокую синюю окраску, используются для обнаружения α-аминокислот.

Физиологические активные пептиды. Примеры.

Пептиды, обладая высокой физиологической активностью, регулируют различные биологические процессы. По биорегуляторному действию пептиды принято делить на несколько групп:

· соединения, обладающие гормональной активностью (глюкагон, окситоцин, вазопрессин и др.);

· вещества, регулирующие пищеварительные процессы (гастрин, желудочный ингибирующий пептид и др.);

· пептиды, регулирующие аппетит (эндорфины, нейропептид-Y, лептин и др.);

· соединения, обладающие обезболивающим эффектом (опиоидные пептиды);

· органические вещества, регулирующие высшую нервную деятельность, биохимические процессы, связанные с механизмами памяти, обучения, возникновением чувства страха, ярости и др.;

· пептиды, которые регулируют артериальное давление и тонус сосудов (ангиотензин II, брадикинин и др.).

· пептиды, которые обладают противоопухолевым и противовоспалительным свойствами (Луназин)

· Нейропептиды - соединения, синтезируемые в нейронах, обладающие сигнальными свойствами

Классификация белков

-по форме молекул (глобулярные или фибриллярные);

-по молекулярной массе (низкомолекулярные, высокомолекулярные и др.);

-по химическому строению (наличие или отсутствие небелковой части);

-по локализации в клетке (ядерные, цито-плазматические, лизосомальные и др.);

-по локализации в организме (белки крови, печени, сердца и др.);

-по возможности адаптивно регулировать количество данных белков : белки, синтезирующиеся с постоянной скоростью (конститутивные), и белки, синтез которых может усиливаться при воздействии факторов среды (индуцибельные);

-по продолжительности жизни в клетке (от очень быстро обновляющихся белков, с Т 1/2 менее 1 ч, до очень медленно обновляющихся белков, Т 1/2 которых исчисляют неделями и месяцами);

-по схожим участкам первичной структуры и родственным функциям (семейства белков).

Классификация белков по химическому строению

Простые белки .Некоторые белки содержат в своём составе только полипептидные цепи, состоящие из аминокислотных остатков. Их называют "простые белки". Примером простых белков - гистоны ; в их составе содержится много аминокислотных остатков лизина и аргинина, радикалы которых имеют положительный заряд .

2. Сложные белки . Очень многие белки, кроме полипептидных цепей, содержат в своём составе небелковую часть, присоединённую к белку слабыми или ковалентными связями. Небелковая часть может быть представлена ионами металлов, какими-либо органическими молекулами с низкой или высокой молекулярной массой. Такие белки называют "сложные белки". Прочно связанная с белком небелковая часть носит название простетической группы.

У биополимеров, макромолекулы которых состоят из полярных и неполярных групп, сольватируются полярные группы, если растворитель полярен. В неполярном растворителе, соответственно, сольватируются неполярные участки макромолекул.

Обычно он хорошо набухает в жидкости, близкой к нему по химическому строению. Так, углеводородные полимеры типа каучуков набухают в неполярных жидкостях: гексане, бензоле. Биополимеры, в состав молекул которых входит большое количество полярных функциональных групп, например, белки, полисахариды, лучше набухают в полярных растворителях: воде, спиртах и т.д.

Образование сольватной оболочки молекулы полимера сопровождается выделением энергии, которая называется теплотой набухания .

Теплота набухания зависит от природы веществ. Она максимальна при набухании в полярном растворителе ВМС, содержащего большое количество полярных групп и минимальна при набухании в неполярном растворителе углеводородного полимера.

Кислотность среды, при которой устанавливается равенство положительных и отрицательных зарядов и белок становится электронейтральным, называется изоэлектрической точкой (ИЭТ) . Белки, у которых ИЭТ находится в кислой среде, называются кислыми. Белки, у которых значение ИЭТ находится в щелочной среде, называются основными. У большинства растительных белков ИЭТ находится в слабокислой среде

. Набухание и растворение ВМС зависят от:
1. природы растворителя и полимера,
2. строения макромолекул полимера,
3. температуры,
4. присутствия электролитов,
5. от рН среды (для полиэлектролитов).

Роль 2,3-дифосфоглицерата

2,3-Дифосфоглицерат образуется в эритроцитах из 1,3-дифосфоглицерата, промежуточного метаболита гликолиза, в реакциях, получивших название шунт Раппопорта.

Реакции шунта Раппопорта

2,3-Дифосфоглицерат располагается в центральной полости тетрамера дезоксигемоглобина и связывается с β-цепями, образуя поперечный солевой мостик между атомами кислорода 2,3-дифосфоглицерата и аминогруппами концевого валина обеих β-цепей, также аминогруппами радикалов лизина и гистидина.

Расположение 2,3-дифосфоглицерата в гемоглобине

Функция 2,3-дифосфоглицерата заключается в снижении сродства гемоглобина к кислороду. Это имеет особенное значение при подъеме на высоту, при нехватке кислорода во вдыхаемом воздухе. В этих условиях связывание кислорода с гемоглобином в легких не нарушается, так как концентрация его относительно высока. Однако в тканях за счет 2,3-дифосфоглицерата отдача кислорода возрастает в 2 раза.

Углеводы. Классификация. Функции

Углеводами - называют органические соединения, состоящие из углерода (C), водорода (H) и кислорода(O2). Общая формула таких углеводов Cn(H2O)m. Примером может служить глюкоза (С6Н12О6)

С точки зрения химии углеводы являются органическими веществами, содержащими неразветвленную цепь из нескольких атомов углерода, карбонильную группу (C=O), а также несколько гидроксильных групп(OH).

В организме человека углеводы производятся в незначительном количестве, поэтому основное их количество поступает в организм с продуктами питания.

Виды углеводов.

Углеводы бывают:

1) Моносахариды (самые простые формы углеводов)

Глюкоза С6Н12О6 (основное топливо в нашем организме)

Фруктоза С6Н12О6 (самый сладкий углевод)

Рибоза С5Н10О5 (входит в состав нуклеиновых кислот)

Эритроза С4H8O4 (промежуточная форма при расщеплении углеводов)

2) Олигосахариды (содержат от 2 до 10 остатков моносахаридов)

Сахароза С12Н22О11 (глюкоза + фруктоза, или в просто – тростниковый сахар)

Лактоза C12H22O11 (молочный сахар)

Мальтоза C12H24O12 (солодовый сахар, состоит из двух связанных остатков глюкозы)

110516_1305537009_Sugar-Cubes.jpg

3) Сложные углеводы (состоящие из множества остатков глюкозы)

Крахмал (С6H10O5)n (наиболее важный углеводный компонент пищевого рациона, человек потребляет из углеводов около 80% крахмала.)

Гликоген (энергетические резервы организма, излишки глюкозы, при поступлении в кровь, откладываются про запас организмом в виде гликогена)

крахмал12.jpg

4) Волокнистые, или неусваеваемые, углеводы, определяющиеся как пищевая клетчатка.

Целлюлоза (самое распостраненное органическое вещество на земле и вид клетчатки)

По простой классификации углеводы можно разделить на простые и сложные. В простые входят моносахариды и олигосахариды, в сложные полисахариды и клетчатка.

Основные функции.

Энергетическая.

Углеводы являются основным энергетическим материалом. При распаде углеводов высвобождаемая энергия рассеивается в виде тепла или накапливается в молекулах АТФ. Углеводы обеспечивают около 50 – 60 % суточного энергопотребления организма, а при мышечной деятельности на выносливость - до 70 %. При окислении 1 г углеводов выделяется 17 кДж энергии (4,1 ккал). В качестве основного энергетического источника в организме используется свободная глюкоза или запасенные углеводы в виде гликогена. Является основным энергетическим субстратом мозга.

Пластическая.

Углеводы (рибоза, дезоксирибоза) используются для построения АТФ, АДФ и других нуклеотидов, а также нуклеиновых кислот. Они входят в состав некоторых ферментов. Отдельные углеводы являются структурными компонентами клеточных мембран. Продукты превращения глюкозы (глюкуроновая кислота, глюкозамин и др.) входят в состав полисахаридов и сложных белков хрящевой и других тканей.

Запас питательных веществ.

Углеводы накапливаются (запасаются) в скелетных мышцах, печени и других тканях в виде гликогена. Систематическая мышечная деятельность приводит к увеличению запасов гликогена, что повышает энергетические возможности организма.

Специфическая.

Отдельные углеводы участвуют в обеспечении специфичности групп крови, исполняют роль антикоагулянтов (вызывающие свертывание), являясь рецепторами цепочки гормонов или фармакологических веществ, оказывая противоопухолевое действие.

Защитная.

Сложные углеводы входят в состав компонентов иммунной системы; мукополисахариды находятся в слизистых веществах, которые покрывают поверхность сосудов носа, бронхов, пищеварительного тракта, мочеполовых путей и защищают от проникновения бактерий и вирусов, а также от механических повреждений.

Регуляторная.

Клетчатка пищи не поддается процессу расщепления в кишечнике, однако активирует перистальтику кишечного тракта, ферменты, использующиеся в пищеварительном тракте, улучшая пищеварение и усвоение питательных веществ.

Углеводы - вещества состава СmН2nОn, имеющие первостепенное биохимическое значение, широко распространены в живой природе и играют большую роль в жизни человека.

Название углеводы возникло на основании данных анализа первых известных представителей этой группы соединения. Вещества этой группы состоят из углерода, водорода и кислорода, причем соотношение чисел атомов водорода и кислорода в них такое же, как и в воде, т.е. на каждые 2 атома водорода приходится один атом кислорода. В прошлом столетии их рассматривали как гидраты углерода. Отсюда и возникло русское название углеводы, предложенное в 1844 г. К. Шмидтом. Общая формула углеводов, согласно сказанному, С m Н2 n О n . При вынесении «n» за скобки получается формула С m (Н 2 О) n , которая очень наглядно отражает название «угле-воды».

Изучение углеводов показало, что существуют соединения, которые по всем свойствам нужно отнести в группу углеводов, хотя они имеют состав не точно соответствующий формуле С m H 2n О n . Тем не менее старинное название «углеводы», сохранилось до наших дней, хотя наряду с этим названием для обозначения рассматриваемой группы веществ иногда применяют и более новое название - глициды.

Большой класс углеводов разделяют на две группы: простые и сложные.

Простыми углеводами (моносахаридами и мономинозами) называют углеводы, которые не способны гидролизоваться с образованием более простых углеводов, у них число атомов углерода равно числу атомов кислорода С n Н 2n О n .

Сложными углеводами (полисахаридами или полиозами) называют такие углеводы, которые способны гидролизоваться с образованием простых углеводов и у них число атомов углерода не равно числу атомов кислорода С m Н 2n О n .

Классификацию углеводов можно изобразить следующей схемой:

МОНОСАХАРИДЫ, ДИСАХАРИДЫ С 12 Н 22 О 11 , тетрозы С 4 Н 8 О 4 , сахароза, элитроза, лактоза, треоза, мальтоза, пентозы С 5 Н 10 О 5 , целобиоза, арабиноза

ПОЛИСАХАРИДЫ

Ксилоза (С 5 Н 8 О 4) n рибоза пентозаны

ГЕКСОЗЫ

С 6 Н 12 О 6 (С 6 Н 10 О 5) n глюкоза целлюлоза манноза крахмал галактоза гликоген фруктоза

Важнейшими представителями простых углеводов являются глюкоза и фруктоза, они имеют одну молекулярную формулу С 6 Н 12 О 6 .

Глюкозу называют также виноградным сахаром, так как она содержится в большом количестве в виноградном соке. Кроме винограда глюкоза находится и в других сладких плодах и даже в разных частях растений. Распространена глюкоза и в животном мире: 0,1% ее находится в крови. Глюкоза разносится по всему телу и служит источником энергии для организма. Она также входит в состав сахарозы, лактозы, целлюлозы, крахмала.

В растительном мире широко распространена фруктоза или фруктовый (плодовый) сахар. Фруктоза содержится в сладких плодах, меде. Извлекая из цветов сладких плодов соки, пчелы приготавливают мед, который по химическому составу представляет собой в основном смесь глюкозы и фруктозы. Также фруктоза входит в состав сложных сахаров, например тростникового и свекловичного.

Моносахариды - это твердые вещества, способные кристаллизоваться. Они гигроскопичны, очень легко растворимы в воде, легко образуют сиропы, из которых выделить их в кристаллическом виде бывает очень трудно.

Растворы моносахаридов имеют нейтральную на лакмус реакцию и обладают сладковатым вкусом. Сладость моносахаридов различна: фруктоза в 3 раза слаще глюкозы.

В спирте моносахариды растворяются плохо, а в эфире вообще не растворимы.

Моносахариды, важнейшие представители простых углеводов, в природе находятся как в свободном состоянии, так и в виде своих ангидридов - сложных углеводов.

Все сложные углеводы можно рассматривать как ангидриды простых сахаров, получающиеся путем отнятия одной или нескольких молекул воды от двух или более молекул моносахарида.

К сложным углеводам относятся разнообразные по своим свойствам вещества и их делят по этой причине на две подгруппы.

1. Сахароподобные сложные углеводы или олигосахариды. Эти вещества обладают рядом свойств, сближающими их с простыми углеводами.

Сахароподобные углеводы легко растворимы в воде, сладки на вкус; эти сахара легко получаются в виде кристаллов.

При гидролизе сахароподобных полисахаридов из каждой молекулы полисахарида образуется небольшое количество молекул простого сахара - обычно 2, 3, или 4 молекулы. Отсюда произошло второе название сахароподобных полисахаридов - олигосахариды (от греческого олигос - немногий).

В зависимости от числа молекул моносахаридов, которые образуются при гидролизе каждой молекулы олигосахаридов, последние делятся на дисахариды, трисахариды и т.д.

Дисахариды - это сложные сахара, каждая молекула которых при гидролизе распадается на 2 молекулы моносахарида.

Способы синтеза дисахаридов известны, но практически их получают из природных источников.

Важнейший из дисахаридов - сахароза - очень распространен в природе. Это химическое название обычного сахара, называемого тростниковым или свекловичным.

Индусы еще за 300 лет до нашей эры умели получать тростниковый сахар из тростника. В наше время получают сахарозу из тростника, произрастающего в тропиках (на о. Куба и в других странах Центральной Америки).

В середине 18 века дисахарид был обнаружен и в сахарной свекле, а в середине 19 века был получен в производственных условиях.

В сахарной свекле содержится 12-15% сахарозы, по другим источникам 16-20% (сахарный тростник содержит 14-26% сахарозы).

Сахарную свеклу измельчают и извлекают из нее сахарозу горячей водой в специальных аппаратах-диффузорах. Полученный раствор обрабатывают известью для осаждения примесей, а перешедший частично в раствор избыточный гидролиз кальция осаждают пропусканием диоксида углерода. Далее после отделения осадка раствор упаривают в вакуум-аппаратах, получая мелкокристаллический песок-сырец. После его дополнительной очистки получают рафинированный (очищенный) сахар. В зависимости от условий кристаллизации он выделяется в виде мелких кристаллов или в виде компактных «сахарных голов», которые раскалывают или распиливают на куски. Быстрорастворимый сахар готовят прессованием мелкоизмельченного сахарного песка.

Тростниковый сахар применяется в медицине для изготовления порошков, сиропов, микстур и т.д.

Свекловичный сахар широко применяется в пищевой промышленности, кулинарии, приготовлении вин, пива и т.д.

Из молока получают молочный сахар - лактозу. В молоке лактоза содержится в довольно значительном количестве: в коровьем молоке 4-5,5% лактозы, женское молоко содержит 5,5-8,4% лактозы.

Лактоза отличается от других сахаров отсутствием гигроскопичности - она не отсыревает. Это свойство имеет большое значение: если нужно приготовить с сахаром какой-либо порошок, содержащий легко гидролизующее лекарство, то берут молочный сахар. Если взять тростниковый или свекловичный сахар, то порошок быстро отсыреет и легко гидролизующее лекарственное вещество быстро разложится.

Значение лактозы очень велико, т.к. она является важным питательным веществом, особенно для растущих организмов человека и млекопитающих животных.

Солодовый сахар - это промежуточный продукт при гидролизе крахмала. По другому его называют еще мальтоза, т.к. солодовый сахар получается из крахмала при действии солода (по лат. солод - maltum).

Солодовый сахар широко распространен как в растительных, так и в животных организмах. Например, он образуется под влиянием ферментов пищеварительного канала, а также при многих технологических процессах бродильной промышленности: винокурения, пивоварении и т.д.

Важнейшие из полисахаридов - это крахмал, гликоген (животный крахмал), целлюлоза (клетчатка). Все эти три высшие полиозы состоят из остатков молекул глюкозы, различным образом соединенных друг с другом. Состав их выражается общей формулой (С 6 Н 12 О 6) n . Молекулярные массы природных полисахаридов составляют от нескольких тысяч до нескольких миллионов.

Крахмал - это первый видимый продукт фотосинтеза. При фотосинтезе крахмал образуется в растениях и откладывается в корнях, клубнях, семенах. Зерна риса, пшеницы, ржи и других злаков содержат 60-80% крахмала, клубни картофеля - 15-20%. Крахмальные зерна растений различаются по внешнему виду, что хорошо видно, когда их рассматриваешь под микроскопом. Внешний вид крахмала хорошо всем известен: это белое вещество, состоящее из мельчайших зерен, напоминающих муку, поэтому его второе название «картофельная мука».

Крахмал не растворим в холодной воде, в горячей набухает и постепенно растворяется, образуя вязкий раствор (клейстер).

При быстром нагревании крахмала происходит расщепление гигантской молекулы крахмала на мелкие молекулы полисахаридов, называемых декстринами. Декстрины имеют общую молекулярную формулу с крахмалом (С 6 Н 12 О 5) х, разница лишь в том, «х» в декстринах меньше «n» в крахмале.

Пищеварительные соки содержат несколько разных ферментов, которые при низкой температуре доводят гидролиз крахмала до глюкозы:

(С 6 Н 10 О 5) > (С 6 Н 10 О 5) х > С 12 Н 22 О 11 > С 6 Н 12 О 6

крахмал ряд декстрин мальтоза глюкоза

Еще быстрее декстринизация идет в присутствии кислоты:

(С 6 Н 10 О 5) n + n Н 2 О?????> n С 6 Н 12 О 6

Ферментативный гидролиз (разложение путем брожения) крахмала имеет промышленное значение в производстве этилового спирта из зерна и картофеля.

Процесс начинается с превращением крахмала в глюкозу, которую затем сбраживают. Используя специальные культуры дрожжей и изменяя условия, можно направить брожение и в сторону получения бутилового спирта, ацетона, молочной, лимонной и глюконовой кислот.

Подвергая крахмал гидролизу кислотами, можно получить глюкозу в виде чистого кристаллического препарата или в виде патоки - окрашенного некристаллизированного сиропа.

Наибольшее значение крахмал имеет в качестве пищевого продукта: в виде хлеба, картофеля, круп, являясь главным источником в нашем рационе питания.

Кроме того, чистый крахмал применяется в пищевой промышленности в производстве кондитерских и кулинарных изделий, колбас. Значительное количество крахмала употребляется для проклеивания тканей, бумаги, картона, производства канцелярского клея.

В аналитической химии крахмал служит индикатором в йодометрическом методе титрования. Для этих случаев лучше применять очищенную амилозу, т.к. ее растворы не загустевают, а образуемая с йодом окраска более интенсивна.

В медицине и фармации крахмал применяется для приготовления присыпок, паст (густых мазей), а также при производстве таблеток.

В животном мире роль «запасного крахмала» играет родственный крахмалу полисахарид - гликоген. Гликоген содержится во всех животных тканях.

Особенно много его в печени (до 20%) и в мышцах (4%).

Гликоген представляет собой белый аморфный порошок, хорошо растворимый даже в холодной воде. Молекула животного крахмала построена по типу молекул амилопектина, отличаясь лишь большей ветвистостью. Молекулярная масса гликогена исчисляется миллионами.

С йодом растворы гликогена дают окрашивание от винно-красного до красно-бурого в зависимости от происхождения гликогена (вида животного) и других условий.

Гликоген является резервным питательным веществом для организма.

Вывод

Я узнал много нового об углеводах, например то, что углеводов два класса простые и сложные. Интересна история появления названия углеводов. Я узнал что углеводы бывают разного вкуса. Я понял что без углеводов жизнь не возможна они присутствуют почти везде.

Углеводы, или сахара, - это органические соединения, которые содержат в молекуле одновременно карбонильную (альдегидную или кетонную) и несколько гидроксильных (спиртовых) групп . Другими словами, углеводы - это альдегидоспирты (полиоксиальдегиды) или кетоноспирты (полиоксикетоны). Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира, составляя (по массе) основную часть органического вещества на Земле. Источником углеводов для всех живых организмов является процесс фотосинтеза, осуществляемый растениями. Углеводы играют чрезвычайно важную роль в живой природе, и являются самыми распространенными веществами в растительном мире, составляя до 80 % сухой массы растений. Важное значение углеводы имеют и для промышленности, поскольку они в составе древесины широко используются в строительстве, производстве бумаги, мебели и других товаров.

Основные функции :

  • Энергетическая. При распаде углеводов высвобождаемая энергия рассеивается в виде тепла или накапливается в молекулах АТФ. Углеводы обеспечивают около 50 – 60 % суточного энергопотребления организма, а при мышечной деятельности на выносливость - до 70 %.
  • Пластическая. Углеводы (рибоза, дезоксирибоза) используются для построения АТФ, АДФ и других нуклеотидов, а также нуклеиновых кислот. Они входят в состав некоторых ферментов. Отдельные углеводы являются структурными компонентами клеточных мембранУглеводы накапливаются (запасаются) в скелетных мышцах, печени и других тканях в виде гликогена.
  • Специфическая. Отдельные углеводы участвуют в обеспечении специфичности групп крови, исполняют роль антикоагулянтов (вызывающие свертывание), являясь рецепторами цепочки гормонов или фармакологических веществ, оказывая противоопухолевое действие.
  • Защитная . Сложные углеводы входят в состав компонентов иммунной системы; мукополисахариды находятся в слизистых веществах, которые покрывают поверхность сосудов носа, бронхов, пищеварительного тракта, мочеполовых путей и защищают от проникновения бактерий и вирусов, а также от механических повреждений.
  • Регуляторная . Клетчатка пищи не поддается процессу расщепления в кишечнике, однако активирует перистальтику кишечного тракта, ферменты, использующиеся в пищеварительном тракте, улучшая пищеварение и усвоение питательных веществ.

Классификация углеводов . Все углеводы можно разделить на две большие группы:

  • простые углеводы (моносахариды, или монозы),
  • сложные углеводы (полисахариды, или полиозы).

Простые углеводы не подвергаются гидролизу с образованием других, еще более простых углеводов. При разрушении молекул моносахаридов можно получить молекулы лишь других классов химических соединений. В зависимости от числа атомов углерода в молекуле, различают тетрозы (четыре атома), пентозы (пять атомов), гексозы (шесть атомов), и т.д. Если моносахариды содержат альдегидную группу, то они относятся к классу альдоз (альдегидоспиртов), если кетонную - к классу кетоз (кетоноспиртов).

Сложные углеводы, или полисахариды , при гидролизе распадаются на молекулы простых углеводов. Сложные углеводы, в свою очередь, делятся на:

  • олигосахариды,
  • полисахариды.

Олигосахариды - это низкомолекулярные сложные углеводы, растворимые в воде и сладкие на вкус. Полисахариды - это высокомолекулярные углеводы, образованные более чем из 20 остатков моносахаридов, нерастворимые в воде и не сладкие на вкус.

В зависимости от состава , сложные углеводы можно разделить на две группы:

  • гомополисахариды, состоящие из остатков одного и того же моносахарида;
  • гетерополисахариды, состоящие из остатков различных моносахаридов.

Моносахариды. Общая формула моносахаридов - СпН2пОп. Названия моносахаридов образуют из греческого числительного, соответствующего числу углеродных атомов в данной молекуле, и окончания -оза. Чаще всего в живой природе встречаются моносахариды с пятью и шестью углеродными атомами - пентозы и гексозы. В зависимости от характера карбонильной группы, входящей в состав моносахаридов (альдегидная или кетонная), моносахариды делятся на:

  • альдозы (альдегидоспирты),
  • кетозы (кетоноспирты).

Из гексоз наиболее широко распространены глюкоза (виноградный сахар) и фруктоза (фруктовый сахар). Глюкоза - это представитель альдоз, а фруктоза - кетоз. Глюкоза и фруктоза являются изомерами , т.е. они имеют один и тот же атомарный состав и их молекулярная формула одинакова (С6Н12О6). Однако пространственное строение их молекул различается:
СН2ОН-СНОН-СНОН-СНОН-СНОН-СНО Глюкоза (альдогексоза)

СН2ОН-СНОН-СНОН-СНОН-СО-СН2ОН Фруктоза (кетогексоза).

Э.Фишер разработал пространственные формулы , названные его именем. В этих формулах углеродные атомы нумеруют с того конца цепи, к которому ближе карбонильная группа. В частности, в альдозах первый номер присваивается углероду альдегидной группы.
Однако моносахариды существуют не только в виде открытых форм, но и в виде циклов. Эти две формы - цепная и циклическая - являются таутомерными и способны самопроизвольно переходить одна в другую в водных растворах. Представители моносахаридов:

  • D-рибоза - компонент РНК и коферментов нуклеотидной природы.
  • D-глюкоза (виноградный сахар) - кристаллическое белое вещество, хорошо растворимое в воде, температура плавления равна 146°С. Полимеры глюкозы, прежде всего
  • D-галактоза - кристаллическое вещество, составная часть молочного сахара, важнейший компонент пищевого рациона. Достаточно хорошо растворяется в воде, сладкое на вкус, температура плавления равна 165°С. Наряду с D-маннозой, этот моносахарид входит в состав многих гликолипидов и гликопротеинов.
  • D-манноза - кристаллическое вещество, сладкое на вкус, хорошо растворимое в воде, температура плавления равна 132°С. Встречается в природе в виде полисахаридов - маннанов, из которых может быть получено гидролизом.
  • D-фруктоза (фруктовый сахар) - кристаллическое вещество, температура плавления равна 132°С. Хорошо растворима в воде, сладкая на вкус, сладость превосходит сладость сахарозы в два раза. В свободной форме содержится во фруктовых соках (фруктовый сахар) и меде. В связанной форме фруктоза присутствует в сахарозе и растительных полисахаридах (например, в инулине).

При окислении альдоз образуется три класса кислот: альдоновые, альдаровые и альдуроновые.

Наиболее важными полисахаридами являются следующие:

  • Целлюлоза - линейный полисахарид, состоящий из нескольких прямых параллельных цепей, соединенных между собой водородными связями. Каждая цепь образована остатками β-D-глюкозы. Такая структура препятствует проникновению воды, очень прочна на разрыв, что обеспечивает устойчивость оболочек клеток растений, в составе которых 26-40 % целлюлозы. Целлюлоза служит пищей для многих животных, бактерий и грибов. Однако большинство животных, в том числе и человек, не могут усваивать целлюлозу, поскольку в их желудочно-кишечном тракте отсутствует фермент целлюлаза, расщепляющий целлюлозу до глюкозы. В то же время целлюлозные волокна играют важную роль в питании, поскольку они придают пище объемность и грубую консистенцию, стимулируют перистальтику кишечника.
  • Крахмал и гликоген. Эти полисахариды являются основными формами запасания глюкозы у растений (крахмал), животных, человека и грибов (гликоген). При их гидролизе в организмах образуется глюкоза, необходимая для процессов жизнедеятельности.
  • Хитин образован молекулами β-глюкозы, в которой спиртовая группа при втором атоме углерода замещена азотсодержащей группой NHCOCH3. Его длинные параллельные цепи так же, как и цепи целлюлозы, собраны в пучки. Хитин - основной структурный элемент покровов членистоногих и клеточных стенок грибов.

Реферат

«Физиологическое значение углеводов и их общая характеристика»

Выполнил(а): студентка II курса

Факультет: Агротехнологий, земельных ресурсов

и пищевых производств

Направление: ТП и ООП

ресторанный бизнес

Хастаева Ольга Андреевна

Ульяновск, 2015

1. Введение…………………………………………………………………………3

2. Классификация углеводов……………………………………………………...3

2.1. Моносахариды…………………………………………………………..4

2.2. Дисахариды……………………………………………………………...4

2.3. Олигосахариды………………………………………………………….5

2.4. Полисахариды…………………………………………………………...5

3. Пространственная изомерия……………………………………………………8

4. Биологическая роль……………………………………………………………..8

5. Биосинтез………………………………………………………………………..9

6. Важнейшие источники………………………………………………………...10

7. Физиологическое значение углеводов………………………………………..11

8. Список использованной литературы………………………………………….13

Введение

Структурная формула лактозы - содержащегося в молоке дисахарида

Углеводы - органические вещества, содержащие карбонильную группу и несколько гидроксильных групп. Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой C x (H 2 O) y , формально являясь соединениями углерода и воды.

Сахара - другое название низкомолекулярных углеводов (моносахаридов, дисахаридов и полисахаридов).

Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира, составляя (по массе) основную часть органического вещества на Земле. Источником углеводов для всех живых организмов является процесс фотосинтеза, осуществляемый растениями.

Углеводы - весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 2-3 % массы животных.

Классификация углеводов

Все углеводы состоят из отдельных «единиц», которыми являются сахариды. По способности к гидролизу на мономеры углеводы делятся на две группы: простые и сложные. Углеводы, содержащие одну единицу, называются моносахариды, две единицы – дисахариды, от двух до десяти единиц - олигосахариды, а более десяти - полисахариды. Моносахариды быстро повышают содержание сахара в крови, и обладают высоким гликемическим индексом, поэтому их ещё называют быстрыми углеводами. Они легко растворяются в воде и синтезируются в зелёных растениях. Углеводы, состоящие из 3 или более единиц, называются сложными. Продукты, богатые сложными углеводами, постепенно повышают содержание глюкозы и имеют низкий гликемический индекс, поэтому их ещё называют медленными углеводами. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов) и, в отличие от простых, в процессе гидролитического расщепления способны распадаться на мономеры с образованием сотен и тысяч молекул моносахаридов.



Моносахариды

Распространённый в природе моносахарид - бета-D-глюкоза.

Моносахари́ды (от греческого monos - единственный, sacchar - сахар) - простейшие углеводы, не гидролизующиеся с образованием более простых углеводов - обычно представляют собой бесцветные, легко растворимые в воде, плохо - в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения, одна из основных групп углеводов, самая простая форма сахара. Водные растворы имеют нейтральную pH. Некоторые моносахариды обладают сладким вкусом. Моносахариды содержат карбонильную (альдегидную или кетонную) группу, поэтому их можно рассматривать как производные многоатомных спиртов. Моносахарид, у которого карбонильная группа расположена в конце цепи, представляет собой альдегид и называется альдоза . При любом другом положении карбонильной группы моносахарид является кетоном и называется кетоза . В зависимости от длины углеродной цепи (от трёх до десяти атомов) различают триозы , тетрозы , пентозы ,гексозы , гептозы и так далее. Среди них наибольшее распространение в природе получили пентозы и гексозы. Моносахариды - стандартные блоки, из которых синтезируются дисахариды, олигосахариды и полисахариды.

В природе в свободном виде наиболее распространена D-глюкоза (C 6 H 12 O 6) - структурная единица многих дисахаридов (мальтозы, сахарозы и лактозы) и полисахаридов (целлюлоза, крахмал). Другие моносахариды, в основном, известны как компоненты ди-, олиго- или полисахаридов и в свободном состоянии встречаются редко. Природные полисахариды служат основными источниками моносахаридоя.

Дисахариды

Мальтоза (солодовый сахар) - природный дисахарид, состоящий из двух остатков глюкозы.

Дисахариды (от di - два, sacchar - сахар) - сложные органические соединения, одна из основных групп углеводов, при гидролизе каждая молекула распадается на две молекулы моносахаридов, являются частным случаем олигосахаридов. По строению дисахариды представляют собой гликозиды, в которых две молекулы моносахаридов соединены друг с другом гликозидной связью, образованной в результате взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой). В зависимости от строения дисахариды делятся на две группы: восстанавливающие и невосстанавливающие. Например, в молекуле мальтозы у второго остатка моносахарида (глюкозы) имеется свободный полуацетальный гидроксил, придающий данному дисахариду восстанавливающие свойства. Дисахариды наряду с полисахаридами являются одним из основных источников углеводов в рационе человека и животных.

Олигосахариды

Рафиноза - природный трисахарид, состоящий из остатков D-галактозы, D-глюкозы и D-фруктозы.

Олигосахариды (от греч. ὀλίγος - немногий) - углеводы, молекулы которых синтезированы из 2 - 10 остатков моносахаридов, соединённых гликозидными связями. Соответственно различают: дисахариды, трисахариды и так далее. Олигосахариды, состоящие из одинаковых моносахаридных остатков, называют гомополисахаридами, а из разных - гетерополисахаридами. Наиболее распространены среди олигосахаридов дисахариды.

Среди природных трисахаридов наиболее распространена рафиноза - невосстанавливающий олигосахарид, содержащий остатки фруктозы, глюкозы и галактозы - в больших количествах содержится в сахарной свёкле и во многих других растениях.

Полисахариды

Полисахариды - общее название класса сложных высокомолекулярных углеводов , молекулы которых состоят из десятков, сотен или тысяч мономеров - моносахаридов. С точки зрения общих принципов строения в группе полисахаридов возможно различить гомополисахариды, синтезированные из однотипных моносахаридных единиц и гетерополисахариды, для которых характерно наличие двух или нескольких типов мономерных остатков.

Гомополисахариды (гликаны ), состоящие из остатков одного моносахарида, могут быть гексозами или пентозами, то есть в качестве мономера может быть использована гексоза или пентоза. В зависимости от химической природы полисахарида различают глюканы (из остатков глюкозы), маннаны (из маннозы), галактаны (из галактозы) и другие подобные соединения. К группе гомополисахаридов относятся органические соединения растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (декстраны ) происхождения.

Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Это один из основных источников энергии организма, образующейся в результате обмена веществ. Полисахариды принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Крахмал (C 6 H 10 O 5) n - смесь двух гомополисахаридов: линейного - амилозы и разветвлённого - амилопектина, мономером которых является альфа-глюкоза. Белое аморфное вещество, не растворимое в холодной воде, способное к набуханию и частично растворимое в горячей воде. Молекулярная масса 10 5 -10 7 Дальтон. Крахмал, синтезируемый разными растениями в хлоропластах, под действием света при фотосинтезе, несколько различается по структуре зёрен, степени полимеризации молекул, строению полимерных цепей и физико-химическим свойствам. Как правило, содержание амилозы в крахмале составляет 10-30 %, амилопектина - 70-90 %. Молекула амилозы содержит в среднем около 1 000 остатков глюкозы, связанных между собой альфа-1,4-связями. Отдельные линейные участки молекулы амилопектина состоят из 20-30 таких единиц, а в точках ветвления амилопектина остатки глюкозы связаны межцепочечными альфа-1,6-связями. При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации - декстрины (C 6 H 10 O 5) p , а при полном гидролизе -глюкоза.

Гликоген (C 6 H 10 O 5) n - полисахарид, построенный из остатков альфа-D-глюкозы - главный резервный полисахарид высших животных и человека, содержится в виде гранул в цитоплазме клеток практически во всех органах и тканях, однако, наибольшее его количество накапливается в мышцах и печени. Молекула гликогена построена из ветвящихся полиглюкозидных цепей, в линейной последовательности которых, остатки глюкозы соединены посредством альфа-1,4-связями, а в точках ветвления межцепочечными альфа-1,6-связями. Эмпирическая формула гликогена идентична формуле крахмала. По химическому строению гликоген близок к амилопектину с более выраженной разветвлённостью цепей, поэтому иногда называется неточным термином «животный крахмал». Молекулярная масса 10 5 -10 8 Дальтон и выше. В организмах животных является структурным и функциональным аналогом полисахарида растений - крахмала . Гликоген образует энергетический резерв, который при необходимости восполнить внезапный недостаток глюкозы может быть быстро мобилизован - сильное разветвление его молекулы ведёт к наличию большого числа концевых остатков, обеспечивающих возможность быстрого отщепления нужного количества молекул глюкозы. В отличие от запаса триглицеридов (жиров) запас гликогена не настолько ёмок (в калориях на грамм). Только гликоген, запасённый в клетках печени (гепатоцитах) может быть переработан в глюкозу для питания всего организма, при этом гепатоциты способны накапливать до 8 процентов своего веса в виде гликогена, что является максимальной концентрацией среди всех видов клеток. Общая масса гликогена в печени взрослых может достигать 100-120 граммов. В мышцах гликоген расщепляется на глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), тем не менее общий запас в мышцах может превышать запас, накопленный в гепатоцитах.

Целлюло́за (клетча́тка) - наиболее распространённый структурный полисахарид растительного мира, состоящий из остатков альфа-глюкозы, представленных в бета-пиранозной форме. Таким образом, в молекуле целлюлозы бета-глюкопиранозные мономерные единицы линейно соединены между собой бета-1,4-связями. При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном - D-глюкоза. В желудочно-кишечном тракте человека целлюлоза не переваривается, так как набор пищеварительных ферментов не содержит бета-глюкозидазу. Тем не менее, наличие оптимального количества растительной клетчатки в пище способствует нормальному формированию каловых масс. Обладая большой механической прочностью, целлюлоза выполняет роль опорного материала растений, например, в составе древесины её доля варьирует от 50 до 70 %, а хлопок представляет собой практически стопроцентную целлюлозу.

Хити́н - структурный полисахарид низших растений, грибов и беспозвоночных животных (в основном роговые оболочки членистоногих - насекомых и ракообразных). Хитин, подобно целлюлозе в растениях, выполняет опорные и механические функции в организмах грибов и животных. Молекула хитина построена из остатков N-ацетил-D-глюкозамина, связанных между собой бета-1,4-гликозидными связями. Макромолекулы хитина неразветвлённые и их пространственная укладка не имеет ничего общего с целлюлозой.

Пекти́новые вещества́ - полигалактуроновая кислота, содержится в плодах и овощах, остатки D-галактуроновой кислоты связаны альфа-1,4-гликозидными связями. В присутствии органических кислот способны к желеобразованию, применяются в пищевой промышленности для приготовления желе и мармелада. Некоторые пектиновые вещества оказывают противоязвенный эффект и являются активной составляющей ряда фармацевтических препаратов, например, производное подорожника «плантаглюцид».

Мурами́н (лат. múrus - стенка) - полисахарид, опорно-механический материал клеточной стенки бактерий. По химическому строению представляет собой неразветвлённую цепь, построенную из чередующихся остатков N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединённых бета-1,4-гликозидной связью. Мурамин по структурной организации (неразветвлённая цепь бета-1,4-полиглюкопиранозного скелета) и функциональной роли весьма близок к хитину и целлюлозе.

Декстраны - полисахариды бактериального происхождения - синтезируются в условиях промышленного производства микробиологическим путём (воздействием микроорганизмов Leuconostoc mesenteroides на раствор сахарозы) и используются в качестве заменителей плазмы крови (так называемые клинические «декстраны»:Полиглюкин и другие).

Многие углеводы представляют собой белые твёрдые вещества сладкие на вкус. Разные углеводы имеют разную степень сладости. Так, фруктоза в три раза слаще глюкозы. Мёд наполовину состоит из фруктозы, поэтому он такой сладкий. Другие углеводы имеют менее слабый сладкий вкус.

Наиболее известный углевод – глюкоза – один из важнейших углеводов, который в свободном виде содержится в соке растений, особенно в плодах и нектаре цветков. Углеводы присутствуют в крови, печени, мозгу и других органах животных и человека. Так, в печени человека накапливается гликоген – запасной углевод животного происхождения.

Углеводы служат основным источником энергии для организма. При расщеплении глюкозы выделяется большое количество энергии, которую организм расходует на процессы жизнедеятельности. Углеводы составляют главную часть пищевого рациона человека.

Глюкоза – вещество, в котором аккумулируется энергия Солнца. Его можно назвать связующим звеном между живой природой и Солнцем. Глюкоза синтезируется в зелёных листьях растений из углекислого газа и воды. Это уникальный процесс на Земле, обеспечивающий существование растений, животных и человека.

Формуле C6H12O6 соответствует множество структур. Среди них выделим две – глюкозы и фруктозы. В их структурах находится пять гидроксильных и одна карбонильная группы. Это тот случай, когда вещество имеет разные функциональные группы. От функциональных групп зависят химические свойства углеводов. Глюкоза является альдегидоспиртом, а фруктоза – кетоноспиротом. Следовательно, глюкоза обладает свойствами многоатомных спиртов и альдегидов, а фруктоза – многоатомных спиртов и кетонов.

Молекулы глюкозы и фруктозы способны соединяться друг с другом с отщеплением молекул воды. Две молекулы соединяются через атом кислорода. При таком объединении они образуют дисахарид, называемый сахарозой, а в быту сахаром.

Клетчатка и крахмал

При соединении многих молекул глюкозы образуются клетчатка (целлюлозы) и крахмал, а также гликоген. Всем знакомы эти вещества. Волокна хлопчатника, льна состоят из длинных молекул клетчатки. Клетчатка входит в состав древесины.

Молекулы клетчатки располагаются параллельно друг другу и прочно соединяются водородными связями. Они возникают между атомами кислорода одних молекул и атомами водорода, входящими в гидроксильную группу, других. Таких связей по всей длине клетчатки очень много. Поэтому «пакет» молекул обладает высокой прочностью.

При образовании крахмала молекулы глюкозы объединяются, создавая линейные и разветвлённые цепи. Крахмал – это рассыпающийся белый порошок. Он содержится в картофеле, в зёрнах различных злаков, овощах. Это необходимый компонент нашей пищи.

В организмах животного и человека молекулы глюкозы, объединяясь, образуют животный крахмал – гликоген. Молекулы гликогена более разветвлены, чем молекулы крахмала. Гликоген является хранилищем глюкозы: он снабжает организм глюкозой при повышенных физических нагрузках.

Глюкоза, крахмал, клетчатка имеют большое значение не только в природе, но и в промышленности. Глюкозу используют в пищевой промышленности, в медицине. Крахмал применяют для изготовления кондитерских изделий. Клетчатку употребляют в качестве волокнистого материала и для получения тканей, лаков, взрывчатых веществ.

Нужна помощь в учебе?

Предыдущая тема: Сложные эфиры: жиры
Следующая тема:   Белки: молекулы белков и их свойства

ПЕРЕВАРИВАНИЕ И ВСАСЫВАНИЕ.

СИНТЕЗ И РАСПАД ГЛИКОГЕНА.

Индивидуальное задание

студента биологического ф-та

группы 4120-2(б)

Менадиева Рамазана Исметовича

запорожье 2012

Краткая справка об углеводах
2. Классификация углеводов
3. Структурно-функциональные особенности организации моно- и дисахари- дов: строение; нахождение в природе; получение; характеристика отдельных представителей
4.


7. Синтез и распад гликогена
8. Выводы

9. Список литературы.

ВВЕДЕНИЕ

Органические соединения составляют в среднем 20-30 % массы клетки живого организма.

К ним относятся биологические полимеры: белки, нуклеиновые кислоты, углеводы, а также жиры и ряд небольших молекул-гормонов, пигментов, АТФ и пр. В различные типы клеток входит неодинаковое количество органических соединений.

КРАТКАЯ СПРАВКА ОБ УГЛЕВОДАХ

Углеводы - органические соединения, состоящие из одной или многих молекул простых сахаров. Молярная масса углеводов колеблется в пределах от 100 до 1000000 Да (Дальтон-масса, приблизительно равная массе одного атома водорода).

Их общую формулу обычно записывают в виде Сn (Н2О) n (где n - не меньше трех). Впервые в 1844 г. этот термин ввел отечественный ученый К.

Шмид (1822-1894). Название «углеводы» возникло на основании анализа первых известных представителей этой группы соединений. Оказалось, что эти вещества состоят из углерода, водорода и кислорода, причем соотношение числа атомов водорода и кислорода у них такое же, как и в воде: на два атома водорода - один атом кислорода. Таким образом, их рассматривали как соединение углерода с водой. В дальнейшем стало известно много углеводов, не отвечающих этому условию, однако название «углеводы» до сих пор остается общепринятым.

В животной клетке углеводы находятся в количестве, не превышающем 2-5 %. Наиболее богаты углеводами растительные клетки, где их содержание в некоторых случаях достигает 90 % сухой массы (например, в клубнях картофеля, семенах).

КЛАССИФИКАЦИЯ УГЛЕВОДОВ

Моносахариды - это кетонные или альдегидные производные многоатомных спиртов. Атомы углерода, водорода и кислорода, входящие в их состав, находятся в соотношении 1:2:1.

Общая формула для простых сахаров - (СН2О) n. В зависимости от длины углеродного скелета (количества атомов углерода), их разделяют на: триозы-С3, тетрозы-С4, пентозы-С5, гексозы-С6 и т. д. Кроме того, сахара разделяют на: - альдозы, имеющие в составе альдегидную группу, - С=О. К ним относится | Н глюкоза:

H H H H H
CH2OH - C - C - C - C - C
| | | | \\
OH OH OH OH OH

В растворах все сахара, начиная с пентоз, имеют циклическую форму; в линейной же форме присутствуют только триозы и тетрозы. При образовании циклической формы атом кислорода альдегидной группы связывается ковалентной связью с предпоследним атомом углерода цепи, в результате образуются полуацетали (в случае альдоз) и полукетали (в случае кетоз).

Этот сахар - один из промежуточных продуктов фотосинтеза. Пентозы встречаются в природных условиях главным образом как составные части молекул более сложно построенных веществ, например сложных полисахаридов, носящих название пентозанов, а также растительных камедей. Пентозы в значительном количестве (10-15 %) содержатся в древесине, соломе. В природе преимущественно встречается арабиноза.

Она содержится в вишневом клее, свекле и аравийской камеди, откуда ее и получают. Рибоза и дезоксирибоза широко представлены в животном и растительном мире, это сахара, входящие в состав мономеров нуклеиновых кислот РНК и ДНК. Получают рибозу эпимеризацией арабинозы.

Ксилоза образуется при гидролизе полисахарида ксилозана, содержащегося в соломе, отрубях, древесине, шелухе подсолнечника. Продуктами различных типов брожения ксилозы являются молочная, уксусная, лимонная, янтарная и другие кислоты.

Организмом человека ксилоза усваивается плохо. Гидролизаты, содержащие ксилозу, используются для выращивания некоторых видов дрожжей, они в качестве белкового источника применяются для кормления сельскохозяйственных животных. При восстановлении ксилозы получают спирт ксилит, его используют как заменитель сахара для больных диабетом.

Широко применяют ксилит как стабилизатор влажности и пластификатор (в бумажной промышленности, парфюмерии, производстве целлофана).

Он является одним из основных компонентов при получении ряда поверхностно-активных веществ, лаков, клеев. Из гексозы наиболее широко распространены глюкоза, фруктоза, галактоза, их общая формула - С6Н12О6. Глюкоза (виноградный сахар, декстроза) содержится в соке винограда и других сладких плодов и в небольших количествах - в организмах животных и человека. Глюкоза входит в состав важнейших дисахаридов - тростникового и виноградного сахаров.

Высокомолекулярные полисахариды, т. е. крахмал, гликоген (животный крахмал) и клетчатка, целиком построены из остатков молекул глюкозы, соединенных друг с другом различными способами. Глюкоза - первичный источник энергии для клеток. В крови человека глюкозы содержится 0,1-0,12 %, снижение показателя вызывает нарушение жизнедеятельности нервных и мышечных клеток, иногда сопровождаемое судорогами или обморочным состоянием. Уровень содержания глюкозы в крови регулируется сложным механизмом работы нервной системы и желез внутренней секреции.

Глюкоза используется в текстильном производстве и в некоторых других производствах в качестве восстановителя. В медицине чистая глюкоза применяется в виде растворов для введения в кровь при ряде заболеваний и в виде таблеток. Из нее получают витамин С.

Галактоза вместе с глюкозой входит в состав некоторых гликозидов и полисахаридов. Остатки молекул галактозы входят в состав сложнейших биополимеров - ганглиозидов, или гликосфинголипидов. Они обнаружены в нервных узлах (ганглиях) человека и животных и содержатся также в ткани мозга, в селезенке в эритроцитах. Получают галактозу главным образом гидролизом молочного сахара. Фруктоза (фруктовый сахар) в свободном состоянии содержится во фруктах, меде.

Входит в состав многих сложных сахаров, например тростникового сахара, из которого она может быть получена гидролизом. Образует сложно построенный высокомолекулярный полисахарид инулин, содержащийся в некоторых растениях. Фруктозу получают также из инулина. Фруктоза - ценный пищевой сахар; она в 1,5 раза слаще сахарозы и в 3 раза слаще глюкозы. Она хорошо усваивается организмом. При восстановлении фруктозы образуются сорбит и маннит. Сорбит применяют как заменитель сахара в питании больных диабетом; кроме того, его используют для производства аскорбиновой кислоты (витамин С).

Дисахариды - типичные сахароподобные полисахариды. Это твердые вещества, или некристаллизующиеся сиропы, хорошо растворимые в воде.

Как аморфные, так и кристаллические дисахариды обычно плавятся в некотором интервале температур и, как правило, с разложением. Дисахариды образуются в результате реакции конденсации между двумя моносахаридами, обычно гексозами. Связь между двумя моносахаридами называют гликозидной связью. Обычно она образуется между первым и четвертым углеродными атомами соседних моносахаридных единиц (1,4-гликозидная связь).

С12Н22О11 + Н2О = 2С6Н12О6

Солодовый сахар значительно менее сладок, чем тростниковый (в 0,6 раза при одинаковых концентрациях). Лактоза (молочный сахар).

Название этого дисахарида возникло в связи с его получением из молока (от лат. lactum - молоко). При гидролизе лактоза расщепляется на глюкозу и галактозу:

Лактоза отличается от других сахаров отсутствием гигроскопичности: она не отсыревает. Молочный сахар применяется как фармацевтический препарат и питание для грудных детей. Лактоза в 4 или 5 раз менее сладка, чем сахароза. Сахароза (тростниковый или свекловичный сахара). Название возникло в связи с ее получением либо из сахарной свеклы, либо из сахарного тростника. Тростниковый сахар был известен за много столетий до нашей эры.

Лишь в середине XVIII в. этот дисахарид был обнаружен в сахарной свекле и только в начале XIX в. он был получен в производственных условиях. Сахароза очень распространена в растительном мире. Листья и семена всегда содержат небольшое количество сахарозы. Она содержится также в плодах (абрикосах, персиках, грушах, ананасах). Ее много в кленовом и пальмовом соках, кукурузе. Это наиболее известный и широко применяемый сахар.

При гидролизе из него образуются глюкоза и фруктоза:

С12Н22О11 + Н2О = С6Н12О6 + С6Н12О6

Смесь равных количеств глюкозы и фруктозы, получающаяся в результате инверсии тростникового сахара (в связи с изменением в процессе гидролиза правого вращения раствора на левое), называется инвертным сахаром (инверсия вращения). Природным инвертным сахаром является мед, состоящий в основном из глюкозы и фруктозы. Сахарозу получают в огромных количествах.

КЛАССИФИКАЦИЯ УГЛЕВОДОВ

Сахарная свекла содержит 16-20 % сахарозы, сахарный тростник - 14-26 %. Промытую свеклу измельчают и в аппаратах многократно извлекают сахарозу водой, имеющей температуру около 80 град. Полученную жидкость, содержащую, кроме сахарозы, большое количество различных примесей, обрабатывают известью.

Известь осаждает в виде кальциевых солей ряд органических кислот, а также белки и некоторые другие вещества. Часть извести при этом образует с тростниковым сахаром растворимые в холодной воде кальциевые сахараты, которые разрушаются обработкой диоксидом углерода.

Осадок карбоната кальция отделяют фильтрацией, фильтрат после дополнительной очистки упаривают в вакууме до получения кашицеобразной массы.

Выделившиеся кристаллы сахарозы отделяют при помощи центрифуг. Так получают сырой сахарный песок, имеющий желтоватый цвет, маточный раствор бурого цвета, некристаллизующийся сироп (свекловичная патока, или меласса). Сахарный песок очищают (рафинируют) и получают готовый продукт.

1234Следующая ⇒

Дата публикования: 2015-11-01; Прочитано: 417 | Нарушение авторского права страницы

Глава I.УГЛЕВОДЫ

§ 1. КЛАССИФИКАЦИЯ И ФУНКЦИИ УГЛЕВОДОВ

Еще в древние времена человечество познакомилось с углеводами и научилось использовать их в своей повседневной жизни.

Хлопок, лен, древесина, крахмал, мед, тростниковый сахар – это всего лишь некоторые из углеводов, сыгравшие важную роль в развитие цивилизации. Углеводы относятся к числу наиболее распространенных в природе органических соединений. Они являются неотъемлемыми компонентами клеток любых организмов, в том числе бактерий, растений и животных. В растениях на долю углеводов приходится 80 – 90 % сухой массы, у животных – около 2 % массы тела.

Их синтез из углекислого газа и воды осуществляется зелеными растениями с использованием энергии солнечного света (фотосинтез ). Суммарное стехиометрическое уравнение этого процесса имеет вид:

Затем глюкоза и другие простейшие углеводы превращаются в более сложные углеводы, например, крахмал и целлюлозу.

Растения используют эти углеводы для высвобождения энергии в процессе дыхания. Этот процесс в сущности обратен процессу фотосинтеза:

Интересно знать! Зеленые растения и бактерии в процессе фотосинтеза ежегодно поглощают из атмосферы приблизительно 200 млрд. т углекислого газа. При этом происходит высвобождение в атмосферу около 130 млрд. т кислорода и синтезируется 50 млрд.

т органических соединений углерода, в основном углеводов.

Животные не способны из углекислого газа и воды синтезировать углеводы.

Потребляя углеводы с пищей, животные расходуют накопленную в них энергию для поддержания процессов жизнедеятельности.

Название «углеводы» является историческим. Первые представители этих веществ описывались суммарной формулой СmH2nOn или Cm(H2O)n. Другое название углеводов – сахара – объясняется сладким вкусом простейших углеводов.

По своей химической структуре углеводы – сложная и многообразная группа соединений. Среди них встречаются как достаточно простые соединения с молекулярной массой около 200, так и гигантские полимеры, молекулярная масса которых достигает нескольких миллионов. Наряду с атомами углерода, водорода и кислорода в состав углеводов могут входить атомы фосфора, азота, серы и, реже, других элементов.

Классификация углеводов

Все известные углеводы можно подразделить на две большие группы – простые углеводы и сложные углеводы.

Отдельную группу составляют углеводсодержащие смешанные полимеры, например, гликопротеины – комплекс с молекулой белка, гликолипиды – комплекс с липидом, и др.

Простые углеводы (моносахариды, или монозы) являются полигидроксикарбонильными соединениями, не способными при гидролизе образовывать более простые углеводные молекулы.

Если моносахариды содержат альдегидную группу, то они относятся к классу альдоз (альдегидоспиртов), если кетонную – к классу кетоз (кетоспиртов). В зависимости от числа углеродных атомов в молекуле моносахаридов различают триозы (С3), тетрозы (С4), пентозы (С5), гексозы (С6) и т.д.:

Наиболее часто в природе встречаются пентозы и гексозы.

Сложные углеводы (полисахариды, или полиозы) представляют собой полимеры, построенные из остатков моносахаридов.

Они при гидролизе образуют простые углеводы. В зависимости от степени полимеризации их подразделяют на низкомолекулярные (олигосахариды, степень полимеризации которых, как правило, меньше 10) и высокомолекулярные. Олигосахариды – сахароподобные углеводы, растворимые в воде и сладкие на вкус.

Их по способности восстанавливать ионы металлов (Cu2+, Ag+) делят на восстанавливающие и невосстанавливающие. Полисахариды в зависимости от состава можно также разделить на две группы: гомополисахариды и гетерополисахариды.

Гомополисахариды построены из моносахаридных остатков одного типа, а гетерополисахариды – из остатков разных моносахаридов.

Сказанное с примерами наиболее распространенных представителей каждой группы углеводов можно представить в виде следующей схемы:

Функции углеводов

Биологические функции полисахаридов весьма разнообразны.

Энергетическая и запасающая функция

В углеводах заключено основное количество калорий, потребляемых человеком с пищей.

Основным углеводом, поступающим с пищей, является крахмал.

Углеводы: Их классификация и состав

Он содержится в хлебобулочных изделиях, картофеле, в составе круп. В рационе человека присутствуют также гликоген (в печени и мясе), сахароза (в качестве добавок к различным блюдам), фруктоза (во фруктах и меде), лактоза (в молоке).

Полисахариды, прежде чем усвоиться организмом, должны быть гидролизованы с помощью пищеварительных ферментов до моносахаридов. Только в таком виде они всасываются в кровь. С током крови моносахариды поступают к органам и тканям, где используются для синтеза своих собственных углеводов или других веществ, либо подвергаются расщеплению с целью извлечения из них энергии.

Освобождающаяся в результате расщепления глюкозы энергия накапливается в виде АТФ.

Различают два процесса распада глюкозы: анаэробный (в отсутствие кислорода) и аэробный (в присутствии кислорода). В результате анаэробного процесса образуется молочная кислота

которая при тяжелых физических нагрузках накапливается в мышцах и вызывает боль.

В результате же аэробного процесса глюкоза окисляется до оксида углерода (IV) и воды:

В результате аэробного распада глюкозы освобождается значительно больше энергии, чем в результате анаэробного.

В целом при окислении 1 г углеводов выделяется 16,9 кДж энергии.

Глюкоза может подвергаться спиртовому брожению. Этот процесс осуществляется дрожжами в анаэробных условиях:

Спиртовое брожение широко используется в промышленности для производства вин и этилового спирта.

Человек научился использовать не только спиртовое брожение, но и нашел применение молочнокислому брожению, например, для получения молочнокислых продуктов и квашения овощей.

В организме человека и животных нет ферментов, способных гидролизовать целлюлозу, тем не менее целлюлоза является основным компонентом пищи для многих животных, в частности, для жвачных.

В желудке этих животных в больших количествах содержатся бактерии и простейшие, продуцирующие фермент целлюлазу, катализирующий гидролиз целлюлозы до глюкозы. Последняя может подвергаться дальнейшим превращениям, в результате которых образуются масляная, уксусная, пропионовая кислоты, способные всасываться в кровь жвачных.

Углеводы выполняют и запасную функцию.

Так, крахмал, сахароза, глюкоза у растений и гликоген у животных являются энергетическим резервом их клеток.

Структурная, опорная и защитная функции

Целлюлоза у растений и хитин у беспозвоночных и в грибах выполняют опорную и защитную функции.

Полисахариды образуют капсулу у микроорганизмов, укрепляя тем самым мембрану. Липополисахариды бактерий и гликопротеины поверхности животных клеток обеспечивают избирательность межклеточного взаимодействия и иммунологических реакций организма. Рибоза служит строительным материалом для РНК, а дезоксирибоза – для ДНК.

Защитную функцию выполняет гепарин. Этот углевод, являясь ингибитором свертывания крови, предотвращает образование тромбов. Он содержится в крови и соединительной ткани млекопитающих.

Клеточные стенки бактерий, образованные полисахаридами, скреплены короткими аминокислотными цепочками, защищают бактериальные клетки от неблагоприятных воздействий. Углеводы участвуют у ракообразных и насекомых в построение наружного скелета, выполняющего защитную функцию.

Регуляторная функция

Клетчатка усиливает перистальтику кишечника, улучшая этим пищеварение.

Интересна возможность использования углеводов в качестве источника жидкого топлива – этанола.

С давних пор использовали древесину для обогрева жилищ и приготовления пищи. В современном обществе этот вид топлива вытесняется другими видами – нефтью и углем, более дешевыми и удобными в использовании. Однако растительное сырье, несмотря на некоторые неудобства в использовании, в отличие от нефти и угля является возобновляемым источником энергии. Но его применение в двигателях внутреннего сгорания затруднено. Для этих целей предпочтительнее использовать жидкое топливо или газ.

Из низкосортной древесины, соломы или другого растительного сырья, содержащих целлюлозу или крахмал, можно получить жидкое топливо – этиловый спирт.

Для этого необходимо вначале гидролизовать целлюлозу или крахмал и получить глюкозу:

а затем полученную глюкозу подвергнуть спиртовому брожению и получить этиловый спирт. После очистки его можно использовать в виде топлива в двигателях внутреннего сгорания. Надо отметить, что в Бразилии с этой целью ежегодно из сахарного тростника, сорго и маниока получают миллиарды литров спирта и используют его в двигателях внутреннего сгорания.

БИОЛОГИЧЕСКАЯ РОЛЬ УГЛЕВОДОВ.

ПЕРЕВАРИВАНИЕ И ВСАСЫВАНИЕ.

СИНТЕЗ И РАСПАД ГЛИКОГЕНА.

Индивидуальное задание

студента биологического ф-та

группы 4120-2(б)

Менадиева Рамазана Исметовича

запорожье 2012

Биологическая роль биополимеров - полисахаридов
5. Химические свойства углеводов
6. Переваривание и всасывание

7. Синтез и распад гликогена
8. Выводы

9. Список литературы.

ВВЕДЕНИЕ

Органические соединения составляют в среднем 20-30 % массы клетки живого организма. К ним относятся биологические полимеры: белки, нуклеиновые кислоты, углеводы, а также жиры и ряд небольших молекул-гормонов, пигментов, АТФ и пр. В различные типы клеток входит неодинаковое количество органических соединений.

В растительных клетках преобладают сложные углеводы-полисахариды, в животных - больше белков и жиров. Тем не менее, каждая из групп органических веществ в любом типе клеток выполняет сходные функции: обеспечивает энергией, является строительным материалом.

КРАТКАЯ СПРАВКА ОБ УГЛЕВОДАХ

Углеводы - органические соединения, состоящие из одной или многих молекул простых сахаров.

Молярная масса углеводов колеблется в пределах от 100 до 1000000 Да (Дальтон-масса, приблизительно равная массе одного атома водорода). Их общую формулу обычно записывают в виде Сn (Н2О) n (где n - не меньше трех). Впервые в 1844 г. этот термин ввел отечественный ученый К. Шмид (1822-1894). Название «углеводы» возникло на основании анализа первых известных представителей этой группы соединений. Оказалось, что эти вещества состоят из углерода, водорода и кислорода, причем соотношение числа атомов водорода и кислорода у них такое же, как и в воде: на два атома водорода - один атом кислорода.

Таким образом, их рассматривали как соединение углерода с водой. В дальнейшем стало известно много углеводов, не отвечающих этому условию, однако название «углеводы» до сих пор остается общепринятым. В животной клетке углеводы находятся в количестве, не превышающем 2-5 %. Наиболее богаты углеводами растительные клетки, где их содержание в некоторых случаях достигает 90 % сухой массы (например, в клубнях картофеля, семенах).

КЛАССИФИКАЦИЯ УГЛЕВОДОВ

Выделяют три группы углеводов: моносахариды, или простые сахара (глюкоза, фруктоза); олигосахариды - соединения, состоящие из 2-10 последовательно соединенных молекул простых сахаров (сахароза, мальтоза); полисахариды, включающие более 10 молекул сахаров (крахмал, целлюлоза).

СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ ОРГАНИЗАЦИИ МОНО- И ДИСАХАРИДОВ: СТРОЕНИЕ; НАХОЖДЕНИЕ В ПРИРОДЕ; ПОЛУЧЕНИЕ. ХАРАКТЕРИСТИКА ОТДЕЛЬНЫХ ПРЕДСТАВИТЕЛЕЙ

Моносахариды - это кетонные или альдегидные производные многоатомных спиртов. Атомы углерода, водорода и кислорода, входящие в их состав, находятся в соотношении 1:2:1. Общая формула для простых сахаров - (СН2О) n. В зависимости от длины углеродного скелета (количества атомов углерода), их разделяют на: триозы-С3, тетрозы-С4, пентозы-С5, гексозы-С6 и т.

д. Кроме того, сахара разделяют на: - альдозы, имеющие в составе альдегидную группу, - С=О. К ним относится | Н глюкоза:

H H H H H
CH2OH - C - C - C - C - C
| | | | \\
OH OH OH OH OH

Кетозы, имеющие в составе кетонную группу, - C- . К ним, например, || относится фруктоза.

В растворах все сахара, начиная с пентоз, имеют циклическую форму; в линейной же форме присутствуют только триозы и тетрозы.

При образовании циклической формы атом кислорода альдегидной группы связывается ковалентной связью с предпоследним атомом углерода цепи, в результате образуются полуацетали (в случае альдоз) и полукетали (в случае кетоз).

ХАРАКТЕРИСТИКА МОНОСАХАРИДОВ, ОТДЕЛЬНЫЕ ПРЕДСТАВИТЕЛИ

Из тетроз в процессах обмена наиболее важна эритроза.

Этот сахар - один из промежуточных продуктов фотосинтеза. Пентозы встречаются в природных условиях главным образом как составные части молекул более сложно построенных веществ, например сложных полисахаридов, носящих название пентозанов, а также растительных камедей.

Пентозы в значительном количестве (10-15 %) содержатся в древесине, соломе. В природе преимущественно встречается арабиноза. Она содержится в вишневом клее, свекле и аравийской камеди, откуда ее и получают. Рибоза и дезоксирибоза широко представлены в животном и растительном мире, это сахара, входящие в состав мономеров нуклеиновых кислот РНК и ДНК. Получают рибозу эпимеризацией арабинозы.

Ксилоза образуется при гидролизе полисахарида ксилозана, содержащегося в соломе, отрубях, древесине, шелухе подсолнечника. Продуктами различных типов брожения ксилозы являются молочная, уксусная, лимонная, янтарная и другие кислоты. Организмом человека ксилоза усваивается плохо.

Гидролизаты, содержащие ксилозу, используются для выращивания некоторых видов дрожжей, они в качестве белкового источника применяются для кормления сельскохозяйственных животных. При восстановлении ксилозы получают спирт ксилит, его используют как заменитель сахара для больных диабетом. Широко применяют ксилит как стабилизатор влажности и пластификатор (в бумажной промышленности, парфюмерии, производстве целлофана). Он является одним из основных компонентов при получении ряда поверхностно-активных веществ, лаков, клеев.

Из гексозы наиболее широко распространены глюкоза, фруктоза, галактоза, их общая формула - С6Н12О6. Глюкоза (виноградный сахар, декстроза) содержится в соке винограда и других сладких плодов и в небольших количествах - в организмах животных и человека. Глюкоза входит в состав важнейших дисахаридов - тростникового и виноградного сахаров. Высокомолекулярные полисахариды, т. е. крахмал, гликоген (животный крахмал) и клетчатка, целиком построены из остатков молекул глюкозы, соединенных друг с другом различными способами.

Глюкоза - первичный источник энергии для клеток. В крови человека глюкозы содержится 0,1-0,12 %, снижение показателя вызывает нарушение жизнедеятельности нервных и мышечных клеток, иногда сопровождаемое судорогами или обморочным состоянием. Уровень содержания глюкозы в крови регулируется сложным механизмом работы нервной системы и желез внутренней секреции.

Одно из массовых тяжелых эндокринных заболеваний - сахарный диабет - связано с гипофункцией островковых зон поджелудочной железы. Сопровождается значительным снижением проницаемости мембраны мышечных и жировых клеток для глюкозы, что приводит к повышению содержания глюкозы в крови, а также в моче. Глюкозу для медицинских целей получают путем очистки - перекристаллизации - технической глюкозы из водных или водно-спиртовых растворов.

Глюкоза используется в текстильном производстве и в некоторых других производствах в качестве восстановителя. В медицине чистая глюкоза применяется в виде растворов для введения в кровь при ряде заболеваний и в виде таблеток.

Из нее получают витамин С. Галактоза вместе с глюкозой входит в состав некоторых гликозидов и полисахаридов. Остатки молекул галактозы входят в состав сложнейших биополимеров - ганглиозидов, или гликосфинголипидов. Они обнаружены в нервных узлах (ганглиях) человека и животных и содержатся также в ткани мозга, в селезенке в эритроцитах. Получают галактозу главным образом гидролизом молочного сахара. Фруктоза (фруктовый сахар) в свободном состоянии содержится во фруктах, меде.

Входит в состав многих сложных сахаров, например тростникового сахара, из которого она может быть получена гидролизом. Образует сложно построенный высокомолекулярный полисахарид инулин, содержащийся в некоторых растениях. Фруктозу получают также из инулина. Фруктоза - ценный пищевой сахар; она в 1,5 раза слаще сахарозы и в 3 раза слаще глюкозы.

Она хорошо усваивается организмом. При восстановлении фруктозы образуются сорбит и маннит. Сорбит применяют как заменитель сахара в питании больных диабетом; кроме того, его используют для производства аскорбиновой кислоты (витамин С).

При окислении фруктоза дает винную и щавелевую кислоту.

Дисахариды - типичные сахароподобные полисахариды. Это твердые вещества, или некристаллизующиеся сиропы, хорошо растворимые в воде. Как аморфные, так и кристаллические дисахариды обычно плавятся в некотором интервале температур и, как правило, с разложением. Дисахариды образуются в результате реакции конденсации между двумя моносахаридами, обычно гексозами. Связь между двумя моносахаридами называют гликозидной связью. Обычно она образуется между первым и четвертым углеродными атомами соседних моносахаридных единиц (1,4-гликозидная связь).

Этот процесс может повторяться бессчетное число раз, в результате чего и возникают гигантские молекулы полисахаридов. После того как моносахаридные единицы соединятся друг с другом, их называют остатками. Таким образом мальтоза состоит из двух остатков глюкозы. Среди дисахаридов наиболее широко распространены мальтоза (глюкоза + глюкоза), лактоза (глюкоза + галактоза), сахароза (глюкоза + фруктоза).

ОТДЕЛЬНЫЕ ПРЕДСТАВИТЕЛИ ДИСАХАРИДОВ

Мальтоза (солодовый сахар) имеет формулу С12Н22О11.

Углеводы. Классификация. Функции

Название возникло в связи со способом получения мальтозы: ее получают из крахмала при воздействии солода (лат. maltum - солод). В результате гидролиза мальтоза расщепляется на две молекулы глюкозы:

С12Н22О11 + Н2О = 2С6Н12О6

Солодовый сахар является промежуточным продуктом при гидролизе крахмала, он широко распространен в растительных и животных организмах.

Солодовый сахар значительно менее сладок, чем тростниковый (в 0,6 раза при одинаковых концентрациях). Лактоза (молочный сахар). Название этого дисахарида возникло в связи с его получением из молока (от лат.

lactum - молоко). При гидролизе лактоза расщепляется на глюкозу и галактозу:

С12Н22О11 + Н2О = С6Н12О6 + С6Н12О6

Лактозу получают из молока: в коровьем молоке ее содержится 4-5,5 %, в женском молоке - 5,5-8,4 %.

Лактоза отличается от других сахаров отсутствием гигроскопичности: она не отсыревает. Молочный сахар применяется как фармацевтический препарат и питание для грудных детей.

Лактоза в 4 или 5 раз менее сладка, чем сахароза. Сахароза (тростниковый или свекловичный сахара). Название возникло в связи с ее получением либо из сахарной свеклы, либо из сахарного тростника. Тростниковый сахар был известен за много столетий до нашей эры. Лишь в середине XVIII в. этот дисахарид был обнаружен в сахарной свекле и только в начале XIX в. он был получен в производственных условиях.

Сахароза очень распространена в растительном мире. Листья и семена всегда содержат небольшое количество сахарозы. Она содержится также в плодах (абрикосах, персиках, грушах, ананасах). Ее много в кленовом и пальмовом соках, кукурузе. Это наиболее известный и широко применяемый сахар. При гидролизе из него образуются глюкоза и фруктоза:

С12Н22О11 + Н2О = С6Н12О6 + С6Н12О6

Смесь равных количеств глюкозы и фруктозы, получающаяся в результате инверсии тростникового сахара (в связи с изменением в процессе гидролиза правого вращения раствора на левое), называется инвертным сахаром (инверсия вращения).

Природным инвертным сахаром является мед, состоящий в основном из глюкозы и фруктозы. Сахарозу получают в огромных количествах. Сахарная свекла содержит 16-20 % сахарозы, сахарный тростник - 14-26 %. Промытую свеклу измельчают и в аппаратах многократно извлекают сахарозу водой, имеющей температуру около 80 град.

Полученную жидкость, содержащую, кроме сахарозы, большое количество различных примесей, обрабатывают известью. Известь осаждает в виде кальциевых солей ряд органических кислот, а также белки и некоторые другие вещества.

Часть извести при этом образует с тростниковым сахаром растворимые в холодной воде кальциевые сахараты, которые разрушаются обработкой диоксидом углерода.

Осадок карбоната кальция отделяют фильтрацией, фильтрат после дополнительной очистки упаривают в вакууме до получения кашицеобразной массы. Выделившиеся кристаллы сахарозы отделяют при помощи центрифуг. Так получают сырой сахарный песок, имеющий желтоватый цвет, маточный раствор бурого цвета, некристаллизующийся сироп (свекловичная патока, или меласса).

Сахарный песок очищают (рафинируют) и получают готовый продукт.

1234Следующая ⇒

Дата публикования: 2015-11-01; Прочитано: 416 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.002 с)…



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта