Главная » Выращивание » Центры кристаллизации воды. Подготовка к исследованию

Центры кристаллизации воды. Подготовка к исследованию

Фазой называется однородная часть термодинамической системы отделённая от других частей системы(других фаз) поверхностью раздела, при переходе через которую химический состав, структура и свойства вещества изменяются скачками.

Кристаллизация - это процесс выделения твёрдой фазы в виде кристаллов из растворов или расплавов, в химической промышленности процесс кристаллизации используется для получения веществ в чистом виде.

Кристаллизация начинается при достижении некоторого предельного условия, например, переохлаждения жидкости или пересыщения пара, когда практически мгновенно возникает множество мелких кристалликов - центров кристаллизации . Кристаллики растут, присоединяя атомы или молекулы из жидкости или пара. Рост граней кристалла происходит послойно, края незавершённых атомных слоев (ступени) при росте движутся вдоль грани. Зависимость скорости роста от условий кристаллизации приводит к разнообразию форм роста и структуры кристаллов (многогранные, пластинчатые, игольчатые, скелетные, дендритные и другие формы, карандашные структуры и т. д.). В процессе кристаллизации неизбежно возникают различные дефекты.

На число центров кристаллизации и скорость роста значительно влияет степень переохлаждения.

Степень переохлаждения - уровень охлаждения жидкого металла ниже температуры перехода его в кристаллическую (твердую) модификацию. С.п. необходима для компенсации энергии скрытой теплоты кристаллизации. Первичной кристаллизацией называется образование кристаллов в металлах (и сплавах) при переходе из жидкого состояния в твердое.


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Кристаллизация" в других словарях:

    - (ново лат., от греч. krystallos кристалл). Такой переход тел из жидкого состояния в твердое, при котором они принимают известные кристаллические формы. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. КРИСТАЛЛИЗАЦИЯ … Словарь иностранных слов русского языка

    кристаллизация - и, ж. cristallisation <, лат. cristallsatio. 1. хим. Процесс образования кристаллов. Сл. 18. Кристаллизация или зернованье. Лом. ОМ 599. // Сл. 18 11 18. Сии минеральныя изпарения всего болле участвуют в кристаллизации, крашении камней и… … Исторический словарь галлицизмов русского языка

    Образование кристаллов из паров, р ров, расплавов, из в ва в тв. состоянии (аморфном или другом кристаллическом), из электролитов в процессе электролиза (электрокристаллизация), а также при хим. реакциях. Для К. необходимо нарушение термодинамич … Физическая энциклопедия

    Кристаллизация - – процесс образования кристаллов при переходе вещества из термодинамически менее устойчивого состояния в более устойчивое. [Словарь основных терминов, необходимых при проектировании, строительстве и эксплуатации автомобильных дорог.]… … Энциклопедия терминов, определений и пояснений строительных материалов

    Современная энциклопедия

    Сущ., кол во синонимов: 4 вакуум кристаллизация (1) гидатогенезис (2) … Словарь синонимов

    Кристаллизация - КРИСТАЛЛИЗАЦИЯ, процесс образования кристаллов из паров, растворов, расплавов, из вещества в другом кристаллическом или аморфном состоянии. Кристаллизация начинается при переохлаждении жидкости или пересыщении пара, когда практически мгновенно… … Иллюстрированный энциклопедический словарь

    КРИСТАЛЛИЗАЦИЯ, процесс образования КРИСТАЛЛОВ из вещества, переходящего из газообразного или жидкого состояния в твердое (СУБЛИМАЦИЯ или плавление) или возникающего из раствора (ИСПАРЕНИЕ или ОСАЖДЕНИЕ). При плавлении твердое вещество нагревают… … Научно-технический энциклопедический словарь

    КРИСТАЛЛИЗОВАТЬ, зую, зуешь; ованный; сов. и несов., что. Превратить (ащать) в кристаллы. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    Процесс перехода тела из жидкого (иногда игазообразного) состояния в твердое, причем оно принимает более или менееправильную геометрическую форму кристалла … Энциклопедия Брокгауза и Ефрона

    Процесс роста к ла с момента зарождения. К. может происходить из жидкого состояния (раствора, расплава; магмы; фазовый переход), газообразного (см. Сублимация) и твердого. См. Перекристаллизация, Метасоматоз, Потоки концентрационные, Регенерация… … Геологическая энциклопедия

Книги

  • Кристаллизация общественного мнения , Бернейс Эдвард. Книга Эдварда Бернейса "Кристаллизация общественного мнения"-первая и уже ставшая классической работа, посвященная PR как самостоятельной дисциплине. Написанная в 1923 году, она впервые четко…

Внимание! Администрация сайта сайт не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

  • Участник:Ковалёв Павел Алексеевич
  • Руководитель:Шик Галина Яковлевна
Цель работы: провести опыты по кристаллизации воды и подготовить предложения по их проведению.

Вступление

Вода является не только одним из самых необходимых, но и самых удивительных явлений на нашей планете. Исключительно важна роль воды в возникновении и поддержании жизни на Земле, в химическом строении живых организмов, в формировании климата и погоды. Вода является важнейшим веществом для всех живых существ на Земле.

Введение

Большая часть поверхности Земли покрыта водой (океаны, моря, озёра, реки, льды). На Земле примерно 96,5 % воды приходится на океаны, 1,7 % мировых запасов составляют грунтовые воды, ещё 1,7 % – ледники и ледяные шапки Антарктиды и Гренландии, небольшая часть находится в реках, озёрах и болотах, и 0,001 % в облаках, которые образуются из взвешенных в воздухе частиц льда и жидкой воды.

Вода при нормальных условиях находится в жидком состоянии, однако при температуре в 0 °C она переходит в твердое состояние – лед и кипит (превращается в водяной пар) при температуре 100 °C.

Значения 0 °C и 100 °C были выбраны как соответствующие температурам таяния льда и кипения воды при создании температурной шкалы «по Цельсию».

Лёд встречается в природе в виде собственно льда (материкового, плавающего, подземного), а также в виде снега, инея, изморози. Под действием собственного веса лёд приобретает пластические свойства и текучесть.

Природный лёд обычно значительно чище, чем вода, так как при кристаллизации воды в первую очередь в решётку встают молекулы воды.

Общие запасы льда на Земле около 30 млн. км³. Основные запасы льда сосредоточены в полярных шапках (главным образом, в Антарктиде, где толщина слоя льда достигает 4 км).

В мировом океане вода солёная и это препятствует образованию льда, поэтому лёд образуется только в полярных и субполярных широтах, где зима долгая и очень холодная. Замерзают некоторые неглубокие моря, расположенные в умеренном поясе.

Кроме того, имеются данные о наличии льда на планетах Солнечной системы (например, на Марсе), их спутниках, на карликовых планетах и в ядрах комет.

Исследование свойств воды необходимо для человечества.

При этом процесс кристаллизации воды можно изучать в домашних условиях, а также на уроках в средней школе.

Актуальность работы использование на уроках физики, для знакомства учащихся со свойствами воды при кристаллизации.

Объектом исследования является кристаллизация воды.

Предмет исследования – изучения свойств воды при кристаллизации.

Цель работы провести опыты по кристаллизации воды и подготовить предложения по их проведению.

Главной задачей является изучение свойств воды при кристаллизации.

Для решения главной задачи необходимо:

Теоретическая значимость работы заключается в систематизации основных свойств воды и значения кристаллизации воды для флоры и фауны Земли.

Практическая значимость работы – изучение процесса кристаллизации воды во время проведение опытов, а также подготовка предложений по проведению опытов на уроках в средней школе.

1. Подготовка к исследованию

1.1 Анализ основных свойств воды

Вода является одним из самых удивительных веществ на планете Земля. Встретить воду можно практически везде в естественных условиях как на поверхности планеты, так и в ее недрах в трех возможных физических состояниях для веществ: жидкое, твердое, газообразное (то есть вода, лед, водяной пар).

Конечно, существуют вещества, которые можно получить в виде жидкости, твердого тела или газа. Однако, не существует подобного химического вещества, которое именно в естественных условиях встречается в указанных выше трех физических состояниях.

Свойства воды:

  1. Вода является веществом, которое не имеет ни цвета, ни запаха, ни вкуса.
  2. Вода является единственным на планете Земля известным науке веществом, встречающимся в природных условиях в трех физических состояниях: твердое тело, жидкость, газ.
  3. Вода является универсальным растворителем, имея возможность растворять большее количество солей, а также других веществ, чем какие-либо другие вещества.
  4. Вода с большим трудом поддается окислению. Вода - достаточно химически устойчива, то есть разложить ее на составные части или сжечь достаточно проблематично.
  5. Окислению водой поддаются практически все естественные металлы, так же под ее воздействием разрушаются особо твердые горные породы.
  6. Вода, как физическое вещество, характеризуется большим сродством сама с собой. Такое сродство у воды является самым большим среди всех жидкостей. Вследствие этого вода на поверхности размещается в виде капель сферической формы, поскольку сфера обладает наименьшей при заданном объеме поверхностью.
  7. Замерзание воды происходит не при температурных условиях ее наибольшей плотности (при 4 градусах Цельсия), а при нуле градусов Цельсия. Это свойства пресной воды. Однако, замерзание морской воды происходит при более низких температурах: минус 1,9 градусов Цельсия, при солености 35%.
  8. Вода обладает очень высокой теплоемкостью, относительно мало нагреваясь при этом. Также вода обладает достаточно высокой скрытой теплотой плавления (порядка 80 кал/г), а также испарения (порядка 540 кал/г). Вода способна поглощать значительные объемы дополнительного тепла. Температура же в процессе замерзания или при кипении остается неизменной.
  9. Дистиллированная вода практически не проводит электрический ток, однако наличие в воде даже небольшого количества солей значительно увеличивает ее токопроводящие свойства.

Свойства снега:

  1. При смешивании соли со снегом наблюдается два процесса: разрушение кристаллической структуры соли, которое происходит с поглощением тепла, и гидрация ионов. Последний процесс происходит с выделением тепла в окружающую среду. Для поваренной соли и хлористого кальция первый процесс превалирует над вторым. Поэтому при смешивании снега с этими солями происходит активный отбор тепла из окружающей среды. Ещё одна особенность соляных растворов состоит в том, что их точка замерзания ниже 0 градусов. Чтобы снег на тротуарах таял при температуре ниже 0 градусов, его посыпают этими солями.
  2. Снег обладает удивительным свойством – памятью. Он сохраняет следы. По следам можно, например, изучать физику. Чем крупнее животное, тем глубже от него след, следовательно, тем большее давление оно оказывает на снег. Следы собаки более глубокие, чем следы её щенков. Мыши, ласки оставляет неглубокие чёрточки. Природа снабдила копытных животных способностью раздвигать копыта и увеличивать площадь опоры. Это помогает им зимой при передвижение по заснеженному лесу и полям не так глубоко погружаться в снег.


1.2 Значение кристаллизации воды для флоры и фауны

Мы любим снег не только за то, что он дарит нам великолепные зимние пейзажи. У нашей любви к снегу немало рациональных причин. «Снег на полях - хлеб в закромах», «Зима без снега – лето без хлеба», – справедливо утверждают старинные русские пословицы. Снежный покров - это огромный запас влаги, столь необходимый полям, в то же время это своеобразное гигантское одеяло, защищающее поверхность земли от холодных ветров. Академик Б. И. Вернадский подчеркивал, что снежный покров - «не просто теплая покрышка озимых, это живительная покрышка», весной он дает талые воды, насыщенные кислородом. Известно, что количество азотистых соединений летом в почве пропорционально высоте сошедшего снежного покрова. Недаром снежная мелиорация рассматривается сегодня как одно из важнейших условий получения высоких и устойчивых урожаев.

Запасы снега существенно влияют на уровень воды в реках, определяют изменения климата на больших территориях.

Кроме того, снег является хорошим строительным материалом для различных построек на севере - от иглу (жилищ эскимосов) до больших складских помещений. Существует самая большая в мире гостиница, полностью сделанная изо льда и снега, находится она в шведской Лапландии в 200 километрах от Северного полярного круга.

Он служит основой зимних дорог и даже аэродромов.

Благодаря снегу мы каждый год любуемся сказочными зимними пейзажами, играем в снежки, строим снежные городки, крепости, катаемся на лыжах, санках, в снежном уборе приходит к нам прекрасный новогодний праздник.

Значение льда трудно недооценить. Лёд оказывает большое влияние на условия обитания и жизнедеятельности растений и животных, на разные виды хозяйственной деятельности человека. Покрывая воду сверху, лед играет в природе роль своего рода плавучего экрана, защищающего реки и водоемы от дальнейшего замерзания и сохраняющего жизнь подводному миру. Если бы плотность воды увеличивалась при замерзании, лед оказался бы тяжелее воды и начал тонуть, что привело бы к гибели всех живых существ в реках, озерах и океанах, которые замерзли бы целиком, превратившись в глыбы льда, а Земля стала ледяной пустыней, что неизбежно привело бы к гибели всего живого.

Лёд может вызывать ряд стихийных бедствий с вредными и разрушительными последствиями – обледенение летательных аппаратов, судов, сооружений, дорожного полотна и почвы, град, метели и снежные заносы, речные заторы с наводнениями, ледяные обвалы и др. Природный лёд используется для хранения и охлаждения пищевых продуктов, биологических и медицинских препаратов, для чего он специально производится и заготавливается.

1.3 Выбор и обоснование опытов для проведения исследования

Для проведения опытов с водой необходимо выбрать те, которые наиболее полно характеризуют и подтверждают свойства воды.

Проведенный анализ показал, что лучше всего это будет реализовано при выполнении следующих опытов:

  1. Замерзание соленой воды.
  2. Расширение воды при замерзании.
  3. Замерзание жидкости при внешнем воздействии снега.
  4. Замерзание мыльных пузырей.
  5. Срастание сосульки.
  6. Скрип сухого снега.
  7. Примерзание к поверхности.

2. Проведение исследования

2.1 Подготовка материальной части

Для проведения опытов были взяты:

  • предметы – кастрюля, стеклянная бутылка, пластиковая бутылка, одноразовые стаканы, тонкая медная проволока, трубочка;
  • вещества – снег, сосулька, соль, вода, мыльный раствор, сок.

2.2 Проведение опытов с описанием основных результатов

1. Замерзание соленой воды.

Налейте в две формочки воду – чистую и очень солёную. Вынесите формочки на мороз или поставьте в морозильную камеру. Вы заметите, что чистая пресная вода превратилась в лёд, а солёная замёрзнет при очень сильном морозе.

Замерзание воды происходит не при температурных условиях ее наибольшей плотности (при 4 градусах Цельсия), а при нуле градусов Цельсия. Это свойства пресной воды.

При этом, морской лед отличается от пресноводного в ряде отношений. У соленой воды температура замерзания понижается по мере увеличения солености. В диапазоне солености от 30 до 35 промилле точка замерзания меняется от -1.6 до -1.9 град. Образование морского льда можно рассматривать как замерзание пресной воды с вытеснением солей в ячейки морской воды внутри толщи льда. Когда температура достигает точки замерзания, образуются ледяные кристаллы, которые «окружают» не замерзшую воду.

2. Расширение воды при замерзании.

Наполните водой пластиковый стакан, пластиковую бутылку и стеклянную бутылку. Выставьте их на мороз. Замерзая, вода увеличивается в объёме, «вылезает» из стакана, стеклянную бутылку разрывает даже в том случае, когда она заполнена наполовину. Пластиковая бутылка остаётся без видимых изменений.

При замерзании вода обладает уникальными свойствами расширения. Благодаря таким свойствам лед на воде, которая находится в виде жидкости, плавает.

Зимой из-за этого свойства воды происходят аварии на водопроводах. В сильные морозы основная причина таких аварий – замерзание текучей воды. Происходит ее расширение, так что образующийся лед легко разрывает трубы, так как плотность льда – 917 кг/м3, а плотность воды – 1000 кг/м3, то есть объем увеличивается в 1,1 раза, что довольно существенно.

3. Замерзание жидкости при внешнем воздействии снега.

Налейте в пластиковый стакан (пробирку) сок и поставьте его в кастрюлю с солёным снегом. Сок замёрзнет, и очень скоро вы будете лакомиться фруктовым льдом.

При смешивании соли со снегом наблюдается разрушение кристаллической структуры соли, которое происходит с поглощением тепла. Поэтому при смешивании снега с солью происходит активный отбор тепла из сока и сок превращается в лед.

4. Замерзание мыльных пузырей.

Приготовьте мыльный раствор. Раствор на морозе держите в рукавице, чтобы он не замёрз. Выдувайте пузыри трубочкой для сока. Из-за разности температур изнутри пузыря и снаружи возникает большая подъёмная сила, мгновенно уносящая пузыри вверх. Тонкая мыльная плёнка на морозе быстро замерзает, превращая пузыри в ледяные шарики.

Таким образом, тончайшая пленка мыльного пузыря замерзает за считанные секунды.

5. Срастание сосульки.

Возьмите сосульку. Перекиньте через неё тонкую проволоку, концы которой утяжелите грузиками. Наблюдайте, как проволока растапливает лёд, проникает всё глубже в сосульку. Вода над сосулькой вновь замерзает.

Это подтверждает свойство поглощения тепла большей массой льда.

Лед нарастает снизу, сразу над проволокой, так как стекающая вниз талая вода замерзает при соприкосновении с холодными стенками сосульки.

6. Скрип сухого снега.

Насыпьте в тарелку сахарный песок горкой и начните давить его ложкой. Вы услышите характерный скрип. Намочите песок и вновь разотрите. Скрип исчез. В морозные дни звук распространяется на большие расстояния.

Снег скрипит только в мороз (ниже -5°C), и звук скрипа меняется в зависимости от температуры воздуха – чем крепче мороз, тем выше тон скрипа. При достаточном опыте можно оценивать температуру воздуха по звуку, который издает скрипящий снег. Скрип образуется из-за того, что при давлении разрушаются мельчайшие кристаллики снега. Причем каждый из них по отдельности очень мал, чтобы издавать звук, доступный уху человека, но вместе они ломаются довольно громко. Усиление морозов делает ледяные кристаллики более твердыми и хрупкими. При каждом шаге ледяные иглы ломаются. При температуре воздуха ниже -50°C скрип снега становится таким сильным, что его можно слышать через тройные стекла (этому способствует также большая плотность морозного воздуха).

7. Примерзание к поверхности.

Добавьте в кастрюлю со снегом поваренную соль в соотношении примерно 1 к 6. Тщательно размешайте смесь. Если теперь вы захотите переставить кастрюлю, то её придётся поднять вместе с табуретом.

Это также подтверждает поглощение тепла из окружающей среды.

При смешивании соли со снегом происходит образование раствора, сопровождающееся сильным охлаждением вследствие большого поглощения теплоты льдом при его плавлении и солью при ее растворении. Так, например, температура смеси из 29 грамм соли и 100 грамм льда понижается до – 21°С. А если взять 143 грамма соли и 100 грамм льда, то температура может быть понижена до – 55°С.

2.3 Предложения по проведению опытов

Опыты по изучению свойств воды целесообразно проводить на уроках в средней и начальной школе.

Для учеников средней школы возможно проведение опытов № 3, 6 и 7 на уроках под руководством учителя, а опыты № 4 и 5 – факультативно или самостоятельно в домашних условиях.


Заключение

Таким образом, исследование свойств воды необходимо для человечества.

Процесс кристаллизации воды можно изучать в домашних условиях, а также на уроках в средней и начальной школе.

В работе удалось решить следующие задачи:

  1. Повести анализ основных свойств воды.
  2. Изучить значение кристаллизации воды для флоры и фауны Земли.
  3. Определить основные опыты для проведения исследования.
  4. Провести опыты и описать основные результаты.
  5. Подготовить предложения по проведению опытов на уроках в средней школе.

Значимость работы по систематизации основных свойств воды и значения кристаллизации воды для флоры и фауны Земли подтвердилась.

Основные понятия. Во многих технологических процессах, связан­ных с обработкой твердых материалов в жидкой среде, приходится путем кристаллизации выделять в виде кристаллов растворенные в жидкости твердые вещества.

Кристаллизация представляет собой процесс выделения твердой фазы при затвердевании веществ, находящихся в жидком со­стоянии (из расплава), или процесс выделения твердого растворенного вещества из раствора. Кристаллизация является одним из важнейших способов получения твердых веществ в чистом виде.

Кристаллы представляют собой твердые химически однородные тела правильной формы. Строение кристаллов характеризуется сим­метричным расположением атомов, ионов и молекул в узлах простран­ственной решетки, которая образуется тремя взаимно пересекающимися системами плоскостей.

Кристаллы одного и того же вещества могут различаться по раз­мерам и форме. В зависимости от условий образования кристаллов ско­рость роста их по отдельным граням может быть различной, вследствие чего кристаллы, сохраняя ту же самую кристаллическую решетку, прини­мают вытянутую или плоскую форму в зависимости от температуры и вязкости среды.

Каждая из форм кристаллов остается устойчивой лишь в опреде­ленном интервале значений температуры и давления. При достижении предельных условий происходит переход одной кристаллической формы в другую, сопровождающийся тепловым эффектом; границы этого пере­хода определяются так же, как и при изменении агрегатного состояния вещества. Кроме того, каждая из кристаллических форм обладает отлич­ной, свойственной только ей упругостью паров и растворимостью.

В технологии многообразие форм кристаллов используют для полу­чения одного и того же вещества в виде кристаллов определенной формы, обладающих различными свойствами, для чего создают соответствую­щие условия кристаллизации.

Так, в зависимости от температуры кристаллизации некоторые ве­щества могут быть получены различного цвета. Например, йодная ртуть в зависимости от температуры может быть выделена в виде осадка, окра­шенного в желтый или в красный цвет. Изменяют также свой цвет при различной температуре кристаллизации хромовые соли свинца.

Форма и величина кристаллов оказывают существенное влияние на их дальнейшую обработку путем фильтрования, при котором оба эти фактора значительно влияют на скорость процесса. Известно, что чем крупнее кристаллы и отчетливее выражена их кристаллическая форма, тем эффективнее протекает процесс фильтрования.

Поэтому, например, процессы нейтрализации сернокислых раство­ров мелом необходимо проводить при определенной температуре (60-65°) и заданном соотношении реагирующих масс (равномерное и одновремен­ное приливание водной суспензии мела и нейтрализуемой жидкости), что обусловливает образование крупнокристаллического осадка сернокислого кальция (гипса) определенной гидратной формы.

Известно также, что при синтезе органических полупродуктов и красителей антрахинонового ряда нередко от способа выделения кристал­лов в значительной степени зависит успех всего . Так, на­пример, быстрое осаждение антрахинона и его производных без нагрева­ния приводит к образованию осадков, которые практически не филь­труются, а медленное осаждение в разведенной среде при кипячении раствора дает крупнокристаллические, сравнительно легко фильтруемые осадки.

Существенное влияние на кристаллизацию оказывает процесс гидратации, при котором выделяющиеся из раствора одна или не­сколько молекул растворенного вещества соединяются с одной или не­сколькими молекулами растворителя. При этом число присоединяющихся молекул растворителя может быть различным в зависимости от темпера­туры и концентрации, при которых проводится кристаллизация.

Вследствие гидратации вещество из раствора выделяется в виде кристаллогидратов определенной формы, содержащих вполне определенное количество молекул растворителя (воды), причем содер­жание кристаллизационной воды в кристаллах сказывается не только на их форме, но и на свойствах. Так, например, безводный сульфат меди CuS04 является бесцветным соединением, кристаллизующимся в виде призматических иголок ромбической системы, а пятиводный гидрат суль­фата меди CU S04-5H20 образует крупные синие кристаллы триклиниче­ской системы. При нагревании до 100° этот гидрат теряет 4 молекулы воды, а при 240° полностью теряет всю кристаллизационную воду, пере­ходя в безводный сульфат.

Кристаллогидраты обладают определенной упругостью пара. Если упругость их пара больше упругости паров воды в окружающем воздухе при данной температуре, то кристаллы при хранении на воздухе теряют кристаллизационную воду-выветриваются. Примером такого кристал­логидрата может служить глауберова соль, представляющая собой десяти - водный сульфат натрия Na2S04- 10Н20.

Наоборот, если упругость пара над кристаллогидратом меньше упру­гости паров воды в окружающем воздухе, кристалл «притягивает» из окружающего воздуха воду и постепенно «плавится». Для этих кристал­лов при хранении на воздухе содержание кристаллизационной воды должно быть таким, чтобы не нарушалась форма кристаллов. Типичным примером подобных кристаллогидратов является обыкновенная поварен­ная соль.

Равновесие фаз и растворимость. Все вещества, в том числе и твер­дые, обладают способностью в той или иной степени растворяться в раз­личных жидких растворителях. Степень растворимости и концентрацию растворов чаще всего выражают в весовых процентах растворенного вещества по отношению к общему весу раствора или в граммах растворен­ного вещества на 100 г растворителя.

Растворимость веществ зависит от их химической природы, свойств растворителя и температуры. Данные о растворимости различных ве­ществ находят опытным путем и обычно изображают в виде кривых за­висимости растворения от температуры.

Растворимость многих веществ изображается плавной кривой, без излома, причем, как правило, с повышением температуры растворимость возрастает.

Для многих веществ, образующих кристаллогидраты, кривые рас­творимости имеют изломы; растворимость таких веществ может с повы­шением температуры уменьшаться.

Определение растворимости веществ при заданных температурах имеет большое практическое значение, но надежных расчетных формул нет, и в каждом конкретном случае приходится пользоваться опытными данными.

Для вычисления растворимости негидратируемых минеральных со­лей в воде при любой температуре может быть применено правило одно­значности физико-химических функций, если известна растворимость соли при двух каких-нибудь температурах. Такие расчеты аналогичны опре­делению температур кипения растворов при различных давлениях (см стр. 422), так как основой является общее правило, выражающее линей­ное изменение физико-химических величин для подобно протекающих процессов.

Применительно к растворимости это правило может быть сформу­лировано так: отношение разности температур (/-/"), соответствующих двум различным молярным растворимостям данного вещества, к разности температур (

Таким образом, тепловой баланс процесса в общем случае может быть выражен следующим образом:

Qi + Q2"+ Qs = Q * + Qs + Qe 4- QT + Qs (3-322)

Применительно к отдельным видам кристаллизации это уравнение должно быть видоизменено.

При выпаривании с кристаллизацией Q7=0.

При кристаллизации с охлаждением водой, холодильным рассолом или воздухом Q3=0.

При вакуум-кристаллизации Q3=Q7=0.

В кристаллизаторах с охлаждением можно пренебречь потерей тепла в окружающую среду и принять Q8=0-

Кристаллизация

Кристаллизация - это образование новой твердой фазы, выделяющейся из раствора, расплава или пара. Кристаллизация из раствора служит средством выделения из них целевых продуктов или загрязняющих примесей, то есть является методом разделения и очистки веществ. В технологии неорганических веществ преимущественно используется кристаллизация из растворов. Образование твердой фазы может происходить только в растворах, в которых концентрация кристаллизующегося вещества превышает концентрацию насыщения, то есть из пересыщенных растворов. Насыщенный раствор, находящийся в контакте с выделившейся кристаллической массой или оставшийся после ее удаления, называется маточным раствором. Пересыщение раствора характеризуется его абсолютным значением, то есть разностью х / - х 0 между концентрацией пересыщенного х / и насыщенного х 0 растворов, или относительным пересыщением (х / - х 0) / х 0 .

Способы кристаллизации

Способы кристаллизации различаются прежде всего приемами, с помощью которых достигается пересыщение раствора.

1) Политермическая или изогидрическая кристаллизация идет при неизменном содержании воды в системе. Она характерна для веществ, растворимость которых при повышенных температурах заметно превышает их растворимость при более низких температурах, и происходит путем охлаждения пересыщенных растворов. Пересыщение зависит от переохлаждения раствора, то есть от разности температур насыщенного и пересыщенного растворов. Если растворимость уменьшается при повышении температуры, кристаллизация будет идти при нагревании системы.

2) Изотермическая кристаллизация происходит путем удаления растворителя из системы (испарении воды) при постоянной температуре, она характерна для веществ, мало изменяющих свою растворимость при изменении температуры. Испарение воды может производиться интенсивным способом при кипении раствора или при медленном поверхностном испарении.

3) Высаливание - кристаллизация соли может быть достигнута введением в раствор веществ, уменьшающих ее растворимость. Таковыми являются вещества, содержащие одинаковый с данной солью ион, ил связывающие воду. Например, кристаллизация хлорида натрия из концентрированного раствора при добавлении к нему хлорида магния; кристаллизация сульфата натрия при добавлении к его раствору спирта или аммиака. Механизм высаливания может быть различным. При добавлении к раствору электролита другого электролита с одноименным ионом произведение концентраций ионов растворенного вещества может превысить его произведение растворимости, то есть произведение концентраций этих ионов в насыщенном растворе, при этом избыток вещества выделяется в твердую фазу. В других случаях высаливание происходит вследствие изменения структуры раствора - образование гидратных оболочек вокруг частиц высаливающего вещества за счет разрушения таких оболочек у растворенного вещества. Соли, образующие кристаллогидраты, особенно с большим числом молекул воды, высаливаются сильнее, чем соли, кристаллизующиеся в безводной форме. Некоторые добавки могут приводить к всаливанию вещества, то есть увеличению его растворимости.

4) Осаждение веществ из растворов с помощью реагентов - наиболее распространенный метод кристаллизации в химической промышленности. Если при этом образуется практически нерастворимый продукт реакции, он сразу осаждается из быстро пересыщающегося раствора. Если продукт реакции растворим, его кристаллизация начинается после достижения необходимого пересыщения и продолжается по мере подачи реагента (осадителя). Примером может служить осаждение нерастворимого карбоната кальция при конверсии нитрата кальция в нитрат аммония:

Са(NO 3) 2 +(NH 4) 2 CO 3 =CaCO 3 +2NH 4 NO 3 .

Для получения катализаторов широко применяют осаждение металлов в виде нерастворимых соединений (гидроксидов, карбонатов, оксалатов и других солей) с последующим их разложением до оксидов.

5) Вымораживание применяется преимущественно для выделения отдельных компонентов из естественных рассолов, например соленых озер, при этом кристаллизацию проводят охлаждением растворов до температуры ниже 0С. Способ вымораживания используется для концентрирования растворов путем частичного удаления из них растворителя в виде льда. В этом случае кристаллизуется не соль, а растворитель - вода. Концентрируя морскую воду вымораживанием льда, получают 8% раствор соли, который используется для получения хлорида натрия.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта