Главная » Выращивание » Что называют размерностью физических величин. Физические величины и их размерность

Что называют размерностью физических величин. Физические величины и их размерность

Под системой физических величин понимается совокупность физических величин вместе с совокупностью уравнений, связывающих эти величины между собой. В свою очередь, система единиц представляет собой набор основных и производных единиц вместе с их кратными и дольными единицами, определенными в соответствии с установленными правилами для данной системы физических величин .

Все величины, входящие в систему физических величин, делят на основные и производные. Под основными понимают величины, условно выбранные в качестве независимых так, что никакая основная величина не может быть выражена через другие основные. Все остальные величины системы определяются через основные величины и называются производными .

Каждой основной величине сопоставляется символ размерности в виде заглавной буквы латинского или греческого алфавита. В различных системах физических величин используются следующие обозначения размерностей :

Символы размерностей используют также для обозначения систем величин . Так, система величин, основными величинами которой являются длина, масса и время, обозначается как LMT . На её основе были образованы такие системы единиц, как СГС , МКС и МТС . На основе системы LFT , в которой основными величинами являются длина, сила и время, создана система единиц МКГСС .

Как следует из сказанного выше, размерность физической величины зависит от используемой системы величин. Так, например, размерность силы в системе LMT , как указано выше, выражается равенством dim F =LMT -2 , а в системе LFT выполняется dim F =F . Кроме того, безразмерная величина в одной системе величин может стать размерной в другой. Например, в системе LMT электрическая ёмкость имеет размерность L и отношение ёмкости сферического тела к его радиусу - безразмерная величина, тогда как в Международной системе величин (ISQ) это отношение не является безразмерным. Однако многие используемые на практике безразмерные числа (например, критерии подобия , постоянная тонкой структуры в квантовой физике или числа Маха , Рейнольдса , Струхаля и др. в механике сплошных сред) характеризуют относительное влияние тех или иных физических факторов и являются отношением величин с одинаковыми размерностями, поэтому, несмотря на то, что входящие в них величины в разных системах могут иметь разную размерность, сами они всегда будут безразмерными.

Проверка размерности

В формулах, имеющих физический смысл, только величины, имеющие одинаковую размерность, могут складываться, вычитаться или сравниваться. Например, сложение массы какого-либо предмета с длиной другого предмета не имеет смысла. Также невозможно сказать, что больше: 1 килограмм или 3 секунды . Из этого правила, в частности, следует, что левые и правые части уравнений должны иметь одинаковую размерность.

Кроме того, аргументы экспоненциальных, логарифмических и тригонометрических функций должны быть безразмерными величинами.

Эти правила используются для проверки правильности физических формул. Если в полученном уравнении какое-то из них нарушается, то ясно, что в вычислениях была допущена ошибка.

Анализ размерности

Анализ размерности - метод, используемый физиками для построения обоснованных гипотез о взаимосвязи различных размерных параметров сложной физической системы. Иногда анализ размерности можно использовать для получения готовых формул (с точностью до безразмерной константы). Суть метода заключается в том, что из параметров, характеризующих систему, составляется выражение, имеющее нужную размерность.

При анализе размерностей формул размерность левой части уравнения должна быть равна размерности правой части уравнения. Отсутствие такого равенства говорит о неверности формулы. Однако наличие такого равенства не даёт стопроцентной гарантии верности формулы.

Метрология

Промежуточный отдел

Хвостик

Плазмолемма

Митохондрии

Аксонема жгутика

Дистальная центриоль, формирующая аксонему жгутика

Проксимальная центриоль

Связующий отдел

Ядро


Разме́рность физической величины - выражение, показывающее связь этой величины с основными величинами данной системы физических величин; записывается в виде произведения степеней сомножителей, соответствующих основным величинам, в котором численные коэффициенты опущены.

Говоря о размерности, следует различать понятия система физических величин и система единиц. Под системой физических величин понимается совокупность физических величин вместе с совокупностью уравнений, связывающих эти величины между собой. В свою очередь, система единиц представляет собой набор основных и производных единиц вместе с их кратными и дольными единицами, определенными в соответствии с установленными правилами для данной системы физических величин.

Все величины, входящие в систему физических величин, делят на основные и производные. Под основными понимают величины, условно выбранные в качестве независимых так, что никакая основная величина не может быть выражена через другие основные. Все остальные величины системы определяются через основные величины и называются производными.

Каждой основной величине сопоставляется символ размерности в виде заглавной буквы латинского или греческого алфавита, далее размерности производных величин обозначаются с использованием этих символов.

Основная величина Символ для размерности

Электрический ток I

Термодинамическая температура Θ

Количество вещества N

Сила света J

В общем случае размерность физической величины представляет собой произведение размерностей основных величин, возведённых в различные (положительные или отрицательные, целые или дробные) степени. Показатели степеней в этом выражении называют показателями размерности физической величины. Если в размерности величины хотя бы один из показателей размерности не равен нулю, то такую величину называют размерной, если все показатели размерности равны нулю - безразмерной.

Размер физической величины - значения чисел, фигурирующих в значении физической величины.

Например, автомобиль может быть охарактеризован с помощью такой физической величины, как масса. При этом, значением этой физической величины будет, например, 1 тонна, а размером - число 1, или же значением будет 1000 килограмм, а размером - число 1000. Этот же автомобиль может быть охарактеризован с помощью другой физической величины - скорости. При этом, значением этой физической величины будет, например, вектор определённого направления 100 км/ч, а размером - число 100



Размерность физической величины - единица измерения, фигурирующая в значении физической величины. Как правило, у физической величины много различных размерностей: например, у длины - метр, миля, дюйм, парсек, световой год и т. д. Часть таких единиц измерения (без учёта своих десятичных множителей) могут входить в различные системы физических единиц - СИ, СГС и др.

Некоторое значение физической величины принимается за единицу этой величины. Размер физической величины определяется соотношением, где - числовое значение этой величины. Это соотношение называют основным уравнением измерения, так как целью измерения, по существу, является определение числа.

Обеспечение единства измерений предполагает прежде всего повсеместное использование общепринятых и строго определенных единиц физических величин. Между различными физическими величинами объективно существует разного рода взаимосвязи количественно выражаемые соответствующими уравнениями. Эти уранения используются для выражения единиц одних физических величин через другие. Однако число таких уравнений в любом разделе науке меньше числа входящих в них физических величин. Поэтому для создания системы единиц этих величин некоторая их основополагающая часть, равная, должна быть оговорена и строго определена вне зависимости от других величин. Такие входящие в систему физические величины, условно принятые в качестве независимых от других величин, называются основными физическими величинами. Остальные величины, входящие в систему и определяемы через основные физические величины, называются производными физическими величинами. В соответствии с этим единицы физических величин также разделяются на основные и производные единицы.

Если A, B, C, … - полный набор основных физических величин данной системы, то для любой производной величины может быть определена ее размерность (dimension), отражающая ее связь в основными величинами системы, в виде

В этом соотношении показатели степени,… для каждой конкретной производной физической величины находятся из уравнений, связывающих ее с основными величинами (часть этих показателей обычно оказывается равной нулю). Соотношение (1), называется формулой размерности, показывает, во сколько раз изменится значение производной величины при определенном изменении значений основных величин. Например, если значения величин A, B, C увеличились соответственно в 2, 3 и 4 раза, то при этом, согласно (1), значение величины увеличится в раз.

Основное практическое значение формулы размерности состоит в том, что она позволяет непосредственно определять любую производную единицу через основные единицы данной системы,…

Правда, в этом выражении постоянный сомножитель требует дополнительного определения. Однако в большинстве практических случаев стараются выбирать. При таком условии производная единица называется когерентной.

Международная система единиц SI является когерентной системой (поскольку когерентны все ее производные единицы). Основные физические величины и их единицы в системе SI представлены в таблице 1.

Таблица 1

Кроме этого, система SI включает в себя две дополнительные единицы, которые определены также независимо от остальных единиц, но не участвуют в образовании производных единиц. Это -- единица плоского угла -- радиан (рад) и единица телесного угла -- стерадиан (ср). Все остальные единицы системы SI являются производными, причем часть из них имеет собственное наименование, а другие обозначаются в виде произведения степеней других. Например, такая производная физическая величина, как электрическая емкость, в системе SI имеет размерность и единицу, имеющую собственное наименование, -- фарад; а единица напряженности электрического поля, например, собственного наименования не имеет и обозначается как «вольт на метр» .

Совместно с единицами системы SI допускается использование кратных и дольных единиц, которые образуются путем добавления к названию единицы определенной приставки, означающей умножение данной единицы на, где -- целое положительное (для кратных единиц) или отрицательное (для дольных единиц) число. Например, 1 ГГц (гигагерц) = 109 Гц, 1 нс (наносекунда) = 10-9 с, 1 кВт = 103 Вт. В таблице 2 приведены наименования приставок дольных и кратных единиц.

Таблица 2

Дольные множители

Кратные множители

Отношение к главной единице

Наименование приставки

Сокращенное обозначение

приставки

Отношение к главной единице

Наименование приставки

Сокращенное обозначение

приставки

Совместно с системой SI допускается использование -- там, где это целесообразно, -- некоторых внесистемных единиц: для времени -- минута, час, сутки, для плоского угла -- градус, минута, секунда; для массы -- тонна; для объема -- литр; для площади -- гектар; для энергии -- электрон-вольт; для полной мощности -- вольт-ампер и т. д.

Кроме рассмотренных видов единиц достаточно широко применяются относительные и логарифмические величины. Они представляют собой соответственно отношение двух одноименных величин и логарифм этого отношения. К относительным величинам, в частности, относятся атомные и молекулярные массы химические элементов.

Относительные величины могут выражаться в безразличных единицах, в процентах (1% = 0,01) или в промилле (1‰=0,001=0,1%).

Значение логарифмических величин выражается в белах (Б), согласно формуле или в неперах (Нп): . В этих отношениях и -- энергетические величины (мощность, энергия, плотность энергии и т. п.); и -- силовые величины (напряжение, ток, плотность тока, напряженность поля и т. п.); коэффициенты 2 и 0,5 учитывают, что энергетические величины пропорциональны квадрату силовых величин. Из соотношений видно, что один бел (1 Б) соответствует отношению или; один непер (1 Нп) соответствует отношению или. Нетрудно выяснить, что 1 Нп = () Б = 0,8686 Б.

В радиотехнике, электронике, акустике логарифмические величины чаще всего выражают в децибелах (1 дБ = 0,1 Б):

Отношение мощностей в дБ записывается с коэффициентом 10, а отношение напряжений (или токов) -- с коэффициентом 20.

Очевидно, что относительные и логарифмические единицы -- инвариантны к используемой системе единиц, поскольку они определяются отношением однородных единиц.

Производные величины, как было указано в § 1, можно выразить через основные. Для этого необходимо ввести два понятия: размерность производной величины и определяющее уравнение.

Размерностью физической величины называют выражение, отражающее связь величины с основными величинами

системы, в котором коэффициент пропорциональности принят равным единице.

Определяющим уравнением производной величины называют формулу, посредством которой физическая величина может быть в явном виде выражена через другие величины системы. При этом коэффициент пропорциональности в данной формуле должен быть равным единице. Например, определяющим уравнением скорости является формула

где длина пути, пройденного телом при равномерном движении за время Определяющее уравнение силы в системе второй закон динамики поступательного движения (второй закон Ньютона):

где а - ускорение, сообщаемое силой телу массой

Найдем размерности некоторых производных величин механики в системе Заметим, что начать необходимо с таких величин, которые в явном виде выражаются только через основные величины системы. Такими величинами являются, например, скорость, площадь, объем.

Чтобы найти размерность скорости, подставим в формулу (2.1) вместо длины пути и времени их размерности и Т:

Условимся обозначать размерность величины символом Тогда размерность скорости запишется в виде

Определяющими уравнениями площади и объема являются формулы:

где а - длина стороны квадрата, длина ребра куба. Подставив вместо размерность найдем размерности площади и объема:

Найти же размерность силы по ее определяющему уравнению (2.2) было бы затруднительно, так как нам неизвестна размерность ускорения а. Прежде чем определять размерность силы, надо найти размерность ускорения,

используя формулу ускорения равнопеременного движения:

где изменение скорости тела за время

Подставив сюда уже известные нам размерности скорости и времени, получим

Теперь по формуле (2.2) найдем размерность силы:

Точно так же для получения размерности мощности по ее определяющему уравнению где А - работа, совершенная за время необходимо предварительно найти размерность работы.

Из приведенных примеров следует, что не безразлично, в какой последовательности надо расположить определяющие уравнения при построении данной системы величин, т. е. при установлении размерностей производных величин.

Последовательность расположения производных величин при построении системы должна удовлетворять следующим условиям: 1) первой должна быть величина, которая выражается только через основные величины; 2) каждая последующая должна быть величиной, которая выражается только через основные и такие производные, которые ей предшествуют.

В качестве примера приведем в таблице последовательность величин, которая удовлетворяет таким условиям:

(см. скан)

Последовательность величин, приведенная в таблице, не является единственной, удовлетворяющей указанному выше условию. Отдельные величины в таблице могут быть переставлены. Например, плотность (строка 5) и момент инерции (строка 4) или момент силы (строка 11) и давление (строка 12) можно поменять местами, так как размерности этих величин определяются независимо друг от друга.

Но плотность в этой последовательности нельзя поставить раньше объема (строка 2), так как плотность выражается через объем и для определения ее размерности необходимо знать размерность объема. Момент силы, давление и работа (строка 13) не могут быть поставлены раньше силы, так как для определения их размерности надо знать размерность силы.

Из приведенной таблицы следует, что размерность любой физической величины в системе в общем виде может быть выражена равенством

где целые числа.

В системе величин механики размерность величины выразится в общем виде формулой

Приведем в общем виде формулы размерности соответственно в системах величин: в электростатической и электромагнитной LMT, в и в любой системе с числом основных величин больше трех:

Из формул (2.5) - (2.10) следует, что размерность величины представляет собой произведение размерностей основных величин, возведенных в соответствующие степени.

Показатель степени в которую возведена размерность основной величины, входящая в размерность производной величины, называется показателем размерности физической величины. Как правило, показатели размерности являются целыми числами. Исключение составляют показатели в электростатической и

электромагнитной системах LMT, в которых они могут быть и дробными.

Некоторые показатели размерности могут оказаться равными нулю. Так, записав размерности скорости и момента инерции в системе в виде

находим, что у скорости равен нулю показатель размерности момента инерции - показатель размерности у.

Может оказаться, что все показатели размерности некоторой величины равны нулю. Такая величина называется безразмерной. Безразмерными величинами являются, например, относительная деформация, относительная диэлектрическая проницаемость.

Величина называется размерной, если в ее размерности хотя бы одна из основных величин возведена в степень, не равную нулю.

Конечно, размерности одной и той же величины в различных системах могут оказаться разными. В частности, величина безразмерная в одной системе может оказаться размерной в другой системе. Например, абсолютная диэлектрическая проницаемость в электростатической системе является безразмерной величииой, в электромагнитной системе ее размерность равна а в системе величин

Пример. Определим, как изменится момент инерции системы с увеличением линейных размеров в 2 раза и массы в 3 раза.

Равномерность момента инерции

Пользуясь формулой (2.11), получим

Следовательно, момент инерции увеличится в 12 раз.

2. Пользуясь размерностями физических величин, можно определить, как изменится размер производной единицы с изменением размеров основных единиц, через которые она выражается, а также установить соотношение единиц в разных системах (см. с. 216).

3. Размерности физических величин позволяют обнаружить ошибки при решении физических задач.

Получив в результате решения расчетную формулу, следует проверить, совпадают ли размерности левой и правой частей формулы. Несовпадение этих размерностей свидетельствует о том, что в ходе решения задачи была допущена ошибка. Конечно, совпадение размерностей еще не означает, что задача решена правильно.

Рассмотрение других практических приложений размерностей выходит за рамки настоящего пособия.

Кротов В.М. О размерностях физических величин // Фiзiка: праблемы выкладання. – 1997. – № 9. – С. 87-91.

Часто неправильно трактуется понятие о размерности физических величин: взаимозаменяются понятия единицы измерения и размерности физических величин. Поэтому и видится необходимым еще раз описать содержание этого понятия и указать возможности его использования в процессе обучения физике.

Метрология – составная часть школьного курса физики. Основные ее понятия: физическая величина, значение физической величины, система физических величин, основная физическая величина, производная физическая величина, дополнительная физическая величина, уравнение связи между физическими величинами. Названные понятия находятся в определенной взаимосвязи и взаимоотношениях, которые, к сожалению, не всегда точно отражаются при организации познавательной деятельности учащихся. Наиболее часто неправильно трактуется понятие о размерности физических величин: взаимозаменяются понятия единицы измерения и размерности физических величин. Поэтому и видится необходимым еще раз описать содержание этого понятия и указать возможности его использования в процессе обучения физике.

Размерность физической величины – одна из важнейших ее характеристик, которую можно определить как буквенное выражение, отражающее связь данной величины с величинами, принятыми за основные в рассматриваемой системе величин. Так, система величин, которая именуется Международной системой единиц, содержит семь основных системных величин: l , m , t , Ι , Τ , n и J , где l – длина, m – масса, t – время, I – сила электрического тока, Τ – термодинамическая температура, ν – количество вещества, J – сила света. Для этих величин условно приняты следующие размерности: для длины – L, массы – М, времени – Т, силы электрического тока – I, термодинамической температуры – Θ, количества вещества – N и силы света – J. Размерности записывают прописными буквами и печатают прямым шрифтом .

Размерность величины x обозначается через . Например: . Над размерностями величин, как и над самими величинами, можно производить действия умножения, деления, возведения в степень и извлечения корня. Показатель степени, в которую возведена размерность основной величины, входящей в степенной одночлен, называют показателем размерности .

Размерность производных физических величин определяется исходя из уравнения связи между физическими величинами. Например,

Различают как размерные, так и безразмерные физические величины. К первым относят такие величины, в размерностях которых хотя бы один из показателей размерности не равен нулю. Безразмерными физическими величинами называют физические величины, в размерностях которых все показатели размерности равны нулю.

По поводу физического смысла размерностей физических величин существуют различные взгляды. М.Планк писал: «Ясно, что размерность какой-либо физической величины не есть свойство, связанное с существом ее, но представляет просто некоторую условность, определяемую выбором системы измерений» . Другой точки зрения придерживался известный ученый А.Зоммерфельд. Он связывал выбор основных физических величин и их размерностей с самой сущностью физических величин .

Важно знание не столько размерностей физических величин, сколько использование их для освоения физических знаний. В этой связи интересным является тот факт, что во многих областях физики и смежных науках применяется метод исследования, который получил название анализа размерностей. Особенно плодотворным он оказывается в тех случаях, когда нахождение искомой закономерности прямым путем либо встречает значительные математические трудности, либо требует знания таких деталей, которые заранее неизвестны» ,

Применение метода анализа размерностей началось со времени И.Ньютона. Его развивали и уточняли У.Томсон, Дж.Рэлей. Э.Ферми утверждал, что действительно понимающие природу того или иного явления должны уметь получать основные закономерности из соображений размерностей.

В процессе обучения физике в средней школе метод анализа размерностей качественно без сложных математических выводов позволяет:

1) получать выражения физических законов,

2) определять физический смысл используемых соотношений,

3) проверять правильность записи формул,

4) решать задачи,

5) обнаруживать ошибки в их решении .

Хотя полученные с его применением результаты всегда содержат некоторую неопределенность (зависимости устанавливаются с точностью до постоянных коэффициентов), однако при этом повышается осознанность и научность освоения физических знаний.

Осознанное использование метода анализа размерностей станет возможным при освоении учащимися алгоритма его применения. Рассмотрим основные этапы реализации данного метода на примере установления зависимости емкостного сопротивления в цепи переменного тока от частоты переменного тока и электроемкости конденсатора:

1. Экспериментальное установление зависимости сопротивления конденсатора, включенного в цепь переменного тока, от частоты переменного тока и электроемкости конденсатора.

2. Запись уравнения связи между названными величинами в общем виде , где Ζ – безразмерный коэффициент.

3. Запись размерностей величин, входящих в уравнение связи

4. Подстановка размерностей величин в уравнение связи

5. Составление системы уравнений

6. Решение полученных систем уравнений

β = –1, –4 – α = –3, α = –1.

7. Подстановка значений α и β в уравнение связи

Таким образом, конденсатор в цепи переменного тока обладает сопротивлением, которое обратно пропорционально частоте переменного тока ν и электроемкости конденсатора С .

8. Определение значения коэффициента Ζ (может быть экспериментальным)

9. Запись окончательной формулы

Таким же способом можно примените метод анализа размерностей для установления многих других закономерностей и законов, например:

1) формула для определения периода колебаний груза на пружине;

2) формула для определения периода колебаний математического маятника;

3) основное уравнение МКТ;

4) формула для определения силы Лоренца;

5) зависимость индуктивного сопротивления от частоты переменного тока и индуктивности катушки;

6) формула Томсона;

7) формула для определения потенциала поля, созданного точечным зарядом.

Применение метода анализа размерностей к решению задач более сложно. Примеры решения задач рассматриваемым методом описаны в литературе . Не вызывает затруднений применение метода анализа размерностей к проверке правильности вывода рабочих формул, для этого в уравнение связи между физическими величинами подставляются их размерности. При равенстве показателей размерностей в обеих частях равенства можно утверждать, что формула выведена правильно.

Опыт реализации метода размерностей в практику обучения учащихся показывает , что понятие о размерностях физических величин можно вводить в IX классе по ныне действующим программам. Для этого наряду с установлением единиц измерения физических величин определяются и их размерности. Размерности всех изучаемых величин заносятся в специальную таблицу, которой учащиеся пользуются при определении закономерностей, решении задач, установлении размерностей вновь вводимых физических величин.

1. Голин Г.М., Истаров В.В. Использование метода размерностей в школьной физике // Физика в школе. – 1990. – № 2. – С. 36-40.

2. Кротов В.М. Метод анализа размерностей при обучении физике учащихся педагогических классов // Даi нстытуцкая падрыхтоў ка моладзi i арыентацыя яе на педагагi чныя прафесii , вопыт i праблемы (Матэрыялы рэспублшанскай канферэнцыi ). – Минск, 1992. – С. 102-103.

3. Сена Л.А. Единицы физических величин и их размерности. – М.: Наука, 1977. – 335 с.

4. Стоцкий JI.P. Физические величины и их единицы. – М.: Просвещение, 1984. – 239 с.

5. Чертов А.Г. Международная система единиц измерения. – М.: Высшая школа, 1967.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта