Главная » Выращивание » Что такое квантовая механика простыми словами. Квантовая физика для чайников! Лучшие эксперименты

Что такое квантовая механика простыми словами. Квантовая физика для чайников! Лучшие эксперименты

Предупреждаю сразу: этот цикл статей заметно отличается от традиционного введения в квантовую механику.

Во-первых , я не буду цитировать Ричарда Фейнмана, однажды заявившего, что «это нормально - не понимать квантовую механику, потому что никто её не понимает». Когда-то это было так, но времена меняются.

Я не скажу: «Квантовую механику невозможно понять, к ней просто нужно привыкнуть». (Эту цитату приписывают Джону фон Нейману; он жил в те дремучие времена, когда никто и в самом деле не понимал квантовую механику.)

Нельзя заканчивать объяснение словами «Если что-то непонятно, так и должно быть». Нет, так не должно быть . Может, проблема в вас. Может - в вашем учителе. В любом случае, её надо решать , а не сидеть сложа руки и успокаивать себя тем, что все остальные тоже ничего не понимают.

Я не буду говорить, что квантовая механика - это нечто странное , запутанное или недоступное для человеческого понимания . Да, она контринтуитивна - но это беда исключительно нашей интуиции. Квантовая механика возникла задолго до Солнца, планеты Земля или человеческой цивилизации. Она не собирается меняться ради вас. Вообще, не существует обескураживающих фактов , есть только теории, обескураженные фактами ; а если теория не совпадает с практикой, это не делает ей чести.

Всегда стоит рассматривать реальность как совершенно обыденную вещь. С начала времён во Вселенной не случилось ничего необычного.

Наша цель - научиться чувствовать себя как дома в этом квантовом мире. Потому что мы и так дома.

На протяжении всего этого цикла я буду говорить о квантовой механике как о самой обычной теории; а там, где интуитивное представление о мире не совпадает с ней, я буду высмеивать интуицию за несоответствие реальности.

Во-вторых , я не собираюсь следовать традиционному порядку изучения квантовой механики, копирующему порядок, в котором её открывали.

Обычно всё начинается с рассказа о том, что материя иногда ведёт себя как кучка маленьких бильярдных шаров, сталкивающихся между собой, а иногда - как волны на поверхности бассейна. Это сопровождается несколькими примерами, иллюстирующими оба взгляда на материю.

Раньше, когда всё это только зарождалось и никто не имел ни малейшего понятия о математических основах физики, учёные всерьёз считали, что всё состоит из атомов, ведущих себя примерно как бильярдные шары. А потом они стали считать, что всё состоит из волн. А потом они опять вернулись к бильярдным шарам. Всё это привело к тому, что учёные окончательно запутались, и только через несколько десятилетий - к концу девятнадцатого века - им удалось расставить всё по своим местам.

Если применить этот исторический достоверный подход к обучению современных студентов (как сейчас и поступают), с ними закономерно случится то же, что случилось с ранними учёными, а именно - они впадут в полное и абсолютное замешательство . Рассказывать студентам, изучающим физику, о корпускулярно-волновом дуализме, это то же самое, что начинать курс химии лекцией о четырёх стихиях.

Электрон не похож ни на бильярдный шар, ни на гребень океанской волны. Электрон - это совершенно другой объект с математической точки зрения, и он остаётся таким при любых обстоятельствах . А если вы будете упорствовать в своём стремлении считать его и тем, и тем, как вам удобнее , предупреждаю: за двумя зайцами погонишься - ни одного не поймаешь.

Это не единственная причина, по которой исторический порядок - не лучший выбор. Давайте проследим за гипотетическим процессом с самого начала : люди замечают, что они окружены другими животными - внутри животных, оказывается, есть органы - а органы, если присмотреться внимательнее, состоят из тканей - под микроскопом видно, что ткани состоят из клеток - клетки состоят из протеинов и прочих химических соединений - химические соединения состоят из атомов - атомы состоят из протонов, нейтронов и электронов - а последние гораздо проще и понятнее животных, с которых всё началось, но были открыты на десятки тысяч лет позже .

Физику не начинают проходить с биологии. Тогда почему её нужно начинать с обсуждения лабораторных экспериментов и их результатов, которые даже в случае простейших опытов являются следствием множества сложных и запутанных процессов?

С одной стороны, я могу понять, почему во главу угла ставится эксперимент. Мы же о физике говорим, в конце концов.

С другой стороны, давать студентам в руки сложный математический аппарат только для того, чтобы они могли проанализировать простой опыт - это уже чересчур . Программистов, например, сначала учат складывать две переменные, а только потом - писать многопоточные приложения; и плевать на то, что вторые «ближе к реальной жизни».

Классическая механика не следует явным образом из квантовой механики. Более того, классическая механика находится на гораздо более высоком уровне. Сравните атомы и молекулы с кварками: миллионы известных науке химических веществ, сотня химических элементов, и всего шесть кварков. Сначала лучше понять простое, а только потом переходить к сложному.

Наконец , я буду рассматривать квантовую механику со строго реалистической позиции - наш мир является квантовым, наши уравнения описывают территорию, а не её карту, и привычный нам мир неявным образом существует в квантовом мире. Если среди моих читателей есть антиреалисты - пожалуйста , придержите свои комментарии. Квантовую механику гораздо труднее понять и представить, если сомневаешься в её справедливости. Я поговорю об этом подробнее в одной из следующих статей.

Я думаю, что той точки зрения, которую я буду излагать в этом введении, придерживается большинство физиков-теоретиков. Но вы всё же должны знать, что это не единственная возможная точка зрения, и немалая доля учёных сомневается в верности реалистической позиции. Хоть я и не собираюсь уделять внимание каким-либо другим теориям прямо сейчас , я чувствую себя обязанным упомянуть о том, что они есть .

Подводя итог , моя цель - научить вас думать как коренной житель квантового мира , а не как турист поневоле .

Покрепче вцепитесь в реальность. Мы начинаем.

Конфигурации и амплитуды

Посмотрите на рис. 1. В точке A находится полупосеребрённое зеркало, а в точках B и C - два детектора фотонов.

Этот простой эксперимент в своё время заставил учёных поломать головы. Дело в том, что в половине случаев фотон, выпущенный в сторону зеркала, регистрировался первым детектором, а в половине - на вторым. И учёные - внимание, приготовьтесь смеяться - предполагали, что зеркало то пропускало фотон, то отражало его.

Ха-ха-ха, представьте себе зеркало, которое может само выбирать, пропускать ему фотон или не пропускать! Если вы и можете это представить, то все равно не делайте этого - а не то вы запутаетесь так же, как и те учёные. Зеркало ведёт себя абсолютно одинаково в обоих случаях.

Если бы мы попробовали написать компьютерную программу, симулирующую этот эксперимент (а не просто предсказывающую результат), она бы выглядела примерно так…

В начале программы мы объявляем переменную, хранящую в себе определённый математический объект - конфигурацию . Она представляет некое описание состояния мира - в данном случае, «один фотон летит в точку А».

На самом деле конфигурация описывается комплексным числом (напомню, что комплексные числа имеют вид (a + bi ), где a и b - действительные числа, а i - мнимая единица, т.е. такое число, что i ² = -1). Нашей конфигурации «фотон летит в точку A » тоже соответствует какое-то число. Пусть это будет (-1 + 0i ). В дальнейшем мы будем называть число, соответствующее конфигурации, её амплитудой .

Введём ещё две конфигурации: «фотон летит из A в точку B » и «фотон летит из A в точку C ». Мы пока не знаем амплитуды этих конфигураций; им будут присвоены значения в ходе выполнения программы.

Посчитать амплитуды можно, применив правило, по которому работает зеркало, к начальной конфигурации. Не вдаваясь в подробности, можно считать, что правило выглядит так: «умножить на 1, когда фотон пролетает; умножить на i , когда фотон отражается». Применим правило: амплитуда конфигурации «фотон летит в B » равняется (-1 + 0i ) × i = (0 + -i ), а амплитуда конфигурации «фотон летит в C » равняется (-1 + 0i ) × 1 = (-1 + 0i ). Других конфигураций на рис. 1 нету, так что мы закончили.

В принципе, можно считать «первый детектор регистрирует фотон» и «второй детектор регистрирует фотон» отдельными конфигурациями, но это ничего не меняет; их амплитуды будут равны амплитудам двух предыдущих конфигураций соответственно. (На самом деле их ещё надо домножить на множитель, равный расстоянию от A до детекторов, но мы просто предположим, что все расстояния в нашем эксперименте являются множителями единицы.)

Итак, вот конечное состояние программы:

  • «фотон летит в A »: (-1 + 0i )
  • «фотон летит из A в B »: (0 + -i )
  • «фотон летит из A в C »: (-1 + 0i )

И, возможно:

  • «сработал первый детектор»: (0 + -i )
  • «сработал второй детектор»: (-1 + 0i )

Разумеется, сколько бы раз мы ни запускали программу, конечное состояние останется таким же.
Теперь, по довольно сложным причинам, в которые я пока не буду вдаваться, не существует простого способа измерить амплитуду конфигурации. Состояние программы скрыто от нас.

Что же делать?

Хоть мы и не можем измерить амплитуду непосредственно, кое-что у нас есть - а именно, волшебная измерительная штуковина, которая может сообщить нам квадрат модуля амплитуды конфигурации. Другими словами, для амплитуды (a + bi ) штуковина ответит числом (a² + b²).

Точнее было бы сказать, что волшебная штуковина находит всего лишь отношение квадратов модулей друг к другу. Но даже этой информации оказывается достаточно, чтобы понять, что происходит внутри программы и по каким законам она работает.

С помощью штуковины мы можем легко узнать, что квадраты модулей конфигураций «сработал первый детектор» и «сработал второй детектор» равны. А проведя некоторые более сложные эксперименты, мы сможем также узнать отношение самих амплитуд - i к 1.

Кстати, а что это за волшебная измерительная штуковина такая?

Ну, когда такие эксперименты проводят в реальной жизни, в качестве волшебной штуковины служит то, что эксперимент проводят пару тысяч раз и просто считают, сколько раз фотон оказался в первом детекторе, а сколько - во втором. Отношение этих значений и будет отношением квадратов модулей амплитуд. Почему это будет так - вопрос другой, гораздо более сложный. А пока можно пользоваться штуковиной и без понимания того, как да почему она работает. Всему своё время.

Вы можете спросить: «А зачем вообще нужна квантовая теория, если её предсказания совпадают с предсказаниями „бильярдной” теории?» Есть две причины. Во-первых, реальность , что бы вы там ни думали, всё-таки подчиняется квантовым законам - амплитуды, комплексные числа и всё такое. А во-вторых, «бильярдная» теория не работает для любого мало-мальски сложного эксперимента. Хотите пример? Пожалуйста.

На рис. 2 вы можете видеть два зеркала в точках B и C , и два полу-зеркала в точках A и D . Позже я объясню, почему отрезок DE проведён пунктиром; на расчётах это никак не скажется.

Давайте применим правила, которые мы уже знаем.

В начале у нас есть конфигурация «фотон летит в A », её амплитуда - (-1 + 0i ).

Считаем амплитуды конфигураций «фотон летит из A в B » и «фотон летит из A в C »:

  • «фотон летит из A в B » = i × «фотон летит в A » = (0 + -i )
  • «фотон летит из A в C » = 1 × «фотон летит в A » = (-1 + 0i )

Интуитивно ясно, что обычное зеркало ведёт себя как половина полу-зеркала: всегда отражает фотон, всегда умножает амплитуду на i . Итак:

  • «фотон летит из B в D » = i × «фотон летит из A в B » = (1 + 0i )
  • «фотон летит из C в D » = i × «фотон летит из A в C » = (0 + -i )

Важно понять, что «из B в D » и «из C в D » - это две разные конфигурации. Нельзя просто написать «фотон летит в D », потому что от угла, под которым этот фотон приходит в D , зависит то, что с ним случится дальше.

  • B в D », равная (1 + 0i ):
    • умножается на i , и результат (0 + i D в E »
    • умножается на 1, и результат (1 + 0i ) засчитывается в пользу конфигурации «фотон летит из D в F »
  • амплитуда конфигурации «фотон летит из C в D », равная (0 + -i ):
    • умножается на i , и результат (1 + 0i ) засчитывается в пользу конфигурации «фотон летит из D в F »
    • умножается на 1, и результат (0 + -i ) засчитывается в пользу конфигурации «фотон летит из D в E »
  • «фотон летит из D в E » = (0 + i ) + (0 + -i ) = (0 + 0i ) = 0
  • «фотон летит из D в F » = (1 + 0i ) + (1 + 0i ) = (2 + 0i )

Отношение квадратов модулей амплитуд - 0 к 4; из расчётов следует, что первый детектор вообще не будет срабатывать! Поэтому-то отрезок DE и был проведён пунктиром на рис. 2.

Если бы полу-зеркала отражали или пропускали фотон случайным образом, оба детектора реагировали бы примерно с одинаковой частотой. Но это не совпадает с результатами экспериментов. Вот и всё.
Вы могли бы возразить: «А вот и не всё! Предположим, например, что когда зеркало отражает фотон, с ним происходит что-то такое, что второй раз он уже не отразится? И, наоборот, когда зеркало пропускает фотон, в следующий раз ему придётся отразиться.»

Во-первых, бритва Оккама. Не стоит выдумывать сложное объяснение, если уже существует простое (если, конечно, считать квантовую механику простой …) А во-вторых, я могу придумать другой опыт, который опровергнет и эту альтернативную теорию.

Поместим маленький непрозрачный объект между B и D , чтобы амплитуда конфигурации «фотон летит из B в D » всегда равнялась нулю.

Теперь амплитуда конфигурации «фотон летит из D в F » равна (1 + 0i ), а амплитуда конфигурации «фотон летит из D в E » - (0 + -i ). Квадраты модулей равны 1. Это значит, что в половине случаев будет срабатывать первый детектор, а в половине - второй.

Это невозможно объяснить, если считать, что фотон - это маленький бильярдный шарик, который отражается от зеркал.

Дело в том, что об амплитуде нельзя думать, как о вероятности. В теории вероятностей, если событие X может произойти или не произойти, то вероятность события Z равна P(Z |X )P(X ) + P(Z X )P(¬X ), где все вероятности положительны. Если вы знаете, что вероятность Z при условии, что X случилось, равна 0.5, а вероятность X - 0.3, то полная вероятность Z по меньшей мере 0.15, независимо от того, что произойдёт, если X не случится. Не бывает отрицательных вероятностей. Возможные и невозможные события не могут аннулировать друг друга. А амплитуды - могут.

Вот пример неправильного мышления: «Фотон летит в B или в C , но он мог полететь по-другому, и это влияет на вероятность того, что он полетит в E …»

События, которые не случились, не имеют никакого влияния на мир. Единственное, что может повлиять на мир - это наше воображение. «О боже, эта машина чуть не сбила меня», думаете вы, и решаете уйти в монастырь, чтобы больше никогда не встречаться с опасными машинами. Но реально по-прежнему не само событие, а лишь ваше воображение, содержащееся в вашем мозгу - который можно из вас достать, пощупать и положить назад, чтобы убедиться, что он вполне реален.

Реально всё, что влияет на мир. (Если вы полагаете, что это не так, попробуйте дать определение слову «реальный».) Конфигурации и амплитуды непосредственно влияют на мир, так что они тоже реальны. Сказать, что конфигурация - это «то, что могло случиться», так же странно, как сказать, что стул - это «то, что могло случиться».

А что это тогда - конфигурация?

Продолжение следует.

На самом деле всё немного сложнее, чем вам могло показаться после прочтения этой статьи.
Каждая конфигурация описывает все частицы во Вселенной. Амплитуда - это непрерывное распределение по всему пространству конфигураций, а не дискретное, как мы рассматривали сегодня. И в самом деле, фотоны же не телепортируются из одного места в другое мгновенно , а каждое различное состояние мира описывается новой конфигурацией. В конце концов мы и до этого доберёмся.

Если вы ничего не поняли из этого абзаца, не беспокойтесь, я всё объясню. Потом.

Здравствуйте дорогие читатели. Если вы не хотите отставать от жизни, быть по-настоящему счастливым и здоровым человеком, вы должны знать о тайнах квантовой современной физики, хоть немного представлять до каких глубин мироздания докопались сегодня ученые. Вам некогда вдаваться в глубокие научные подробности, а хотите постигнуть лишь суть, но увидеть красоту неизведанного мира, тогда эта статья: квантовая физика для обычных чайников или можно сказать для домохозяек как раз для вас. Я постараюсь объяснить, что такое квантовая физика, но простыми словами, показать наглядно.

"Какая связь между счастьем, здоровьем и квантовой физикой?"- спросите вы.

Дело в том, что она помогает ответить на многие непонятные вопросы, связанные с сознанием человека, влияния сознания на тело. К сожалению, медицина, опираясь на классическую физику, не всегда нам помогает быть здоровым. А психология не может нормально сказать, как обрести счастье.

Только более глубокие познания мира помогут нам понять, как же по-настоящему справиться с болезнями и где обитает счастье. Это знание находятся в глубоких слоях Вселенной. На помощь нам приходит квантовая физика. Скоро вы все узнаете.

Что изучает квантовая физика простыми словами

Да, действительно квантовую физику очень сложно понять из-за того, что она изучает законы микромира. То есть мир на более глубоких его слоях, на очень малых расстояниях, там, куда очень сложно заглянуть человеку.

А мир, оказывается, ведет себя там очень странно, загадочно и непостижимо, не так как мы привыкли.

Отсюда вся сложность и непонимание квантовой физики.

Но после прочтения этой статьи вы раздвинете горизонты своего познания и посмотрите на мир совсем по-другому.

Кратко об истории квантовой физики

Все началось в начале 20 века, когда ньютоновская физика не могла объяснить многие вещи и ученые зашли в тупик. Тогда Максом Планком было введено понятие кванта. Альберт Эйнштейн подхватил эту идею и доказал, что свет распространяется не непрерывно, а порциями – квантами (фотонами). До этого же считалось, что свет имеет волновую природу.


Но как оказалось позже любая элементарная частица, это не только квант, то есть твердая частица, а также волна. Так появился корпускулярно-волновой дуализм в квантовой физике, первый парадокс и начало открытий загадочных явлений микромира.

Самые интересные парадоксы начались, когда был проведен знаменитый эксперимент с двумя щелями, после которого загадок стало намного больше. Можно сказать, что квантовая физика началась с него. Давайте его рассмотрим.

Эксперимент с двумя щелями в квантовой физике

Представьте себе пластину с двумя щелями в виде вертикальных полос. За этой пластиной поставим экран. Если направить свет на пластину, то на экране мы увидим интерференционную картину. То есть чередующиеся темные и яркие вертикальные полосы. Интерференция это результат волнового поведения чего-либо, в нашем случае света.


Если вы пропустите волну воды через два отверстия расположенных рядом, вы поймете что такое интерференция. То есть свет получается вроде как имеет волновую природу. Но как доказала физика, вернее Эйнштейн, он распространяется частицами-фотонами. Уже парадокс. Но это ладно, корпускулярно-волновым дуализмом нас уже не удивить. Квантовая физика говорит нам, что свет ведет себя как волна, но состоит из фотонов. Но чудеса только начинаются.

Давайте перед пластиной с двумя прорезями поставим пушку, которая будет испускать не свет, а электроны. Начнем стрелять электронами. Что мы увидим на экране за пластиной?

Электроны ведь это частицы, значит поток электронов, проходя через две щели, должны оставлять на экране всего две полосы, два следа напротив щелей. Представили себе камушки, пролетающие сквозь две щели и ударяющие об экран?

Но что мы видим на самом деле? Всю ту же интерференционную картину. Каков вывод: электроны распространяются волнами. Значит электроны это волны. Но ведь это элементарная частица. Опять корпускулярно-волновым дуализм в физике.

Но можно предположить, что на более глубоком уровне электрон это частица, а когда эти частицы собираются вместе, они начинают вести себя как волны. Например, морская волна это волна, но ведь она состоит из капель воды, а на более мелком уровне из молекул, а затем из атомов. Хорошо, логика твердая.

Тогда давайте будем стрелять из пушки не потоком электронов, а выпускать электроны по отдельности, через какой-то промежуток времени. Как если бы мы пропускали через щели не морскую волну, а плевались бы отдельными каплями из детского водяного пистолета.

Вполне логично, что в таком случае разные капли воды попадали бы в разные щели. На экране за пластиной можно было бы увидеть не интерференционную картину от волны, а две четкие полосы от удара напротив каждой щели. То же самое мы увидим, если кидать мелкие камни, они, пролетая сквозь две щели, оставляли бы след, словно тень от двух отверстий. Давайте же теперь стрелять отдельными электронами, чтобы увидеть эти две полосы на экране от ударов электронов. Выпустили один, подождали, второй, подождали и так далее. Ученые квантовой физики смогли сделать такой эксперимент.

Но ужас. Вместо этих двух полос получаются все те же интерференционные чередования нескольких полос. Как так? Такое может случиться, если бы электрон пролетал одновременно через две щели, а за пластиной, как волна сталкивался бы сам с собой и интерферировал. Но такое не может быть, ведь частица не может находиться в двух местах одновременно. Она или пролетает сквозь первую щель или сквозь вторую.

Вот тут начинаются поистине фантастические вещи квантовой физики.

Суперпозиция в квантовой физике

При более глубоком анализе ученые выясняют что любая элементарная квантовая частица или тот же свет(фотон) на самом деле могут находиться в нескольких местах одновременно. И это не чудеса, а реальные факты микромира. Так утверждает квантовая физика. Вот поэтому, стреляя из пушки отдельной частицей, мы видим результат интерференции. За пластиной электрон сталкивается сам с собой и создает интерференционную картину.

Обычные нам объекты макромира находятся всегда в одном месте, имеют одно состояние. Например, вы сейчас сидите на стуле, весите, допустим, 50 кг, имеете частоту пульса 60 ударов в минуту. Конечно, эти показания изменятся, но изменятся они через какое-то время. Ведь вы не можете одновременно быть дома и на работе, весить 50 и 100 кг. Все это понятно, это здравый смысл.

В физике микромира же все по-другому.

Квантовая механика утверждает, а это уже подтверждено экспериментально, что любая элементарная частица может находиться одновременно не только в нескольких точках пространства, но также иметь в одно и то же время несколько состояний, например спин.

Все это не укладывается в голову, подрывает привычное представление о мире, старые законы физики, переворачивает мышление, можно смело сказать сводит с ума.

Так мы приходим к пониманию термина "суперпозиции" в квантовой механике.

Суперпозиция означает, что объект микромира может одновременно находиться в разных точках пространства, а также иметь несколько состояний одновременно. И это нормально для элементарных частиц. Таков закон микромира, каким бы странным и фантастическим он не казался.

Вы удивлены, но это только цветочки, самые необъяснимые чудеса, загадки и парадоксы квантовой физики еще впереди.

Коллапс волновой функции в физике простыми словами

Затем ученые решили выяснить и посмотреть более точно, реально ли электрон проходит через обе щели. Вдруг он проходит через одну щель, а затем каким-то образом разделяется и создает интерференционную картину, проходя через нее. Ну, мало ли. То есть нужно поставить какой-нибудь прибор возле щели, который бы точно зафиксировал прохождение электрона через нее. Сказано, сделано. Конечно, осуществить это сложно, нужен не прибор, а что-то другое, чтобы увидеть прохождение электрона. Но ученые сделали это.

Но в итоге результат ошеломил всех.

Как только мы начинаем смотреть, через какую щель проходит электрон, так он начинает вести себя не как волна, не как странное вещество, которое одновременно находится в разных точках пространства, а как обычная частица. То есть начинает проявлять конкретные свойства кванта: находится только в одном месте, проходит через одну щель, имеет одно значение спина. На экране появляется не интерференционная картина, а простой след напротив щели.

Но как такое возможно. Как будто электрон шутит, играет с нами. Сначала он ведет себя как волна, а затем, после того, как мы решили посмотреть прохождение его через щель, проявляет свойства твердой частицы и проходит только через одну щель. Но так оно и есть в микромире. Таковы законы квантовой физики.

Ученые увидели еще одно загадочное свойство элементарных частиц. Так появились в квантовой физике понятия неопределенность и коллапс волновой функции.

Когда электрон летит к щели, он находится в неопределенном состоянии или как мы сказали выше в суперпозиции. То есть ведет себя как волна, находится одновременно в разных точках пространства, имеет сразу два значения спина (у спина всего два значения). Если бы мы его не трогали, не пытались смотреть на него, не выясняли, где именно он находится, не измеряли бы значение его спина, он бы так и пролетел как волна одновременно через две щели, а значит, создал интерференционную картину. Его траектория и параметры квантовая физика описывает с помощью волновой функции.

После того, как мы произвели измерение (а произвести измерение частицы микромира можно только взаимодействуя с ней, например, столкнуть с ней другую частицу), то происходит коллапс волновой функции.

То есть теперь электрон находится точно в каком-то одном месте пространства, имеет одно значение спина.


Можно сказать элементарная частица как призрак, она как бы есть, но одновременно ее нет в одном месте, и может с определенной вероятностью оказаться в любом месте в пределах описания волновой функцией. Но как только мы начинаем с ней контактировать, она из призрачного объекта превращается в реальное осязаемое вещество, которое ведет себя как обычные, привычные для нас предметы классического мира.

"Вот это фантастика"- скажете вы. Конечно, но чудеса квантовой физики только начинаются. Самое невероятное еще впереди. Но давайте немного отдохнем от обилия информации и вернемся к квантовым приключениям в другой раз, в другой статье. А пока поразмышляйте о том, что вы сегодня узнали. К чему могут привести такие чудеса? Ведь они окружают нас, это свойство нашего мира, хоть и на более глубоком уровне. А мы все еще думаем, что живем в скучном мире? Но выводы сделаем позже.

Я попытался рассказать об основах квантовой физике кратко и понятно.

Но если вы что-то не поняли, тогда посмотрите вот этот мультик про квантовую физику, про эксперимент с двумя щелями, там также все рассказывается понятным, простым языком.

Мультфильм про квантовую физику:

Или можно смотреть вот этот видео, все станет на свои места, квантовая физика ведь очень интересна.

Видео о квантовой физике:

И как вы раньше об этом не знали.

Современные открытия в квантовой физике меняют наш привычный материальный мир.

Если Вы вдруг поняли, что подзабыли основы и постулаты квантовой механики или вообще не знаете, что это за механика такая, то самое время освежить в памяти эту информацию. Ведь никто не знает, когда квантовая механика может пригодиться в жизни.

Зря вы усмехаетесь и ехидствуете, думая, что уж с этим предметом вам в жизни вообще никогда не придется сталкиваться. Ведь квантовая механика может быть полезной практически каждому человеку, даже бесконечно далекому от нее. Например, у Вас бессонница. Для квантовой механики это не проблема! Почитайте перед сном учебник – и Вы спите крепчайшим сном странице уже эдак на третьей. Или можете назвать так свою крутую рок группу. Почему бы и нет?

Шутки в сторону, начинаем серьезный квантовый разговор.

С чего начать? Конечно, с того, что такое квант.

Квант

Квант (от латинского quantum – ”сколько”) – это неделимая порция какой-то физической величины. Например, говорят - квант света, квант энергии или квант поля.

Что это значит? Это значит, что меньше быть уже просто не может. Когда говорят о том, что какая-то величина квантуется, понимают, что данная величина принимает ряд определенных, дискретных значений. Так, энергия электрона в атоме квантуется, свет распространяется «порциями», то есть квантами.

Сам термин «квант» имеет множество применений. Квантом света (электромагнитного поля) является фотон. По аналогии квантами называются частицы или квазичастицы, соответствующие иным полям взаимодействия. Здесь можно вспомнить про знаменитый бозон Хиггса, который является квантом поля Хиггса. Но в эти дебри мы пока не лезем.


Квантовая механика для "чайников"

Как механика может быть квантовой?

Как Вы уже заметили, в нашем разговоре мы много раз упоминали о частицах. Возможно, Вы и привыкли к тому, что свет – это волна, которая просто распространяется со скоростью с . Но если посмотреть на все с точки зрения квантового мира, то есть мира частиц, все изменяется до неузнаваемости.

Квантовая механика – это раздел теоретической физики, составляющая квантовой теории, описывающая физические явления на самом элементарном уровне – уровне частиц.

Действие таких явлений по величине сравнимо с постоянной Планка, а классическая механика Ньютона и электродинамика оказались совершенно непригодными для их описания. Например, согласно классической теории электрон, вращаясь с большой скоростью вокруг ядра, должен излучать энергию и в конце концов упасть на ядро. Этого, как известно, не происходит. Именно поэтому и придумали квантовую механику – открытые явления нужно было как-то объяснить, и она оказалась именно той теорией, в рамках которой объяснение было наиболее приемлемым, а все экспериментальные данные "сходились".


Кстати! Для наших читателей сейчас действует скидка 10% на

Немного истории

Зарождение квантовой теории произошло в 1900 году, когда Макс Планк выступил на заседании немецкого физического общества. Что тогда сообщил Планк? А то, что излучение атомов дискретно, а наименьшая порция энергии этого излучения равна

Где h - постоянная Планка, ню - частота.

Затем Альберт Эйнштейн, введя понятие “квант света” использовал гипотезу Планка для объяснения фотоэффекта. Нильс Бор постулировал существование у атома стационарных энергетических уровней, а Луи де Бройль развил идею о корпускулярно-волновом дуализме, то есть о том, что частица (корпускула) обладает также и волновыми свойствами. К делу присоединились Шредингер и Гейзенберг, и вот, в 1925 году публикуется первая формулировка квантовой механики. Собственно, квантовая механика – далеко не законченная теория, она активно развивается и в настоящее время. Также следует признать, что квантовая механика с ее допущениями не имеет возможности объяснить все стоящие перед ней вопросы. Вполне возможно, что на смену ей придет более совершенная теория.


При переходе от мира квантового к миру привычных нам вещей законы квантовой механики естественным образом трансформируются в законы механики классической. Можно сказать, что классическая механика – это частный случай квантовой механики, когда действие имеет место быть в нашем с Вами привычном и родном макромире. Здесь тела спокойно движутся в неинерциальных системах отсчета со скоростью, гораздо меньшей скорости света, и вообще - все вокруг спокойно и понятно. Хочешь узнать положение тела в системе координат – нет проблем, хочешь измерить импульс – всегда пожалуйста.

Совершенно иной подход к вопросу имеет квантовая механика. В ней результаты измерений физических величин носят вероятностный характер. Это значит, что при изменении какой-то величины возможно несколько результатов, каждому из которых соответствует определенная вероятность. Приведем пример: монетка крутится на столе. Пока она крутится, она не находится в каком-то определенном состоянии (орел-решка), а имеет лишь вероятность в одном из этих состояний оказаться.

Здесь мы плавно подходим к уравнению Шредингера и принципу неопределенности Гейзенберга .

Согласно легенде Эрвин Шредингер, в 1926 году выступая на одном научном семинаре с докладом на тему корпускулярно-волнового дуализма, был подвергнут критике со стороны некоего старшего ученого. Отказавшись слушать старших, Шредингер после этого случая активно занялся разработкой волнового уравнения для описания частиц в рамках квантовой механики. И справился блестяще! Уравнение Шредингера (основное уравнение квантовой механики) имеет вид:

Данный вид уравнения – одномерное стационарное уравнение Шредингера – самый простой.

Здесь x - расстояние или координата частицы, m - масса частицы, E и U - соответственно ее полная и потенциальная энергии. Решение этого уравнения – волновая функция (пси)

Волновая функция – еще одно фундаментальное понятие в квантовой механике. Так, у любой квантовой системы, находящейся в каком-то состоянии, есть волновая функция, описывающая данное состояние.

Например, при решении одномерного стационарного уравнения Шредингера волновая функция описывает положение частицы в пространстве. Точнее говоря, вероятность нахождения частицы в определенной точке пространства. Иными словами, Шредингер показал, что вероятность может быть описана волновым уравнением! Согласитесь, до этого нужно было додуматься!


Но почему? Почему мы должны иметь дело с этими непонятными вероятностями и волновыми функциями, когда, казалось бы, нет ничего проще, чем просто взять и измерить расстояние до частицы или ее скорость.

Все очень просто! Ведь в макромире это действительно так – мы с определенной точностью измеряем расстояние рулеткой, а погрешность измерения определяется характеристикой прибора. С другой стороны, мы можем практически безошибочно на глаз определить расстояние до предмета, например, до стола. Во всяком случае, мы точно дифференцируем его положение в комнате относительно нас и других предметов. В мире же частиц ситуация принципиально иная – у нас просто физически нет инструментов измерения, чтобы с точностью измерить искомые величины. Ведь инструмент измерения вступает в непосредственный контакт с измеряемым объектом, а в нашем случае и объект, и инструмент – это частицы. Именно это несовершенство, принципиальная невозможность учесть все факторы, действующие на частицу, а также сам факт изменения состояния системы под действием измерения и лежат в основе принципа неопределенности Гейзенберга.

Приведем самую простую его формулировку. Представим, что есть некоторая частица, и мы хотим узнать ее скорость и координату.

В данном контексте принцип неопределенности Гейзенберга гласит: невозможно одновременно точно измерить положение и скорость частицы . Математически это записывается так:

Здесь дельта x - погрешность определения координаты, дельта v - погрешность определения скорости. Подчеркнем – данный принцип говорит о том, что чем точнее мы определим координату, тем менее точно будем знать скорость. А если определим скорость, не будем иметь ни малейшего понятия о том, где находится частица.

На тему принципа неопределенности существует множество шуток и анекдотов. Вот один из них:

Полицейский останавливает квантового физика.
- Сэр, Вы знаете, с какой скоростью двигались?
- Нет, зато я точно знаю, где я нахожусь


И, конечно, напоминаем Вам! Если вдруг по какой-то причине решение уравнения Шредингера для частицы в потенциальной яме не дает Вам уснуть, обращайтесь к – профессионалам, которые были взращены с квантовой механикой на устах!

Многим людям физика кажется такой далекой и запутанной, а квантовая - уж тем более. Но я хочу раскрыть для вас завесу этой великой тайны, потому что на деле все оказывается странно, но распутываемо.

А также квантовая физика - отличный предмет для разговора с умными людьми.

Квантовая физика - это просто

Для начала вам нужно начертить в голове одну большую линию между микромиром и макромиром, потому что эти миры совершенно различны. Все, что вы знаете о привычном себе пространстве и предметах в нем, является ложным и неприемлемым в квантовой физике.

Фактически, микрочастицы не имеют ни скорости, ни определенного положения, пока ученые на них не посмотрят. Это утверждение кажется нам просто абсурдным, таковым оно казалось и Альберту Эйнштейну, но даже великий физик пошел на попятную.

Дело в том, что проводившиеся исследования доказали, что посмотрев один раз частицу, которая занимала определенное положение, а затем отвернувшись и снова посмотрев, вы увидите, что эта частица уже заняла совершенно иное положение.

Эти шаловливые частицы

Все кажется простым, но когда мы смотрим на ту же частицу, она стоит на месте. То есть эти частицы движутся только тогда, когда мы не можем этого видеть.

Суть такова, что каждая частица (по теории вероятности) обладает шкалой вероятностей находиться в том или ином положении. И когда мы отворачиваемся, а затем снова поворачиваемся, то можем застать частицу в любом из ее возможных положений именно согласно шкале вероятности.

По исследованию частицу искали в разных местах, затем прекращали наблюдать за ней, а затем снова смотрели, как изменилось ее положение. Результат был просто ошеломительным. Подведя итоги, ученые действительно смогли составить шкалу вероятностей, где может находиться та или иная частица.

Например, нейтрон имеет возможность находиться в трех положениях. Проведя исследования, вы можете обнаружить, что в первом положении он будет находиться с вероятностью 15%, во втором - 60%, в третьем - 25%.

Эту теорию никто еще не смог опровергнуть, поэтому она является, как ни странно, самой правильной.

Макромир и микромир

Если мы возьмем предмет из макромира, то увидим, что он тоже обладает шкалой вероятности, но она совершенно другая. Например, вероятность того, что отвернувшись, вы найдете свой телефон на другом конце мира равна практически нулю, но она все равно существует.

Тогда спрашивается, как же так еще не было зафиксировано подобных случаев. Это объясняется тем, что вероятность настолько мала, что человечеству пришлось бы ждать столько лет, сколько еще не прожила наша планета и целая вселенная, чтобы увидеть подобное событие. Выходит, что ваш телефон почти со стопроцентной вероятностью окажется именно там, где вы его видели.

Квантовое туннелирование

Отсюда можно выйти на понятие квантового туннелирования. Это понятие о постепенном переходе одного предмета (это если очень грубо выражаться) в совершенно другое место без каких-либо внешних воздействий.

То есть начаться все может с одного нейтрона, который в один прекрасный момент попадет в ту самую почти нулевую вероятность находиться в совершенно ином месте, а чем больше нейтронов будет находиться в другом месте, тем выше будет становится вероятность.

Конечно, для такого перехода потребуется столько лет, сколько еще не прожила наша планета, но, согласно теории квантовой физики, квантовое туннелирование имеет место быть.

Прочтите также:


Никто в этом мире не понимает, что такое квантовая механика. Это, пожалуй, самое главное, что нужно знать о ней. Конечно, многие физики научились использовать законы и даже предсказывать явления, основанные на квантовых вычислениях. Но до сих пор неясно, почему наблюдатель эксперимента определяет поведение системы и заставляет ее принять одно из двух состояний.

Перед вами несколько примеров экспериментов с результатами, которые неизбежно будут меняться под влиянием наблюдателя. Они показывают, что квантовая механика практически имеет дело с вмешательством сознательной мысли в материальную реальность.

Сегодня существует множество интерпретаций квантовой механики , но Копенгагенская интерпретация, пожалуй, является самой известной. В 1920-х ее общие постулаты были сформулированы Нильсом Бором и Вернером Гейзенбергом.

В основу Копенгагенской интерпретации легла волновая функция. Это математическая функция, содержащая информацию о всех возможных состояниях квантовой системы, в которых она существует одновременно. Как утверждает Копенгагенская интерпретация, состояние системы и ее положение относительно других состояний может быть определено только путем наблюдения (волновая функция используется только для того, чтобы математически рассчитать вероятность нахождения системы в одном или другом состоянии).

Можно сказать, что после наблюдения квантовая система становится классической и немедленно прекращает свое существование в других состояниях, кроме того, в котором была замечена. Такой вывод нашел своих противников (вспомните знаменитое эйнштейновское «Бог не играет в кости»), но точность расчетов и предсказаний все же возымели свое.

Тем не менее число сторонников Копенгагенской интерпретации снижается, и главной причиной этого является таинственный мгновенный коллапс волновой функции в ходе эксперимента. Знаменитый мысленный эксперимент Эрвина Шредингера с бедным котиком должен продемонстрировать абсурдность этого явления. Давайте вспомним детали.

Внутри черного ящика сидит черный кот и вместе с ним флакон с ядом и механизм, который может высвободить яд случайным образом. Например, радиоактивный атом во время распада может разбить пузырек. Точное время распада атома неизвестно. Известен только период полураспада, в течение которого распад происходит с вероятностью 50%.

Очевидно, что для внешнего наблюдателя кот внутри коробки находится в двух состояниях: он либо жив, если все пошло хорошо, либо мертв, если распад произошел и флакон разбился. Оба этих состояния описываются волновой функцией кота, которая меняется с течением времени.

Чем больше времени прошло, тем больше вероятность того, что радиоактивный распад случился. Но как только мы открываем коробку, волновая функция коллапсирует, и мы сразу же видим результаты этого бесчеловечного эксперимента.

На самом деле, пока наблюдатель не откроет коробку, кот будет бесконечно балансировать между жизнью и смертью, или будет одновременно жив и мертв. Его судьба может быть определена только в результате действий наблюдателя. На этот абсурд и указал Шредингер.

Согласно опросу знаменитых физиков, проведенному The New York Times, эксперимент с дифракцией электронов является одним из самых удивительных исследований в истории науки. Какова его природа? Существует источник, который излучает пучок электронов на светочувствительный экран. И есть препятствие на пути этих электронов, медная пластина с двумя щелями.

Какую картинку можно ожидать на экране, если электроны обычно представляются нам небольшими заряженными шариками? Две полосы напротив прорезей в медной пластине. Но на самом деле на экране появляется куда более сложный узор из чередующихся белых и черных полос. Это связано с тем, что при прохождении через щель электроны начинают вести себя не только как частицы, но и как волны (так же ведут себя фотоны или другие легкие частицы, которые могут быть волной в то же время).

Эти волны взаимодействуют в пространстве, сталкиваясь и усиливая друг друга, и в результате сложный рисунок из чередующихся светлых и темных полос отображается на экране. В то же время результат этого эксперимента не изменяется, даже если электроны проходят один за одним — даже одна частица может быть волной и проходить одновременно через две щели. Этот постулат был одним из основных в Копенгагенской интерпретации квантовой механики, когда частицы могут одновременно демонстрировать свои «обычные» физические свойства и экзотические свойства как волна.

Но как насчет наблюдателя? Именно он делает эту запутанную историю еще более запутанной. Когда физики во время подобных экспериментов попытались определить с помощью инструментов, через какую щель фактически проходит электрон, картинка на экране резко изменилась и стала «классической»: с двумя освещенными секциями строго напротив щелей, безо всяких чередующихся полос.

Электроны, казалось, не хотят открывать свою волновую природу бдительному оку наблюдателей. Похоже на тайну, покрытую мраком. Но есть и более просто объяснение: наблюдение за системой не может осуществляться без физического влияния на нее. Это мы обсудим позже.

2. Подогретые фуллерены

Эксперименты по дифракции частиц проводились не только с электронами, но и другими, гораздо более крупными объектами. Например, использовались фуллерены, большие и закрытые молекулы, состоящие из нескольких десятков атомов углерода. Недавно группа ученых из Венского университета под руководством профессора Цайлингера пыталась включить элемент наблюдения в эти эксперименты. Чтобы сделать это, они облучали движущиеся молекулы фуллеренов лазерными лучами. Затем, нагретые внешним источником, молекулы начинали светиться и неизбежно отображать свое присутствие для наблюдателя.

Вместе с этим нововведением изменилось и поведение молекул. До начала такого всеобъемлющего наблюдения фуллерены довольно успешно избегали препятствия (проявляя волновые свойства), аналогично предыдущему примеру с электронами, попадающими на экран. Но с присутствием наблюдателя фуллерены стали вести себя как совершенно законопослушные физические частицы.

3. Охлаждающее измерение

Одним из самых известных законов в мире квантовой физики является принцип неопределенности Гейзенберга , согласно которому невозможно определить скорость и положение квантового объекта одновременно. Чем точнее мы измеряем импульс частицы, тем менее точно мы можем измерить ее позицию. Однако в нашем макроскопическом реальном мире обоснованность квантовых законов, действующих на крошечные частицы, обычно остается незамеченной.

Недавние эксперименты профессора Шваба из США вносят весьма ценный вклад в эту область. Квантовые эффекты в этих экспериментах были продемонстрированы не на уровне электронов или молекул фуллеренов (примерный диаметр которых составляет 1 нм), а на более крупных объектах, крошечной алюминиевой ленте. Эта лента была зафиксирована с обеих сторон так, чтобы ее середина находилась в подвешенном состоянии и могла вибрировать под внешним воздействием. Кроме того, рядом было помещено устройство, способное точно записывать положение ленты. В результате эксперимента обнаружилось несколько интересных вещей. Во-первых, любое измерение, связанное с положением объекта, и наблюдение за лентой влияло на нее, после каждого измерения положение ленты изменялось.

Экспериментаторы определили координаты ленты с высокой точностью, и таким образом, в соответствии с принципом Гейзенберга, изменили ее скорость, а значит и последующее положение. Во-вторых, что было довольно неожиданным, некоторые измерения привели к охлаждению ленты. Таким образом, наблюдатель может изменить физические характеристики объектов одним своим присутствием.

4. Замерзающие частицы

Как известно, нестабильные радиоактивные частицы распадаются не только в экспериментах с котами, но и сами по себе. Каждая частица имеет средний срок жизни, который, как выясняется, может увеличиться под бдительным оком наблюдателя. Этот квантовый эффект был предсказан еще в 60-х годах, а его блестящее экспериментальное доказательство появилось в статье, опубликованной группой под руководством нобелевского лауреата по физике Вольфганга Кеттерле из Массачусетского технологического института.

В этой работе изучался распад нестабильных возбужденных атомов рубидия. Сразу после подготовки системы атомы возбуждались с помощью лазерного луча. Наблюдение проходило в двух режимах: непрерывном (система постоянно подвергалась небольшим световым импульсам) и импульсном (система время от времени облучалась более мощными импульсами).

Полученные результаты полностью соответствовали теоретическим предсказаниям. Внешние световые эффекты замедляют распад частиц, возвращая их в исходное состояние, которое далеко от состояния распада. Величина этого эффекта также совпадала с прогнозами. Максимальный срок существования нестабильных возбужденных атомов рубидия увеличивался в 30 раз.

5. Квантовая механика и сознание

Электроны и фуллерены перестают показывать свои волновые свойства, алюминиевые пластинки остывают, а нестабильные частицы замедляют свой распад. Бдительное око наблюдателя буквально меняет мир. Почему это не может быть доказательством причастности наших умов к работе мира? Возможно, Карл Юнг и Вольфганг Паули (австрийский физик, лауреат Нобелевской премии, пионер квантовой механики) были правы, в конце концов, когда заявили, что законы физики и сознания следует рассматривать как дополняющие одно другое?

Мы находимся в одном шаге от признания того, что мир вокруг нас — просто иллюзорный продукт нашего разума . Идея страшная и заманчивая. Давайте попробуем снова обратиться к физикам. Особенно в последние годы, когда все меньше и меньше людей верят Копенгагенской интерпретации квантовой механики с ее загадочными коллапсами волновой функции, обращаясь к более приземленной и надежной декогеренции.

Дело в том, что во всех этих экспериментах с наблюдениями экспериментаторы неизбежно влияли на систему. Они зажигали ее с помощью лазера и устанавливали измерительные приборы. Их объединял важный принцип: вы не можете наблюдать за системой или измерять ее свойства, не взаимодействуя с ней. Любое взаимодействие есть процесс модификации свойств. Особенно когда крошечная квантовая система подвергается воздействию колоссальных квантовых объектов. Некий вечно нейтральный буддист-наблюдатель невозможен в принципе. И здесь в игру вступает термин «декогеренция», который является необратимым с точки зрения термодинамики: квантовые свойства системы меняются при взаимодействии с другой крупной системой.

Во время этого взаимодействия квантовая система теряет свои первоначальные свойства и становится классической, словно «подчиняясь» крупной системе. Это объясняет и парадокс кота Шредингера: кот — это слишком большая система, поэтому ее нельзя изолировать от остального мира. Сама конструкция этого мысленного эксперимента не совсем корректна.

В любом случае, если допустить реальность акта творения сознанием, декогеренция представляется гораздо более удобным подходом. Возможно, даже слишком удобным. При таком подходе весь классический мир становится одним большим следствием декогеренции. И как заявил автор одной из самых известных книг в этой области, такой подход логически приводит к заявлениям типа «в мире нет частиц» или «нет времени на фундаментальном уровне».

В чем правда: в создателе-наблюдателе или мощной декогеренции? Нам нужно выбрать между двух зол. Тем не менее ученые все больше убеждаются в том, что квантовые эффекты — проявление наших психических процессов. И то, где заканчивается наблюдение и начинается реальность, зависит от каждого из нас.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта