Главная » Выращивание » Генетическая связь неорганических и органических соединений. Презентация на тему "генетическая связь"

Генетическая связь неорганических и органических соединений. Презентация на тему "генетическая связь"

Строение молекул органических соединений позволяет сделать вывод о химических свойствах веществ и тесной взаимосвязи между ними. Из веществ одних классов путем последовательных превращений получают соединения других классов. При этом все органические вещества можно представить как производные наиболее простых соединений – углеводородов. Генетическую связь органических соединений можно представить в виде схемы:

С 2 Н 6 → С 2 Н 5 Br→ С 2 Н 5 OH→СН 3 -СОН→СН 3 СООН→

СН 3 СООС 3 Н 7 ; и др.

По схеме необходимо составить уравнения химических превращений одних веществ в другие. Они подтверждают взаимосвязь всех органических соединений, усложнение состава вещества, развитие природы веществ от простого к сложному.

В состав органических веществ входит чаще всего небольшое число химических элементов: водород, углерод, кислород, азот, сера, хлор и другие галогены. Органическое вещество метан можно синтезировать из двух простых неорганических веществ – углерода и водорода.

С + 2Н 2 = СН 4 + Q

Это один из примеров того, что между всеми веществами природы - неорганическим и органическими – существует единство и генетическая связь, которые проявляются во взаимных превращениях веществ.

Часть 2. Выполните практическое задание.

Задача экспериментальная.

Докажите, что картофель содержит крахмал.

Чтобы доказать наличие крахмала в картофеле надо на срез картофеля нанести каплю раствора йода. Срез картофеля приобретет сине-фиолетовый цвет. Реакция с раствором йода – это качественная реакция на крахмал.

Э Т А Л О Н

к варианту 25

Количество вариантов (пакетов) заданий для экзаменующихся:

Вариант № 25 из 25 вариантов

Время выполнения заданий :

Вариант № 25 45 мин.

Условия выполнения заданий

Требования охраны труда: преподаватель (эксперт), контролирующий выполнение заданий (инструктаж по технике безопасности при работе с реактивами)

Оборудование: бумага, шариковая ручка, лабораторное оборудование

Литература для экзаменующихся справочная, методическая и таблицы

1. Ознакомьтесь с заданиями для экзаменующихся, оцениваемыми умениями, знаниями и показателями оценки.

Вариант № 25 из 25

Часть 1. Ответьте на теоретические вопросы:

1. Алюминий. Амфотерность алюминия. Оксиды и гидроксиды алюминия.

2. Белки – природные полимеры. Строение и структура белков. Качественные реакции и применение.

Часть 2. Выполните практическое задание

3. Задача экспериментальная.

Как опытным путем получить в лаборатории кислород, докажите его наличие.

Вариант 25 из 25.

Обобщающий урок

Цели урока:

Обеспечить усвоение учащимися знаний о генетической связи между классами органических соединений;

Развитие умения самостоятельного мышления;

Создать условия для становления навыков самостоятельной и коллективной работы.

Задачи урока:

Продолжить формирование умения учащихся применять ранее полученные знания;

Развитие логического мышления;

Развитие речевой культуры учащихся;

Развитие познавательного интереса к предмету.

Ход урока:

1. Введение.

2. Разминка.

3. Викторина: «Угадай вещество».

4. Составление генетической цепочки.

5. Домашнее задание.

Введение. Зная химию функциональных групп, возможные пути их замены, условия их превращений, можно планировать органический синтез, переходя от соединений сравнительно простых к более сложным. В известной книге Кэррола « Алиса в стране чудес» Алиса обращается к Чеширскому Коту: «Скажите, пожалуйста, куда мне идти?» На что Чеширский Кот резонно замечает: «Это во многом зависит от того, куда ты хочешь придти». Как этот диалог связать с генетической связью? Постараемся, используя знания по химическим свойствам органических соединений, осуществить превращения от простейших представителей алканов к высокомолекулярным соединениям.

I. Разминка.

1. Повторить классы органических соединений.

2. Какие бывают по структуре ряды превращений?

3. Решение рядов превращений:

1) CaC2 → C2H2 → C6H6 → C6H5Cl → C6H5OH → C6H2Br3OH

2) Al4C4 → CH4 → C2H2 → C6H6 → C6H5ONa → C6H5OCH3

3) гексан → бензол → хлорбензол → толуол → 2.4.6-трибромтолуол

II. Викторина: «Угадай вещество».

Задание ученикам: определить вещество о котором идет речь и сказать не-сколько слов об этом веществе. (Ученик у доски записывает формулы веществ).

1) Это вещество называют – болотный газ, является основой природного газа, ценное и доступное сырье для синтеза многих веществ. (Метан)

Дополнение учителя: одно любопытное сообщение о том, где пригодился метан. Специалистам одной из исследовательских лабораторий ВМС США удалось разработать способ получения искусственных алмазов. Метан подавался на раскаленную до 2500 С пластину вольфрама, на которой и оседали образующиеся при этом кристаллы.

2) Это вещество называют – светильный газ. Этот газ применялся вначале в основном для освещения: уличные светильники, театральные рампы, походные и шахтерские фонари. На старых велосипедах устанавливались карбидные фонари. В сосуд, заполненный карбидом кальция, поступала вода, и образующийся газ по специальному соплу попадал в лампу, где и сгорал ярким пламенем. (Ацетилен)



3) Структура этого вещества устанавливалась 40 лет, а решение пришло, когда в воображении Кекуле возникла змея, кусающая себя за хвост. (Бензол)

4) Специальными экспериментами было установлено, что при содержании этого вещества в воздухе примерно 0,1 % быстрее дозревают овощи и фрукты. Это вещество называют регулятором роста растений. (Этилен)

Дополнение учителя: оказывается, для цветения ананасов необходим этилен. На плантациях жгут мазут, и небольших количеств образующегося этилена достаточно для получения урожая. А дома можно воспользоваться спелым бананом, который тоже выделяет этилен. Кстати этилен может передавать информацию. У антилоп куду основной пищей служат листья акаций, которые вырабатывают таннин. Это вещество придает листьям горький вкус, а в больших концентрациях - ядовито. Антилопы умеют выбирать листья с низким содержанием таннина, но в экстремальных условиях съедают любые и гибнут. Оказывается, поедаемые антилопами листья выделяют этилен, который служит сигналом для соседних акаций, и через полчаса их листья усиленно продуцируют таннин, что приводит к гибели антилоп.

5) Виноградный сахар. (Глюкоза.)

6) Винный спирт. (Этанол)

7) Маслянистая жидкость. Которая была получена из толуанского бальзама. (Толуол)

8) При опасности муравьи выделяют именно это вещество. (Муравьиная кислота)

9) Взрывчатое вещество, которое имеет несколько названий: тол, тротил. ТНТ. Обычно из 1 г взрывчатого вещества образуется около 1 л газов, что отвечает тысячекратному увеличению объема. Механизм действия любого взрывчатого вещества сводится к мгновенному образованию большого объема газа из небольшого объема жидкости или твердого вещества. Давление расширяющихся газов и представляет собой разрушающую силу взрыва. (Тринитротолуол)



III. Составление генетической цепочки.

Работа в группах. Класс делится на группы по 4 человека.

Задание группам: составить ряд превращений, используя как можно больше веществ, угаданных в викторине. Задание предлагается на время. После выполения, задание проверяется у доски.

В конце урока оценить ответы учащихся.

Рассмотрим генетический ряд органических веществ, в который включим наибольшее число классов соединений:

Каждой цифре над стрелкой соответствует определенное урнпненне реакции (уравнение обратной реакции обозначено цифрой со штрихом):

IV. Домашнее задание: Составить генетический ряд превращений, включающий не мене пяти классов органических соединений.

В школьном курсе органической химии изучению генетической связи между веществами отводится значительная роль. Действительно, в основу курса положена идея развития веществ как ступеней организации материи. Эта идея реализуется и в содержании курса, где материал расположен в порядке усложнения от простейших углеводородов до белков.

Переход от одного класса органических веществ к другому тесно связан с фундаментальными понятиями химии -- химическим элементом, химической реакцией, гомологией, изомерией, многообразием веществ и их классификацией. Например, в генетической цепи превращений метан - ацетилен - уксусный альдегид прослеживается сходное -- сохранение во всех веществах элемента углерода -- и различное -- формы существования этого элемента. Химические реакции конкретизируют теоретические положения курса, а многие из них важны в практическом отношении. Поэтому часто генетические переходы между веществами рассматриваются не только с помощью уравнений реакций, но проводятся и, практически, т. е. осуществляется связь теории с практикой. Следовательно, знания о генетической связи между веществами необходимы и для политехнического образования учащихся. При изучении генетической связи между веществами перед учащимися раскрывается единство природы, взаимосвязь ее явлений. Так, в процесс превращения органических веществ могут быть включены и неорганические соединения. Этот пример отражает внутрипред-метную связь курса химии. Кроме того, цепь этих переходов представляет часть более общего -- явления круговорота веществ в природе. Поэтому каждая изученная в курсе химии реакция выступает как отдельное звено всей цепи превращений. При этом выясняется не, только способ получения продукта, но и условия проведения реакции (применение сведений из физики и математики), размещения сырья и заводов (связь с географией) и пр. Возникает также проблема -- предвидеть дальнейшую судьбу полученных веществ и продуктов их распада, влияние их на окружающую человека среду. Таким образом, ряд сведений из других школьных предметов получает в материале о генетических переходах применение и обобщение.

Велика роль знаний о генетической связи между веществами и в формировании диалектико-материалистического мировоззрения учащихся. Раскрывая, как из неорганических веществ образовались простейшие углеводороды и другие органические соединения, как усложнение их состава и строения привело к образованию белков, положивших начало жизни, мы тем самым подкрепляем примерами материалистическую теорию происхождения жизни на Земле. Законы диалектики, с которыми учащиеся знакомятся на уроках обществоведения, получают применение при изучении, генетических переходов. Итак, вопрос о генетической связи между веществами при комплексном подходе к нему не выступает как отдельное, а является составной частью общего в обучении и воспитании учащихся.

Анализ ответов учащихся на уроках и экзаменах показывает, что вопрос о генетической связи между веществами вызывает затруднения . Объясняется это тем, что изучение вопроса о генетической связи хотя и осуществляется на протяжении всего курса химии, но проводится фрагментарно, несистематически, без вычленения главного направления.

На схеме обобщенной формуле соответствует несколько групп веществ одинакового состава, но различного строения. Например, формула СпНгп+гО объединяет изомерные между собой предельные одноатомные спирты и простые эфиры, имеющие соответственно свои общие формулы.

Прямыми линиями на общей схеме изображены главнейшие взаимосвязи между группами и классами органических соединений. Так, с помощью общих формул изображены переходы между группами углеводородов. Однако обилие линий на схеме затруднило бы восприятие основного, а потому ряд переходов на, ней не показан. Общая схема позволяет, также уяснить генетические переходы между неорганическими и органическими веществами (синтез углеводородов из простых веществ и их термическое разложение), дать общее представление о круговороте веществ на примере углерода к других элементов. Детализировать же общую схему можно с помощью таблиц изомерных гомологических рядов веществ а также при выполнении упр. 16 и 17 (с. 114

Далее обобщаем сведения о межгрупповых изомерах. Отмечаем, что к ним относятся одноатомные спирты и простые эфиры, альдегиды и кетоны, фенолы и ароматические спирты, карбоновые кислоты и сложные эфиры. Состав этих изомеров, как и одиночно представленных веществ в курсе (этиленгликоля и непредельных кислот), может быть выражен общими формулами. При анализе таких формул выявляем признаки усложнения веществ, определяем место каждой группы в генетической цепи и отражаем это в общей схеме. Ее конкретизацию осуществляем на уроке и дома при выполнении упр. 27, 28, 29, 30„33, 37 (с. 140--141).

Перед учащимися ставим проблему о возможности дальнейшего продолжения общей схемы на основе усложнения состава и строения вещества. В этих целях обращаем внимание на состав жиров: молекула содержит шесть атомов кислорода на основании формул шестиатомного спирта (с. 154), глюкозы и ее изомеров (с. 152--156) учащиеся выводят их общие формулы. Проводим и более высокую форму работы, когда учащиеся сами составляют схемы генетической связи между веществами и конкретизируют их. При анализе общей схемы стремимся, чтобы учащиеся отмечали относительный характер отраженных в ней взаимосвязей между веществами. Предлагаем также учащимся доказать, что общая схема может быть продолжена, так как путь познания не оканчивается на изученном.


Алиса (в Стране Чудес Чеширскому коту): – Скажите, а куда мне отсюда идти? Алиса (в Стране Чудес Чеширскому коту): – Скажите, а куда мне отсюда идти? Чеширский кот: – Это зависит от того, куда Вы хотите придти? Чеширский кот: – Это зависит от того, куда Вы хотите придти? 2






Стратегия синтеза «Я хочу воспеть хвалу сотворению молекул – химическому синтезу… …Я глубоко убежден, что он и есть искусство. И в то же время синтез – это логика». Роальд Хоффман (Нобелевская премия по химии 1981 г) Выбор исходного сырья Построение углеродного остова молекулы Введение, удаление или замена функциональной группы Защита группы Стереоселективность 5


СO + H 2 Ru, 1000 атм, C ThO 2, 600 атм, C Cr 2 O 3, 30 атм, C Fe, 2000 атм, C ZnO, Cr 2 O 3, 250 атм, C ПАРАФИНЫ ИЗОПАРАФИНЫ ТОЛУОЛ, КСИЛОЛЫ ВЫСШИЕ СПИРТЫ СH 3 OH 6


С n H 2n+2 Схема образования σ-связей в молекуле метана Модели молекул метана: шаростержневая (слева) и масштабная (справа) СH4СH4СH4СH4 Тетраэдрическое строение sp 3 -гибридизация σ - связи гомолитический разрыв связи X: Y гомолитический разрыв связи Реакции радикального замещения (S R) замещения (S R)ГорениеДегидрирование S – англ. substitution – замещение Прогноз реакционной способности 7


СH 3 Cl – МЕТИЛХЛОРИД CH 4 МЕТАН С – САЖА С 2 Н 2 – АЦЕТИЛЕН СH 2 Cl 2 – ДИХЛОРМЕТАН СHCl 3 – ТРИХЛОРМЕТАН СCl 4 – ТЕТРАХЛОРМЕТАН Н 2 – ВОДОРОД СИНТЕЗ ГАЗ СO + H 2 СИНТЕЗ ГАЗ СO + H 2 Сl 2, hγ Хлорирование С пиролиз Н 2 О, Ni, C Конверсия О 2, Окисление СH 3 OH – МЕТАНОЛ HCHO – МЕТАНАЛЬ растворители Бензол СHFCl 2 фреон HCOOH - муравьиная кислота Синтетический бензин СИНТЕЗЫ НА ОСНОВЕ МЕТАНА 8 СH 3 NO 2 – НИТРОМЕТАН СCl 3 NO 2 хлорпикрин СH 3 NH 2 метиламин HNO 3, C Нитрование


С n H 2n Схема образования σ- связей с участием sp 2 -гибридных облаков атома углерода Схема образования π – связей с участием p-облаков атома углерода Модель молекулы этилена Реакции электрофильного присоединения (A E) Полимеризация Полимеризация Окисление ОкислениеГорение Молекула плоская (120 0) sp 2 – гибридизация σ– и σ – и π – связи Есв (С = С)= 611 кДж/моль Есв (С – С)= 348 кДж/моль A – англ. addition – присоединение Прогноз реакционной способности 9


C 2 H 4 Этилен Полимеризация H 2 O, H + Гидратация Cl 2 Хлорирование Окисление ЭТИЛОВЫЙ СПИРТ С 2 Н 5 OH ЭТИЛОВЫЙ СПИРТ С 2 Н 5 OH СИНТЕЗЫ НА ОСНОВЕ ЭТИЛЕНА ДИХЛОРЭТАН ЭТИЛЕНОКСИД ЭТИЛЕНГЛИКОЛЬ УКСУСНЫЙ АЛЬДЕГИД УКСУСНЫЙ АЛЬДЕГИД O 2, Ag KMnO 4, H 2 O O 2, PdCl 2, CuCl 2 ПЭНД ПЭНД С МПа 80 0 С, 0.3МПа, Al(C 2 H 5) 3, TiCl 4 СКД ПЭВД ПЭВД Бутадиен-1,3 (дивинил) Уксусная кислота Диоксан Уксусная кислота 10


С n H 2n-2 Схема образования σ- связей и π – связей с участием sp-гибридных облаков атома углерода Модели молекулы ацетилена реакции электрофильного присоединения (A E) окисление окисление ди-, три- и тетрамеризации ди-, три- и тетрамеризации горение горение реакции с участием «кислого» атома водорода Линейное строение (180 0) (цилиндрическое распределение электронной плотности) sp – гибридизация σ– и 2 σ – и 2π – связи Прогноз реакционной способности 11


C2H2C2H2 HСl, Hg 2+ H 2 O, Hg 2+ Реакция Кучерова С акт, С тримеризация СИНТЕЗЫ НА ОСНОВЕ АЦЕТИЛЕНА УКСУСНЫЙ АЛЬДЕГИД УКСУСНЫЙ АЛЬДЕГИД СuCl 2, HCl, NH 4 Cl димеризация ROH Уксусная кислота БЕНЗОЛ СКД Дивинил Хлоропрен СК хлоропреновый ВИНИЛАЦЕТИЛЕН ВИНИЛОВЫЕ ЭФИРЫ Поливиниловые эфирыПоливинилхлорид ВИНИЛХЛОРИД HCN, СuCl, HCl, 80 0 C АКРИЛОНИТРИЛ Волокна 12


13


Схема образования π-связей в молекуле бензола Делокализация электронной плотности в молекуле бензола Схема образования σ- связей в молекуле бензола с участием sp 2 – гибридных орбиталей атомов углерода С n H 2n-6 Прогноз реакционной способности Плоская молекула sp 2 – гибридизация σ– и σ – и π – связи Ароматическая структура Реакции электрофильного замещения (S E) Реакции радикального присоединения (А R) Реакции радикального присоединения (А R) Горение 14 М. Фарадей (1791–1867) Английский физик и химик. Основатель электрохимии. Открыл бензол; впервые получил в жидком состоянии хлор, сероводород, аммиак, оксид азота (IV).


БЕНЗОЛ H 2 /Pt, C гидрирование СИНТЕЗЫ НА ОСНОВЕ БЕНЗОЛА НИТРОБЕНЗОЛ НИТРОБЕНЗОЛ Сl 2, FeCl 3 хлорирование HNO 3, H 2 SO 4 (конц) нитрование CH 3 Cl, AlCl 3 алкилирование ХЛОРБЕНЗОЛ Анилин ТОЛУОЛ ТОЛУОЛ Бензойная кислота 2,4,6-тринитро- толуол СТИРОЛ СТИРОЛ Полистирол 1. СH 3 CH 2 Cl, AlCl 3 Алкилирование 2. – H 2, Ni дегидрирование СH 2 =CH-CH 3, AlCl 3 алкилирование КУМОЛ (ИЗОПРОПИЛБЕНЗОЛ) КУМОЛ (ИЗОПРОПИЛБЕНЗОЛ) ЦИКЛОГЕКСАН ЦИКЛОГЕКСАН Фенол Ацетон ГЕКСАХЛОРАН ГЕКСАХЛОРАН 15


СИНТЕЗЫ НА ОСНОВЕ МЕТАНОЛА СH 3 OH ВИНИЛМЕТИЛОВЫЙ ЭФИР ВИНИЛМЕТИЛОВЫЙ ЭФИР ДИМЕТИЛАНИЛИН C 6 H 5 N(CH 3) 2 ДИМЕТИЛАНИЛИН C 6 H 5 N(CH 3) 2 ДИМЕТИЛОВЫЙ ЭФИР CH 3 –O–CH 3 ДИМЕТИЛОВЫЙ ЭФИР CH 3 –O–CH 3 МЕТИЛАМИН СН 3 NH 2 МЕТИЛАМИН СН 3 NH 2 ВИНИЛАЦЕТАТ МЕТИЛХЛОРИД СН 3 Сl МЕТИЛХЛОРИД СН 3 Сl ФОРМАЛЬДЕГИД СuO, t HCl NH 3 МЕТИЛТИОЛ СН 3 SH МЕТИЛТИОЛ СН 3 SH H 2 S, t С 6 H 5 NH 2 + CO 16 H +, t




СИНТЕЗЫ НА ОСНОВЕ ФОРМАЛЬДЕГИДА МЕТАНОЛ СH 3 OH МЕТАНОЛ СH 3 OH ПАРАФОРМ ФЕНОЛФОРМАЛЬДЕГИДНЫЕ СМОЛЫ ФЕНОЛФОРМАЛЬДЕГИДНЫЕ СМОЛЫ ТРИОКСАН ПЕРВИЧНЫЕ СПИРТЫ КАРБАМИДНЫЕ СМОЛЫ КАРБАМИДНЫЕ СМОЛЫ УРОТРОПИН (ГЕКСМЕТИЛЕНТЕТРАМИН) УРОТРОПИН (ГЕКСМЕТИЛЕНТЕТРАМИН) МУРАВЬИНАЯ КИСЛОТА МУРАВЬИНАЯ КИСЛОТА Гексоген [O] [H] 1861 г. А.М. Бутлеров 18


CxHyOzCxHyOz Генетическая связь кислородсодержащих органических соединений АЛЬДЕГИДЫ АЛЬДЕГИДЫ КАРБОНОВЫЕ КИСЛОТЫ КАРБОНОВЫЕ КИСЛОТЫ КЕТОНЫ КЕТОНЫ СЛОЖНЫЕ ЭФИРЫ СЛОЖНЫЕ ЭФИРЫ ПРОСТЫЕ ЭФИРЫ ПРОСТЫЕ ЭФИРЫ СПИРТЫ гидролиз дегидратация гидрирование окисление, дегидрирование этери- фикация этери- фикация окисление H +, t




C n H 2n+2 C n H 2n Циклоалканы Алкены C n H 2n-2 АлкиныАлкадиены C n H 2n-6 Арены, бензол




C n H 2n+2 C n H 2n ЦиклоалканыАлкены C n H 2n-2 АлкиныАлкадиены Первичны е Вторичны е Третичные C n H 2n-6 Арены, бензол 12 C n H 2n Циклоалканы Алкены C n H 2n-2 АлкиныАлкадиены α 23


C n H 2n+2 C n H 2n ЦиклоалканыАлкены C n H 2n-2 АлкиныАлкадиены Первичны е Вторичны е Третичные C n H 2n-6 Арены, бензол 12 C n H 2n Циклоалканы Алкены C n H 2n-2 АлкиныАлкадиены


C n H 2n+2 C n H 2n ЦиклоалканыАлкены C n H 2n-2 АлкиныАлкадиены Первичны е Вторичны е Третичные C n H 2n-6 Арены, бензол Полиэтилен Полипропилен 12 C n H 2n Циклоалканы Алкены C n H 2n-2 АлкиныАлкадиены Каучуки Катализатор Циглера – Натта (1963 г) 25


C n H 2n+2 C n H 2n ЦиклоалканыАлкены C n H 2n-2 АлкиныАлкадиены Первичн ые ВторичныеТретичные C n H 2n-6 Арены, бензол Полиэтилен Полипропилен Каучуки Жиры Фенолформаль- дегидные смолы 12 C n H 2n Циклоалканы Алкены C n H 2n-2 АлкиныАлкадиены


C n H 2n+2 C n H 2n ЦиклоалканыАлкены C n H 2n-2 АлкиныАлкадиены Первичны е Вторичны е Третичные C n H 2n-6 Арены, бензол Полиэтилен Полипропилен Каучуки Жиры Синтетические красители Фенолформаль- дегидные смолы 12 C n H 2n Циклоалканы Алкены C n H 2n-2 АлкиныАлкадиены


Применение анилина АНИЛИН Н.Н. Зинин (1812 – 1880) Лекарственные вещества Красители Взрывчатые вещества Cтрептоцид НорсульфазолФталазол Получение анилина – реакция Зинина Тетрил Анилиновый желтый Нитробензол п-Аминобензойная кислота (ПАБК) Сульфаниловая кислота индиго Парацетамол 28


C n H 2n+2 C n H 2n Циклоалкан ы Алкены C n H 2n-2 АлкиныАлкадиены Первичны е Вторичны е Третичные C n H 2n-6 Арены, бензол Полиэтилен Полипропилен Каучуки Жиры Синтетические красители Фенолформаль- дегидные смолы Белки 12 C n H 2n Циклоалканы Алкены C n H 2n-2 АлкиныАлкадиены




Алиса (в Стране Чудес Чеширскому коту): – Скажите, а куда мне отсюда идти? Алиса (в Стране Чудес Чеширскому коту): – Скажите, а куда мне отсюда идти? Чеширский кот: – Это зависит от того, куда Вы хотите придти? Чеширский кот: – Это зависит от того, куда Вы хотите придти? 2






Стратегия синтеза «Я хочу воспеть хвалу сотворению молекул – химическому синтезу… …Я глубоко убежден, что он и есть искусство. И в то же время синтез – это логика». Роальд Хоффман (Нобелевская премия по химии 1981 г) Выбор исходного сырья Построение углеродного остова молекулы Введение, удаление или замена функциональной группы Защита группы Стереоселективность 5


СO + H 2 Ru, 1000 атм, C ThO 2, 600 атм, C Cr 2 O 3, 30 атм, C Fe, 2000 атм, C ZnO, Cr 2 O 3, 250 атм, C ПАРАФИНЫ ИЗОПАРАФИНЫ ТОЛУОЛ, КСИЛОЛЫ ВЫСШИЕ СПИРТЫ СH 3 OH 6


С n H 2n+2 Схема образования σ-связей в молекуле метана Модели молекул метана: шаростержневая (слева) и масштабная (справа) СH4СH4СH4СH4 Тетраэдрическое строение sp 3 -гибридизация σ - связи гомолитический разрыв связи X: Y гомолитический разрыв связи Реакции радикального замещения (S R) замещения (S R)ГорениеДегидрирование S – англ. substitution – замещение Прогноз реакционной способности 7


СH 3 Cl – МЕТИЛХЛОРИД CH 4 МЕТАН С – САЖА С 2 Н 2 – АЦЕТИЛЕН СH 2 Cl 2 – ДИХЛОРМЕТАН СHCl 3 – ТРИХЛОРМЕТАН СCl 4 – ТЕТРАХЛОРМЕТАН Н 2 – ВОДОРОД СИНТЕЗ ГАЗ СO + H 2 СИНТЕЗ ГАЗ СO + H 2 Сl 2, hγ Хлорирование С пиролиз Н 2 О, Ni, C Конверсия О 2, Окисление СH 3 OH – МЕТАНОЛ HCHO – МЕТАНАЛЬ растворители Бензол СHFCl 2 фреон HCOOH - муравьиная кислота Синтетический бензин СИНТЕЗЫ НА ОСНОВЕ МЕТАНА 8 СH 3 NO 2 – НИТРОМЕТАН СCl 3 NO 2 хлорпикрин СH 3 NH 2 метиламин HNO 3, C Нитрование


С n H 2n Схема образования σ- связей с участием sp 2 -гибридных облаков атома углерода Схема образования π – связей с участием p-облаков атома углерода Модель молекулы этилена Реакции электрофильного присоединения (A E) Полимеризация Полимеризация Окисление ОкислениеГорение Молекула плоская (120 0) sp 2 – гибридизация σ– и σ – и π – связи Есв (С = С)= 611 кДж/моль Есв (С – С)= 348 кДж/моль A – англ. addition – присоединение Прогноз реакционной способности 9


C 2 H 4 Этилен Полимеризация H 2 O, H + Гидратация Cl 2 Хлорирование Окисление ЭТИЛОВЫЙ СПИРТ С 2 Н 5 OH ЭТИЛОВЫЙ СПИРТ С 2 Н 5 OH СИНТЕЗЫ НА ОСНОВЕ ЭТИЛЕНА ДИХЛОРЭТАН ЭТИЛЕНОКСИД ЭТИЛЕНГЛИКОЛЬ УКСУСНЫЙ АЛЬДЕГИД УКСУСНЫЙ АЛЬДЕГИД O 2, Ag KMnO 4, H 2 O O 2, PdCl 2, CuCl 2 ПЭНД ПЭНД С МПа 80 0 С, 0.3МПа, Al(C 2 H 5) 3, TiCl 4 СКД ПЭВД ПЭВД Бутадиен-1,3 (дивинил) Уксусная кислота Диоксан Уксусная кислота 10


С n H 2n-2 Схема образования σ- связей и π – связей с участием sp-гибридных облаков атома углерода Модели молекулы ацетилена реакции электрофильного присоединения (A E) окисление окисление ди-, три- и тетрамеризации ди-, три- и тетрамеризации горение горение реакции с участием «кислого» атома водорода Линейное строение (180 0) (цилиндрическое распределение электронной плотности) sp – гибридизация σ– и 2 σ – и 2π – связи Прогноз реакционной способности 11


C2H2C2H2 HСl, Hg 2+ H 2 O, Hg 2+ Реакция Кучерова С акт, С тримеризация СИНТЕЗЫ НА ОСНОВЕ АЦЕТИЛЕНА УКСУСНЫЙ АЛЬДЕГИД УКСУСНЫЙ АЛЬДЕГИД СuCl 2, HCl, NH 4 Cl димеризация ROH Уксусная кислота БЕНЗОЛ СКД Дивинил Хлоропрен СК хлоропреновый ВИНИЛАЦЕТИЛЕН ВИНИЛОВЫЕ ЭФИРЫ Поливиниловые эфирыПоливинилхлорид ВИНИЛХЛОРИД HCN, СuCl, HCl, 80 0 C АКРИЛОНИТРИЛ Волокна 12


13


Схема образования π-связей в молекуле бензола Делокализация электронной плотности в молекуле бензола Схема образования σ- связей в молекуле бензола с участием sp 2 – гибридных орбиталей атомов углерода С n H 2n-6 Прогноз реакционной способности Плоская молекула sp 2 – гибридизация σ– и σ – и π – связи Ароматическая структура Реакции электрофильного замещения (S E) Реакции радикального присоединения (А R) Реакции радикального присоединения (А R) Горение 14 М. Фарадей (1791–1867) Английский физик и химик. Основатель электрохимии. Открыл бензол; впервые получил в жидком состоянии хлор, сероводород, аммиак, оксид азота (IV).


БЕНЗОЛ H 2 /Pt, C гидрирование СИНТЕЗЫ НА ОСНОВЕ БЕНЗОЛА НИТРОБЕНЗОЛ НИТРОБЕНЗОЛ Сl 2, FeCl 3 хлорирование HNO 3, H 2 SO 4 (конц) нитрование CH 3 Cl, AlCl 3 алкилирование ХЛОРБЕНЗОЛ Анилин ТОЛУОЛ ТОЛУОЛ Бензойная кислота 2,4,6-тринитро- толуол СТИРОЛ СТИРОЛ Полистирол 1. СH 3 CH 2 Cl, AlCl 3 Алкилирование 2. – H 2, Ni дегидрирование СH 2 =CH-CH 3, AlCl 3 алкилирование КУМОЛ (ИЗОПРОПИЛБЕНЗОЛ) КУМОЛ (ИЗОПРОПИЛБЕНЗОЛ) ЦИКЛОГЕКСАН ЦИКЛОГЕКСАН Фенол Ацетон ГЕКСАХЛОРАН ГЕКСАХЛОРАН 15


СИНТЕЗЫ НА ОСНОВЕ МЕТАНОЛА СH 3 OH ВИНИЛМЕТИЛОВЫЙ ЭФИР ВИНИЛМЕТИЛОВЫЙ ЭФИР ДИМЕТИЛАНИЛИН C 6 H 5 N(CH 3) 2 ДИМЕТИЛАНИЛИН C 6 H 5 N(CH 3) 2 ДИМЕТИЛОВЫЙ ЭФИР CH 3 –O–CH 3 ДИМЕТИЛОВЫЙ ЭФИР CH 3 –O–CH 3 МЕТИЛАМИН СН 3 NH 2 МЕТИЛАМИН СН 3 NH 2 ВИНИЛАЦЕТАТ МЕТИЛХЛОРИД СН 3 Сl МЕТИЛХЛОРИД СН 3 Сl ФОРМАЛЬДЕГИД СuO, t HCl NH 3 МЕТИЛТИОЛ СН 3 SH МЕТИЛТИОЛ СН 3 SH H 2 S, t С 6 H 5 NH 2 + CO 16 H +, t




СИНТЕЗЫ НА ОСНОВЕ ФОРМАЛЬДЕГИДА МЕТАНОЛ СH 3 OH МЕТАНОЛ СH 3 OH ПАРАФОРМ ФЕНОЛФОРМАЛЬДЕГИДНЫЕ СМОЛЫ ФЕНОЛФОРМАЛЬДЕГИДНЫЕ СМОЛЫ ТРИОКСАН ПЕРВИЧНЫЕ СПИРТЫ КАРБАМИДНЫЕ СМОЛЫ КАРБАМИДНЫЕ СМОЛЫ УРОТРОПИН (ГЕКСМЕТИЛЕНТЕТРАМИН) УРОТРОПИН (ГЕКСМЕТИЛЕНТЕТРАМИН) МУРАВЬИНАЯ КИСЛОТА МУРАВЬИНАЯ КИСЛОТА Гексоген [O] [H] 1861 г. А.М. Бутлеров 18


CxHyOzCxHyOz Генетическая связь кислородсодержащих органических соединений АЛЬДЕГИДЫ АЛЬДЕГИДЫ КАРБОНОВЫЕ КИСЛОТЫ КАРБОНОВЫЕ КИСЛОТЫ КЕТОНЫ КЕТОНЫ СЛОЖНЫЕ ЭФИРЫ СЛОЖНЫЕ ЭФИРЫ ПРОСТЫЕ ЭФИРЫ ПРОСТЫЕ ЭФИРЫ СПИРТЫ гидролиз дегидратация гидрирование окисление, дегидрирование этери- фикация этери- фикация окисление H +, t




C n H 2n+2 C n H 2n Циклоалканы Алкены C n H 2n-2 АлкиныАлкадиены C n H 2n-6 Арены, бензол




C n H 2n+2 C n H 2n ЦиклоалканыАлкены C n H 2n-2 АлкиныАлкадиены Первичны е Вторичны е Третичные C n H 2n-6 Арены, бензол 12 C n H 2n Циклоалканы Алкены C n H 2n-2 АлкиныАлкадиены α 23


C n H 2n+2 C n H 2n ЦиклоалканыАлкены C n H 2n-2 АлкиныАлкадиены Первичны е Вторичны е Третичные C n H 2n-6 Арены, бензол 12 C n H 2n Циклоалканы Алкены C n H 2n-2 АлкиныАлкадиены


C n H 2n+2 C n H 2n ЦиклоалканыАлкены C n H 2n-2 АлкиныАлкадиены Первичны е Вторичны е Третичные C n H 2n-6 Арены, бензол Полиэтилен Полипропилен 12 C n H 2n Циклоалканы Алкены C n H 2n-2 АлкиныАлкадиены Каучуки Катализатор Циглера – Натта (1963 г) 25


C n H 2n+2 C n H 2n ЦиклоалканыАлкены C n H 2n-2 АлкиныАлкадиены Первичн ые ВторичныеТретичные C n H 2n-6 Арены, бензол Полиэтилен Полипропилен Каучуки Жиры Фенолформаль- дегидные смолы 12 C n H 2n Циклоалканы Алкены C n H 2n-2 АлкиныАлкадиены


C n H 2n+2 C n H 2n ЦиклоалканыАлкены C n H 2n-2 АлкиныАлкадиены Первичны е Вторичны е Третичные C n H 2n-6 Арены, бензол Полиэтилен Полипропилен Каучуки Жиры Синтетические красители Фенолформаль- дегидные смолы 12 C n H 2n Циклоалканы Алкены C n H 2n-2 АлкиныАлкадиены


Применение анилина АНИЛИН Н.Н. Зинин (1812 – 1880) Лекарственные вещества Красители Взрывчатые вещества Cтрептоцид НорсульфазолФталазол Получение анилина – реакция Зинина Тетрил Анилиновый желтый Нитробензол п-Аминобензойная кислота (ПАБК) Сульфаниловая кислота индиго Парацетамол 28


C n H 2n+2 C n H 2n Циклоалкан ы Алкены C n H 2n-2 АлкиныАлкадиены Первичны е Вторичны е Третичные C n H 2n-6 Арены, бензол Полиэтилен Полипропилен Каучуки Жиры Синтетические красители Фенолформаль- дегидные смолы Белки 12 C n H 2n Циклоалканы Алкены C n H 2n-2 АлкиныАлкадиены





Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта