Главная » Выращивание » Как найти площадь боковой поверхности правильной пирамиды. Как вычислить площадь пирамиды: основания, боковую и полную

Как найти площадь боковой поверхности правильной пирамиды. Как вычислить площадь пирамиды: основания, боковую и полную


В этом уроке:
  • Задача 1. Найти площадь полной поверхности пирамиды
  • Задача 2. Найти площадь боковой поверхности правильной треугольной пирамиды
См. также материалы по теме:
.

Примечание . Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме. В задачах вместо символа "квадратный корень" применяется функция sqrt(), в которой sqrt - символ квадратного корня, а в скобках указано подкоренное выражение. Для простых подкоренных выражений может использоваться знак "√" .

Задача 1 . Найти площадь полной поверхности правильной пирамиды

Высота основания правильной треугольной пирамиды равна 3 см. а угол между боковой гранью и основанием пирамиды равен 45 градусов.
Найти площадь полной поверхности пирамиды

Решение .

В основании правильной треугольной пирамиды лежит равносторонний треугольник.
Поэтому для решения задачи воспользуемся свойствами правильного треугольника:

Нам известна высота треугольника, откуда можно найти его площадь.
h = √3/2 a
a = h / (√3/2)
a = 3 / (√3/2)
a = 6 / √3

Откуда площадь основания будет равна:
S = √3/4 a 2
S = √3/4 (6 / √3) 2
S = 3√3

Для того, чтобы найти площадь боковой грани, вычислим высоту KM. Угол OKM по условию задачи равен 45 градусам.
Таким образом:
OK / MK = cos 45
Воспользуемся таблицей значений тригонометрических функций и подставим известные значения.

OK / MK = √2/2

Учтем, что OК равен радиусу вписанной окружности. Тогда
OK = √3/6 a
OK = √3/6 * 6/√3 = 1

Тогда
OK / MK = √2/2
1 / MK = √2/2
MK = 2/√2

Площадь боковой грани тогда равна половине произведения высоты на основание треугольника.
Sбок = 1/2 (6 / √3) (2/√2) = 6/√6

Таким образом, площадь полной поверхности пирамиды будет равна
S = 3√3 + 3 * 6/√6
S = 3√3 + 18/√6

Ответ : 3√3 + 18/√6

Задача 2 . Найти площадь боковой поверхности правильной пирамиды

В правильной треугольной пирамиде высота равна 10 см, а сторона основания 16 см. Найти площадь боковой поверхности .

Решение .

Поскольку основанием правильной треугольной пирамиды является равносторонний треугольник, то AO является радиусом описанной вокруг основания окружности.
(Это следует из )

Радиус окружности, описанной вокруг равностороннего треугольника найдем из его свойств

Откуда длина ребер правильной треугольной пирамиды будет равна:
AM 2 = MO 2 + AO 2
высота пирамиды известна по условию (10 см), AO = 16√3/3
AM 2 = 100 + 256/3
AM = √(556/3)

Каждая из сторон пирамиды представляет собой равнобедренный треугольник. Площадь равнобедренного треугольника найдем из первой формулы, представленной ниже

S = 1/2 * 16 sqrt((√(556/3) + 8) (√(556/3) - 8))
S = 8 sqrt((556/3) - 64)
S = 8 sqrt(364/3)
S = 16 sqrt(91/3)

Поскольку все три грани у правильной пирамиды равны, то площадь боковой поверхности будет равна
3S = 48 √(91/3)

Ответ: 48 √(91/3)

Задача 3. Найти площадь полной поверхности правильной пирамиды

Сторона правильной треугольной пирамиды равна 3 см а угол между боковой гранью и основанием пирамиды равен 45 градусов. Найдите площадь полной поверхности пирамиды .

Решение .
Поскольку пирамида правильная, в ее основании лежит равносторонний треугольник. Поэтому площадь основания равна


So = 9 * √3/4

Для того, чтобы найти площадь боковой грани, вычислим высоту KM. Угол OKM по условию задачи равен 45 градусам.
Таким образом:
OK / MK = cos 45
Воспользуемся

– это фигура, в основании которой лежит произвольный многоугольник, а боковые грани представлены треугольниками. Их вершины лежат в одной точке и соответствуют вершине пирамиды.

Пирамида может быть разнообразной – треугольной, четырехугольной, шестиугольной и т.д. Ее название можно определить в зависимости от количества углов, прилегающих к основанию.
Правильной пирамидой называется пирамида, в которой равны стороны основания, углы, и ребра. Также в такой пирамиде будет равна площадь боковых граней.
Формула площади боковой поверхности пирамиды представляет собой сумму площадей всех ее граней:
То есть, чтобы рассчитать площадь боковой поверхности произвольной пирамиды, необходимо найти площадь каждого отдельного треугольника и сложить их между собой. Если пирамида усеченная, то ее грани представлены трапециями. Для правильной пирамиды существует другая формула. В ней площадь боковой поверхности рассчитывается через полупериметр основания и длину апофемы:

Рассмотрим пример расчета площади боковой поверхности пирамиды.
Пусть дана правильная четырехугольная пирамида. Сторона основания b = 6 см, а апофема a = 8 см. Найдите площадь боковой поверхности.

В основании правильной четырехугольной пирамиды лежит квадрат. Для начала найдем его периметр:

Теперь можем просчитать площадь боковой поверхности нашей пирамиды:

Для того чтобы найти полную площадь многогранника, потребуется найти площадь его основания. Формула площади основания пирамиды может отличаться, в зависимости от того, какой многоугольник лежит в основании. Для этого используются формулы площади треугольника, площади параллелограмма и т.д.

Рассмотри пример расчета площади основания пирамиды, заданной нашими условиями. Так как пирамида правильная, в ее основании лежит квадрат.
Площадь квадрата рассчитывается по формуле: ,
где a – сторона квадрата. У нас она равна 6 см. Значит площадь основания пирамиды:

Теперь остается только найти полную площадь многогранника. Формула площади пирамиды состоит из суммы площади ее основания и боковой поверхности.

Инструкция

Прежде всего, стоит понять, что боковая поверхность пирамиды представлена несколькими треугольниками, площади которых можно найти с помощью самых различных формул, в зависимости от известных данных:

S = (a*h)/2, где h - высота, опущенная на сторону a;

S = a*b*sinβ, где a, b - стороны треугольника, а β - угол между этими сторонами;

S = (r*(a + b + c))/2, где a, b, c - стороны треугольника, а r - радиус вписанной в этот треугольник окружности;

S = (a*b*c)/4*R, где R - радиус описанной вокруг окружности треугольника;

S = (a*b)/2 = r² + 2*r*R (если треугольник - прямоугольный);

S = S = (a²*√3)/4 (если треугольник - равносторонний).

На самом деле, это лишь самые основные из известных формул для нахождения площади треугольника.

Рассчитав при помощи указанных выше формул площади всех треугольников, являющихся гранями пирамиды, можно приступить к исчислению площади данной пирамиды. Делается это предельно просто: необходимо сложить площади всех треугольников, образующих боковую поверхность пирамиды. Формулой это можно выразить так:

Sп = ΣSi, где Sп - площадь боковой , Si - площадь i-ого треугольника, являющегося частью ее боковой поверхности.

Для большей ясности можно рассмотреть небольшой пример: дана правильная пирамида, боковые грани которой образованы равносторонними треугольникам, а в основании ее лежит квадрат. Длина ребра данной пирамиды составляет 17 см. Требуется найти площадь боковой поверхности данной пирамиды.

Решение: известна длина ребра данной пирамиды, известно, что грани ее - равносторонние треугольники. Таким образом, можно сказать, что все стороны всех треугольников боковой поверхности равны 17 см. Поэтому для того, чтобы рассчитать площадь любого из этих треугольников, потребуется применить формулу:

S = (17²*√3)/4 = (289*1.732)/4 = 125.137 см²

Известно, что в основании пирамиды лежит квадрат. Таким образом, понятно, что данных равносторонних треугольников четыре. Тогда площадь боковой поверхности пирамиды рассчитывается так:

125.137 см² * 4 = 500.548 см²

Ответ: площадь боковой поверхности пирамиды составляет 500.548 см²

Сначала вычислим площадь боковой поверхности пирамиды. Под боковой поверхностью подразумевается сумма площадей всех боковых граней. Если вы имеете дело с правильной пирамидой (то есть такой, в основании которой лежит правильный многоугольник, а вершина проецируется в центр этого многоугольника), то для вычисления всей боковой поверхности достаточно умножить периметр основания (то есть сумму длин всех сторон многоугольника, лежащего в основании пирамиды) на высоту боковой грани (иначе называемой апофемой) и разделить полученное значение на 2: Sб=1/2P*h, где Sб - это площадь боковой поверхности, P - периметр основания, h - высота боковой грани (апофема).

Если же перед вами произвольная пирамида, то придется отдельно вычислять площади всех граней, а затем их складывать. Поскольку боковыми гранями пирамиды являются треугольники, воспользуйтесь формулой площади треугольника: S=1/2b*h, где b - это основание треугольника, а h - высота. Когда площади всех граней вычислены, остается только сложить их, чтобы получить площадь боковой поверхности пирамиды.

Затем необходимо вычислить площадь основания пирамиды. Выбор формулы для расчета зависит от того, какой многоугольник лежит в основании пирамида: правильный (то есть такой, все стороны которого имеют одинаковую длину) или неправильный. Площадь правильного многоугольника можно вычислить, умножив периметр на радиус вписанной в многоугольник окружности и поделив полученное значение на 2: Sn=1/2P*r, где Sn - это площадь многоугольника, P - это периметр, а r - это радиус вписанной в многоугольник окружности.

Усеченная пирамида – это многогранник, который образовывается пирамидой и ее сечением, параллельным основанию. Найти площадь боковой поверхности пирамиды совсем несложно. Ее очень проста: площадь равняется произведению половины суммы оснований по . Рассмотрим пример расчета площади боковой поверхности . Допустим, дана правильная пирамида. Длины основания равны b=5 см, c = 3 см. Апофема a = 4 см. Чтобы найти площадь боковой поверхности пирамиды, нужно сначала найти периметр оснований. В большом основании он будет равен p1=4b=4*5=20 см. В меньшем основании формула будет следующей: p2=4c=4*3=12 см. Следовательно, площадь будет равна: s=1/2(20+12)*4=32/2*4=64 см.

Если в основании пирамиды лежит неправильный многоугольник, для вычисления площади всей фигуры сначала нужно будет разбить многоугольник на треугольники, вычислить площадь каждого, а затем сложить. В остальных же случаях, чтобы найти боковую поверхность пирамиды, нужно найти площадь каждой ее боковой грани и сложить полученные результаты. В некоторых случаях задача нахождения боковой поверхности пирамиды может быть облегчена. Если одна боковая грань перпендикулярна основанию или две смежные боковые грани перпендикулярны основанию, то основание пирамиды считается ортогональной проекцией части ее боковой поверхности, и они связаны формулами.

Чтобы завершить вычисление площади поверхности пирамиды, сложите площади боковой поверхности и основания пирамиды.

Пирамида – это многогранник, одна из граней которого (основание) – произвольный многоугольник, а остальные грани (боковые) – треугольники, имеющие . По числу углов основания пирамиды треугольные (тетраэдр), четырехугольные и так далее.

Пирамида является многогранником, имеющим основание в виде многоугольника, а остальные грани являются треугольниками с общей вершиной. Апофемой называется высота боковой грани правильной пирамиды, которая проведена из её вершины.

Пирамида представляет собой многогранник, в основании которого лежит многоугольник, а боковые грани - это треугольники, имеющие одну общую вершину. Площадь поверхности пирамиды равна сумме площадей боковой поверхности и основания пирамиды .

Вам понадобится

  • Бумага, ручка, калькулятор

Инструкция

Сначала вычислим площадь боковой поверхности . Под боковой поверхностью подразумевается сумма всех боковых граней. Если вы имеете дело с правильной пирамидой (то есть такой, которой лежит правильный многоугольник, а вершина проецируется в центр этого многоугольника), то для вычисления всей боковой поверхности достаточно умножить периметр основания (то есть сумму длин всех сторон многоугольника, лежащего в основании пирамиды ) на высоту боковой грани (иначе называемой ) и разделить полученное значение на 2: Sб=1/2P*h, где Sб - это площадь боковой поверхности , P - периметр основания, h - высота боковой грани (апофема).

Если же перед вами произвольная пирамида, то придется вычислять площади всех граней, а затем их складывать. Поскольку боковыми гранями пирамиды являются , воспользуйтесь формулой площади треугольника: S=1/2b*h, где b - это основание треугольника, а h - высота. Когда площади всех граней вычислены, остается только сложить их, чтобы получить площадь боковой поверхности пирамиды .

Затем необходимо вычислить площадь основания пирамиды . Выбор для расчета от того, многоугольник лежит в основании пирамида: правильный (то есть такой, все стороны которого имеют одинаковую длину) или . Площадь правильного многоугольника можно вычислить, умножив периметр на радиус вписанной в многоугольник окружности и поделив полученное значение на 2: Sn=1/2P*r, где Sn - это площадь многоугольника, P - это периметр, а r - это радиус вписанной в многоугольник окружности.

Если в основании пирамиды лежит неправильный многоугольник, то для вычисления площади всей фигуры снова придется разбивать многоугольник на треугольники, вычислять площадь каждого, а затем складывать.

Чтобы завершить вычисление площади поверхности пирамиды , сложите площади боковой поверхности и основания пирамиды .

Видео по теме

Многоугольник представляет собой геометрическую фигуру, построенную путем замыкания ломаной. Различают несколько видов многоугольника, которые отличаются в зависимости от количества вершин. Вычисление площади производится для каждого вида многоугольника определенными способами.

Инструкция

Перемножьте длины сторон, если вам необходимо вычислить площадь квадрата или прямоугольника. Если необходимо узнать площадь прямоугольного треугольника, достройте его до прямоугольника, вычислить его площадь и разделить ее на два.

Используйте для вычисления площади следующий способ, если фигура не имеет больше 180 градусов (выпуклый многоугольник), при этом все ее вершины находятся в сетки координат, а сама себя не пересекает.
Опишите вокруг такого многоугольника прямоугольник, чтобы его стороны были параллельны линиям сетки (осям координат). При этом хотя бы одна из вершин многоугольника должна быть вершиной прямоугольника.

Два основания могут быть только у усеченной пирамиды . В этом случае второе основание образуется сечением, параллельным большему основанию пирамиды . Найти одно из оснований можно в том случае, если известна или линейные элементы второго.

Вам понадобится

  • - свойства пирамиды;
  • - тригонометрические функции;
  • - подобие фигур;
  • - нахождение площадей многоугольников.

Инструкция

Если основание представляет собой правильный треугольник, найдите его площадь , умножив квадрат стороны, на корень квадратный из 3 поделенный на 4. Если основание представляет собой квадрат, возведите его сторону во вторую степень. В общем случае, для любого правильного многоугольника примените формулу S=(n/4) a² ctg(180º/n), где n – количество сторон правильного многоугольника, a – длина его стороны.

Сторону меньшего основания найдите, по формуле b=2 (a/(2 tg(180º/n))-h/tg(α)) tg(180º/n). Здесь а – большего основания, h – высота усеченной пирамиды , α – двугранный угол при ее основании, n – количество сторон оснований (оно одинаковое). Площадь второго основания найдите аналогично первому, используя в формуле длину его стороны S=(n/4) b² ctg(180º/n).

Если основания представляют собой другие типы многоугольников, известны все стороны одного из оснований , и одна из сторон другого, то остальные стороны вычислите как подобные. Например, стороны большего основания 4, 6, 8 см. Большая сторона меньшего основания рана 4 см. Вычислите коэффициент пропорциональности, 4/8=2 (берем стороны в каждом из оснований ), и рассчитайте другие стороны 6/2=3 см, 4/2=2 см. Получим стороны 2, 3, 4 см в меньшем основании стороны. Теперь вычислите их , как площади треугольников.

Если известно соотношение соответствующих элементов в усеченной , то соотношение площадей оснований будет равно отношению квадратов этих элементов. Например, если известны соответствующие стороны оснований а и а1, то а²/а1²=S/S1.

Под площадью пирамиды обычно понимается площадь ее боковой или полной поверхности. В основании данного геометрического тела лежит многоугольник. Боковые грани имеют треугольную форму. У них есть общая вершина, которая одновременно является и вершиной пирамиды .

Вам понадобится

  • - лист бумаги;
  • - ручка;
  • - калькулятор;
  • - пирамида с заданными параметрами.

Инструкция

Рассмотрите данную в задании пирамиду. Определите, правильный или неправильный многоугольник лежит в ее основании. У правильного все стороны равны. Площадь в этом случае равна половине произведения периметра на радиус . Найдите периметр, умножив длину стороны l на количество сторон n, то есть P=l*n. Выразить площадь основания можно формулой Sо=1/2P*r, где P - периметр, а r - радиус вписанной окружности.

Площадь боковой поверхности произвольной пирамиды равна сумме площадей её боковых граней. Специальную формулу для выражения этой площади имеет смысл дать в случае правильной пирамиды. Так, пусть дана правильная пирамида, в основании которой лежит правильный n-угольник со стороной, равной а. Пусть h - высота боковой грани, называется также апофемой пирамиды. Площадь одной боковой грани равна 1/2ah, а вся боковая поверхность пирамиды имеет площадь, равную n/2ha.Так как na - периметр основания пирамиды, то можно написать найденную формулу в виде:

Площадь боковой поверхности правильной пирамиды равна произведению её апофемы на половину периметра основания.

Что касается площади полной поверхности , то просто к боковой прибавляем площадь основания.

Вписанные и описанные сфера и шар . Нужно отметить, что центр вписанной в пирамиду сферы лежит на пересечении биссекторных плоскостей внутренних двугранных углов пирамиды. Центр описанной около пирамиды сферы лежит на пересечении плоскостей, проходящих через середины ребер пирамиды и перпендикулярных им.

Усеченная пирамида. Если пирамиду рассеч плоскостью, параллельной её основанию, то часть, заключенная между секущей плоскостью и основанием, называется усеченной пирамидой. На рисунке показана пирамида, отбрасывая её часть, лежащую выше секущей плоскости, получаем усеченную пирамиду. Ясно, что малая отбрасываемая пирамида гомотетична большой пирамиде с центром гомотетии в вершине. Коэффициент подобия равен отношению высот: k=h 2 /h 1 , или боковых ребер, или других соответствующих линейных размеров обеих пирамид. Мы знаем, что площади подобных фигур относятся, как квадраты линейных размеров; так площади оснований обеих пирамид (т.е. пощади оснований усеченной пирамиды) относятся, как

Здесь S 1 - площадь нижнего основания, а S 2 - площадь верхнего основания усеченной пирамиды. В таком же отношении находятся и боковые поверхности пирамид. Сходное правило имеется и для объемов.

Объемы подобных тел относятся, как кубы их линейных размеров; например, объемы пирамид относятся, как произведения их высот на площади оснований, откуда наше правило получается сразу. Оно имеет совершенно общий характер и прямо следует из того, что объем всегда имеет размерность третей степени длины. Пользуясь этим правилом, выведем формулу, выражающую объем усеченной пирамиды через высоту и площади оснований.

Пусть дана усеченная пирамида с высотой h и площадями оснований S 1 и S 2 . Если представить себе, что она продолжена до полной пирамиды, то коэффициент подобия полнорй пирамиды и малой пирамиды легко найти, как корень из отношения S 2 /S 1 . Высота усеченной пирамиды выражается как h = h 1 - h 2 = h 1 (1 - k). Теперь имеем для объема усеченной пирамиды (через V 1 и V 2 обозначены объемы полной и малой пирамид)

формула объема усеченной пирамиды

Выведем формулу площади S боковой поверхности правильной усеченной пирамиды через периметры Р 1 и Р 2 оснований и длину апофемы а. Рассуждаем точно так же, как и при выводе формулы для объема. Дополняем пирамиду верхней частью, имеем P 2 = kP 1 , S 2 =k 2 S 1 , где k - коэффициент подобия, P 1 и P 2 - периметры оснований, а S 1 и S 2 - лощади боковых поверхностей всей полученной пирамиды и её верхней части соответственно. Для боковой поверхности найдем (а 1 и а 2 - апофемы пирамид, а = а 1 - а 2 = а 1 (1-k))

формула площади боковой поверхности правильной усеченной пирамиды

Мы знаем, что такое конус, попробуем найти площадь его поверхности. Зачем нужно решать такую задачу? Например, нужно понять, сколько теста пойдет на изготовление вафельного рожка? Или сколько кирпичей понадобится, чтобы сложить кирпичную крышу замка?

Измерить площадь боковой поверхности конуса просто так не получится. Но представим себе все тот же рожок, обмотанный тканью. Чтобы найти площадь куска ткани, нужно разрезать и разложить ее на столе. Получится плоская фигура, ее площадь мы сможем найти.

Рис. 1. Разрез конуса по образующей

Сделаем так же с конусом. «Разрежем» его боковую поверхность вдоль любой образующей, например, (см. рис. 1).

Теперь «размотаем» боковую поверхность на плоскость. Получаем сектор. Центр этого сектора - вершина конуса, радиус сектора равен образующей конуса, а длина его дуги совпадает с длиной окружности основания конуса. Такой сектор называется разверткой боковой поверхности конуса (см. рис. 2).

Рис. 2. Развертка боковой поверхности

Рис. 3. Измерение угла в радианах

Попробуем найти площадь сектора по имеющимся данным. Сперва введем обозначение: пусть угол при вершине сектора в радианах (см. рис. 3).

С углом при вершине развертки нам придется часто сталкиваться в задачах. Пока же попробуем ответить на вопрос: а не может ли этот угол получиться больше 360 градусов? То есть не получится ли так, что развертка наложится сама на себя? Конечно же, нет. Докажем это математически. Пусть развертка «наложилась» сама на себя. Это означает, что длина дуги развертки больше длины окружности радиуса . Но, как уже было сказано, длина дуги развертки есть длина окружности радиуса . А радиус основания конуса, разумеется, меньше образующей, например, потому, что катет прямоугольного треугольника меньше гипотенузы

Тогда вспомним две формулы из курса планиметрии: длина дуги . Площадь сектора: .

В нашем случае роль играет образующая , а длина дуги равна длине окружности основания конуса, то есть . Имеем:

Окончательно получаем: .

Наряду с площадью боковой поверхности можно найти и площадь полной поверхности. Для этого к площади боковой поверхности надо прибавить площадь основания. Но основание - это круг радиуса , чья площадь по формуле равна .

Окончательно имеем: , где - радиус основания цилиндра, - образующая.

Решим пару задач на приведенные формулы.

Рис. 4. Искомый угол

Пример 1 . Разверткой боковой поверхности конуса является сектор с углом при вершине. Найти этот угол, если высота конуса равна 4 см, а радиус основания равен 3 см (см. рис. 4).

Рис. 5. Прямоугольный треугольник, образующий конус

Первым действием, по теореме Пифагора, найдем образующую: 5 см (см. рис. 5). Далее, мы знаем, что .

Пример 2 . Площадь осевого сечения конуса равна , высота равна . Найти площадь полной поверхности (см. рис. 6).



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта