Главная » Выращивание » Основные положения мкт идеального. Основные молекулярно-кинетической теории, уравнения и формулы

Основные положения мкт идеального. Основные молекулярно-кинетической теории, уравнения и формулы

Основные положения МКТ:

1. Все вещества состоят из мельчайших частиц: молекул, атомов или ионов.

2. Эти частицы находятся в непрерывном хаотическом движении, скорость которого определяет температуру вещества.

3. Между частицами существуют силы притяжения и отталкивания, характер которых зависит от расстояния между ними.

Идеальный газ - это газ, взаимодействие между молекулами которого пренебрежимо мало.

Основные отличия идеального газа от реального: частицы идеального газа - шарики очень малых размеров, практически материальные точки; между частицами отсутствуют силы межмолекулярного взаимодействия; соударения частиц абсолютно упругие. Реальный газ - газ, который не описывается уравнением состояния идеального газа Клапейрона - Менделеева. Зависимости между его параметрами показывают, что молекулы в реальном газе взаимодействуют между собой и занимают определенный объем. Состояние реального газа часто на практике описывается обобщенным уравнением Менделеева - Клапейрона.

2 Параметры и функции состояния. Уравнение состояния идеального газа.

Параметры:

Давление обусловлено взаимо­действием молекул рабочего тела с по­верхностью и численно равно силе, дей­ствующей на единицу площади повер­хности тела по нормали к последней.

Температурой называется фи­зическая величина, характеризующая степень нагретости тела. С точки зрения молекулярно-кинетических представлений температура есть мера интенсивности теплового движения молекул.

Удельный объем v - это объем единицы массы вещества. Если однородное тело массой М занимает объем v, то по определению v= V/М. В системе СИ единица удельного объема 1 м3/кг. Между удельным объемом вещества и его плотность существует очевидное соотношение:

Если все термодинамические пара­метры постоянны во времени и одинако­вы во всех точках системы, то такое состояние системы называется равно­весным.

Для равновесной термодинамической системы существует функциональная связь между параметрами состояния, ко­торая называется уравнением со­стояния

урав­нение Клапейрона - Менделеева

3 Смеси газов. Кажущаяся молекулярная масса. Газовая постоянная смеси газов.

Смесь газов – механическое соединение не вступающих друг с другом химическую реакцию газов. Основным законом, определяющим поведение газовой смеси, является закон Дальтона: полное давление смеси иде­альных газов равно сумме парциальных давлений всех входящих в нее компо­нентов:Парциальное давление pi - давление, которое имел бы газ, если бы он один при той же температуре занимал весь объем смеси. Газовую постоянную смеси определяют как:,- кажущаяся (средняя) молекулярная масса смеси. При объемном составе, при массовом составе:.-универсальная газовая постоянная.

4 Первый закон термодинамики.

Первый закон термодинамики - это закон сохранения энергии, записанный с помощью термодинамических понятий (аналитическая формулировка: вечный двигатель 1 рода невозможен):

Энергия. Под внутренней энергией в термодинамике понимают кинетическую энергию движения молекул, потенциальную энергию их взаимодействия и нулевая (энергея движения частиц внутри молекулы при T=0K). Кинетическая энергия молекул явля­ется функцией температуры, значение потенциальной энергии зависит от сред­него расстояния между молекулами и, следовательно, от занимаемого газом объема V, т. е. является функцией V. По­этому внутренняя энергия U есть функ­ция состояния тела.

Теплота. Энергия, предаваемая от одного тела к другому за счет разности температур, называется теплотой. Теплота может передаваться либо при непосредственном контакте между телами (теплопроводностью, конвек­цией), либо на расстоянии (излучением), причем во всех случаях этот процесс возможен только при наличии разности температур между телами.

Работа. Энергия, передаваемая от одного тела к другому при изменении объема этих тел или перемещение в пространстве, называется работой. При конечном изменении объема работа против сил внешнего давления, называе­мая работой расширения, равна Работа из­менения объема эквивалентна площади под кривой процесса в диаграмме р, v.

Внутренняя энергия - это свойство самой системы, она характеризует состо­яние системы. Теплота и работа - это энергетические характеристики процес­сов механического и теплового взаи­модействий системы с окружающей средой. Они характеризуют те количест­ва энергии, которые переданы системе или отданы ею через ее границы в опре­деленном процессе.

Любое вещество рассматривается физикой как совокупность мельчайших частиц: атомов, молекул и ионов. Все эти частицы находятся в непрерывном хаотическом движении и взаимодействуют друг с другом с помощью упругих столкновений.

Атомическая теория - основа молекулярно-кинетической теории

Демокрит

Молекулярно-кинетическая теория зародилась в Древней Греции примерно 2500 лет назад. Её фундаментом считается атомическая гипотеза , авторами которой были древнегреческий философ Левкипп и его ученик, древнегреческий учёный Демокрит из города Абдеры.

Левкипп

Левкипп и Демокрит предполагали, что все материальные вещи состоят из неделимых мельчайших частиц, которые называются атомами (от греческого ἄτομος - неделимый ). А пространство между атомами заполнено пустотой. Все атомы имеют размер и форму, а также способны двигаться. Сторонниками этой теории в средние века были Джордано Бруно , Галилей , Исаак Бекман и другие учёные. Основы молекулярно-кинетической теории были заложены в труде «Гидродинамика», опубликованном в 1738 г. Его автором был швейцарский физик, механик и математик Даниил Бернулли .

Основные положения молекулярно-кинетической теории

Михаил Васильевич Ломоносов

Ближе всего к современной физике оказалась теория атомного строения вещества, которую в XVIII веке развил великий русский учёный Михаил Васильевич Ломоносов . Он утверждал, что все вещества состоят из молекул , которые он называл корпускулами . А корпускулы, в свою очередь, состоят из атомов . Теория Ломоносова получила название корпускулярной .

Но как оказалось, атом делится. Он состоит из положительно заряженного ядра и отрицательных электронов. А в целом он электрически нейтрален.

Современная наука называет атомом наименьшую часть химического элемента, являющуюся носителем его основных свойств. Связанные межатомными связями, атомы образуют молекулы. В молекуле могут быть один или нескольких атомов одинаковых или различных химических элементов.

Все тела состоят из огромного количества частиц: атомов, молекул и ионов. Эти частицы непрерывно и хаотично движутся. Их движение не имеет какого-либо определённого направления и называется тепловым движением . Во время своего движения частицы взаимодействуют друг с другом путём абсолютно упругих столкновений.

Наблюдать молекулы и атомы невооружённым глазом мы не можем. Но мы можем видеть результат их действий.

Подтверждением основных положений молекулярно-кинетической теории являются: диффузия , броуновское движение и изменение агрегатных состояний веществ .

Диффузия

Диффузия в жидкости

Одно из доказательств постоянного движения молекул - явление диффузии .

В процессе движения молекулы и атомы одного вещества проникают между молекулами и атомами другого вещества, соприкасающегося с ним. Точно так же ведут себя молекулы и атомы второго вещества по отношению к первому. И через некоторое время молекулы обоих веществ равномерно распределяются по всему объёму.

Процесс проникновения молекул одного вещества между молекул другого называется диффузией . С явлением диффузии мы сталкиваемся дома каждый день, когда опускаем пакетик чая в стакан с кипятком. Мы наблюдаем, как бесцветный кипяток меняет свой цвет. Бросив в пробирку с водой несколько кристалликов марганца, можно увидеть, что вода окрасится в розовый цвет. Это также диффузия.

Число частиц в единице объёма называют концентрацией вещества. При диффузии молекулы перемещаются из тех частей вещества, где концентрация выше, в те части, где она меньше. Перемещение молекул называют диффузионным потоком . В результате диффузии концентрации в различных частях веществ выравниваются.

Диффузию можно наблюдать в газах, жидкостях и твёрдых телах. В газах она происходит с большей скоростью, чем в жидкостях. Мы знаем, как быстро распространяются запахи в воздухе. Гораздо медленнее окрашивается жидкость в пробирке, если в неё капнуть чернил. А если мы положим на дно ёмкости с водой кристаллы поваренной соли и не перемешаем, то пройдёт не один день, прежде чем раствор станет однородным.

Диффузия происходит и на границе соприкасающихся металлов. Но её скорость в этом случае очень мала. Если покрыть медь золотом, то при комнатной температуре и атмосферном давлении золото приникнет в медь всего лишь на несколько микронов через несколько тысяч лет.

Свинец из слитка, положенного под грузом на золотой слиток, проникнет в него всего лишь на глубину в 1 см за 5 лет.

Диффузия в металлах

Скорость диффузии

Скорость диффузии зависит от площади поперечного сечения потока, разности концентраций веществ, разности их температур или зарядов. Через стержень диаметром в 2 см тепло распространяется в 4 раза быстрее, чем через стержень диаметром в 1 см. Чем выше разность температур веществ, тем выше скорость диффузии. При тепловой диффузии её скорость зависит от теплопроводности материала, а в случае потока электрических зарядов - от электропроводности .

Закон Фика

Адольф Фик

В 1855 г. немецкий физиолог Адольф Евгений Фик сделал первое количественное описание процессов диффузии:

где J - плотность диффузионного потока вещества,

D - коэффициент диффузии,

C - концентрация вещества.

Плотность диффузионного потока вещества J [см -2 · s -1 ] пропорциональна коэффициенту диффузии D [см -2 · s -1 ] и градиенту концентрации, взятому с противоположным знаком.

Это уравнение называют первым уравнением Фика .

Диффузия, в результате которой концентрации веществ выравниваются, называется нестационарной диффузией . При такой диффузии градиент концентрации изменяется со временем. А в случае стационарной диффузии этот градиент остаётся постоянным.

Броуновское движение

Роберт Броун

Открыл это явление шотландский ботаник Роберт Броун в 1827 г. Изучая под микроскопом взвешенные в воде цитоплазматические зёрна, выделенные из клеток пыльцы североамериканского растения Clarkia pulchella , он обратил внимание на мельчайшие твёрдые крупинки. Они дрожали и медленно передвигались без всякой видимой причины. Если температура жидкости повышалась, скорость частиц возрастала. Так же происходило, когда уменьшался размер частиц. А если их размер увеличивался, понижалась температура жидкости или увеличивалась её вязкость, движение частиц замедлялось. И эти удивительные «танцы» частиц можно было наблюдать бесконечно долго. Решив, что причина этого движения в том, что частицы живые, Броун заменил зёрна мелкими частицами угля. Результат оказался таким же.

Броуновское движение

Чтобы повторить опыты Броуна достаточно иметь самый обычный микроскоп. Размер молекул слишком мал. И рассмотреть их таким прибором невозможно. Но если мы подкрасим акварельной краской воду в пробирке, а затем посмотрим на неё в микроскоп, то увидим крошечные окрашенные частицы, которые беспорядочно двигаются. Это не молекулы, а частицы краски, взвешенные в воде. И двигаться их заставляют молекулы воды, которые ударяют их со всех сторон.

Так ведут себя все видимые в микроскоп частицы, находящиеся во взвешенном состоянии в жидкостях или газах. Их беспорядочное движение, вызванное тепловым движением молекул или атомов, называется броуновским движением . Броуновская частица непрерывно подвергается ударам со стороны молекул и атомов, из которых состоят жидкости и газы. И это движение не прекращается.

Но в броуновском движении могут участвовать частицы размером до 5 мкм (микрометров). Если их размер больше, они неподвижны. Чем меньше размер броуновской частицы, тем быстрее она движется. Частицы менее 3 мкм двигаются поступательно по всем сложным траекториям или вращаются.

Сам Броун не смог объяснить открытое им явление. И лишь в XIX веке учёные нашли ответ на этот вопрос: движение броуновских частиц вызвано воздействием на них теплового движения молекул и атомов.

Три состояния вещества

Молекулы и атомы, из которых состоит вещество, не только находятся в движении, но и взаимодействуют друг с другом, взаимно притягиваясь или отталкиваясь.

Если расстояние между молекулами сравнимо с их размерами, то они испытывают притяжение. Если же оно становится меньше, то начинает преобладать сила отталкивания. Этим объясняется сопротивляемость физических тел деформации (сжатию или растяжению).

Если тело сжимать, то расстояние между молекулами уменьшается, и силы отталкивания будут стараться вернуть молекулы в первоначальное состояние. При растяжении деформации тела буду мешать силы притяжения между молекулами.

Молекулы взаимодействуют не только внутри одного тела. Опустим в жидкость кусочек ткани. Мы увидим, что он намокнет. Это объясняется тем, что молекулы жидкости притягиваются к молекулам твёрдых тел сильнее, чем друг другу.

Каждое физическое вещество в зависимости от температур и давлений может быть в трёх состояниях: твёрдом, жидком или газообразном . Они называются агрегатными .

В газах расстояние между молекулами велико. Поэтому силы притяжения между ними настолько слабы, что они совершают хаотическое и практически свободное движение в пространстве. Направление своего движения они меняют, ударяясь друг о друга или о стенки сосудов.

В жидкостях молекулы расположены ближе одна к другой, чем в газе. Силы притяжения между ними больше. Молекулы в них движутся уже не свободно, а хаотично колеблются возле положения равновесия. Но они способны перескакивать в направлении действия внешней силы, меняясь местами друг с другом. Результатом этого является течение жидкости.

В твёрдых телах силы взаимодействия между молекулами очень велики из-за близкого расстояния между ними. Притяжение соседних молекул они преодолеть не могут, поэтому способны совершать только колебательные движения около положения равновесия.

Твёрдые тела сохраняют объём и форму. Жидкость формы не имеет, она всегда принимает форму сосуда, в котором находится в данный момент. Но её объём при этом сохраняется. По-другому ведут себя газообразные тела. Они легко меняют и форму, и объём, принимая форму того сосуда, в который их поместили, и занимая весь предоставленный им объём.

Однако существуют и такие тела, которые имеют структуру жидкости, обладают небольшой текучестью, но при этом способны сохранять форму. Такие тела называют аморфными .

Современная физика выделяет и четвёртое агрегатное состояние вещества - плазму .

МКТ - это просто!

«Ничто не существует, кроме атомов и пустого пространства …» - Демокрит
«Любое тело может делиться до бесконечности» - Аристотель

Основные положения молекулярно-кинетической теории (МКТ)

Цель МКТ - это объяснение строения и свойств различных макроскопических тел и тепловых явлений, в них протекающих, движением и взаимодействием частиц, из которых состоят тела.
Макроскопические тела - это большие тела, состоящие из огромного числа молекул.
Тепловые явления - явления, связанные с нагреванием и охлаждением тел.

Основные утверждения МКТ

1. Вещество состоит из частиц (молекул и атомов).
2. Между частицами есть промежутки.
3. Частицы беспорядочно и непрерывно движутся.
4. Частицы взаимодействуют друг с другом (притягиваются и отталкиваются).

Подтверждение МКТ:

1. экспериментальное
- механическое дробление вещества; растворение вещества в воде; сжатие и расширение газов; испарение; деформация тел; диффузия; опыт Бригмана: в сосуд заливается масло, сверху на масло давит поршень, при давлении 10 000 атм масло начинает просачиваться сквозь стенки стального сосуда;

Диффузия; броуновское движение частиц в жидкости под ударами молекул;

Плохая сжимаемость твердых и жидких тел; значительные усилия для разрыва твердых тел; слияние капель жидкости;

2. прямое
- фотографирование, определение размеров частиц.

Броуновское движение

Броуновское движение - это тепловое движение взвешенных частиц в жидкости (или газе).

Броуновское движение стало доказательством непрерывного и хаотичного (теплового) движения молекул вещества.
- открыто английским ботаником Р. Броуном в 1827 г.
- дано теоретическое объяснение на основе МКТ А. Эйнштейном в 1905 г.
- экспериментально подтверждено французским физиком Ж. Перреном.

Масса и размеры молекул

Размеры частиц

Диаметр любого атома составляет около см.


Число молекул в веществе

где V - объем вещества, Vo - объем одной молекулы

Масса одной молекулы

где m - масса вещества,
N - число молекул в веществе

Единица измерения массы в СИ: [m]= 1 кг

В атомной физике массу обычно измеряют в атомных единицах массы (а.е.м.).
Условно принято считать за 1 а.е.м. :

Относительная молекулярная масса вещества

Для удобства расчетов вводится величина - относительная молекулярная масса вещества.
Массу молекулы любого вещества можно сравнить с 1/12 массы молекулы углерода.

где числитель - это масса молекулы, а знаменатель - 1/12 массы атома углерода

Это величина безразмерная, т.е. не имеет единиц измерения

Относительная атомная масса химического элемента

где числитель - это масса атома, а знаменатель - 1/12 массы атома углерода

Величина безразмерная, т.е. не имеет единиц измерения

Относительная атомная масса каждого химического элемента дана в таблице Менделеева.

Другой способ определения относительной молекулярной массы вещества

Относительная молекулярная масса вещества равна сумме относительных атомных масс химических элементов, входящих в состав молекулы вещества.
Относительную атомную массу любого химического элемента берем из таблицы Менделеева!)

Количество вещества

Количество вещества (ν) определяет относительное число молекул в теле.

где N - число молекул в теле, а Na - постоянная Авогадро

Единица измерения количества вещества в системе СИ: [ν]= 1 моль

1 моль - это количество вещества, в котором содержится столько молекул (или атомов), сколько атомов содержится в углероде массой 0,012 кг.

Запомни!
В 1 моле любого вещества содержится одинаковое число атомов или молекул!

Но!
Одинаковые количества вещества для разных веществ имеют разную массу!


Постоянная Авогадро

Число атомов в 1 моле любого вещества называют числом Авогадро или постоянной Авогадро:

Молярная масса

Молярная масса (M) - это масса вещества, взятого в одном моле, или иначе - это масса одного моля вещества.

Масса молекулы
- постоянная Авогадро

Единица измерения молярной массы: [M]=1 кг/моль.

Формулы для решения задач

Эти формулы получаются в результате подстановки вышерассмотренных формул.

Масса любого количества вещества

Согласно молекулярно-кинетической теории все вещества состоят из мельчайших частиц - молекул. Молекулы разделены промежутками, находятся в непрерывном движении и взаимодействуют между собой. Молекула - наименьшая частица вещества, обладающая его химическими свойствами. Молекулы состоят из более простых частиц - атомов химических элементов. Молекулы различных веществ имеют различный атомный состав.

Молекулы обладают кинетической энергией и одновременно потенциальной энергией взаимодействия. В газообразном состоянии W кин >> W пот. В жидком и твердом состояниях кинетическая энергия частиц сравнима с энергией их взаимодействия (W кин ~W пот).

Поясним три основных положения молекулярно - кинетической теории.

1. Все вещества состоят из молекул, т.е. имеют дискретное строение, молекулы разделены промежутками.

2. Молекулы находятся в непрерывном беспорядочном (хаотическом) движении.

3. Между молекулами тела существуют силы взаимодействия.

Молекулярно-кинетическая теория обосновывается многочисленными опытами и огромным количеством физических явлений.

Наличие промежутков между молекулами следует, например, из опытов смешения различных жидкостей: объем смеси всегда меньше суммы объемов смешанных жидкостей.

Приведем некоторые из доказательств беспорядочного (хаотического) движения молекул:

а) стремление газа занять весь предоставленный ему объем (распространение пахучего газа по всему помещению);

б) броуновское движение - беспорядочное движение мельчайших видимых в микроскоп частиц вещества, находящихся во взвешенном состоянии и нерастворимых в ней. Это движение происходит под действием беспорядочных ударов молекул, окружающей жидкости, находящихся в постоянном хаотическом движении;

в) диффузия - взаимное проникновение молекул соприкасающихся веществ. При диффузии молекулы одного тела, находясь в непрерывном движении, проникают в промежутки между молекулами другого соприкасающегося с ним тела и распространяются между ними. Диффузия проявляется во всех телах - в газах, жидкостях и твердых телах, - но в разной степени.

Диффузию в газах можно наблюдать, если сосуд с пахучим газом открыть в помещении. Через некоторое время газ распространится по всему помещению.

Диффузия в жидкостях происходит значительно медленнее, чем в газах. Например, в стакан нальем раствор медного купороса, а затем, очень осторожно добавим слой воды и оставим стакан в помещении с постоянной температурой, и где он не подвергается сотрясениям. Через некоторое время будем наблюдать исчезновение резкой границы между купоросом и водой, а через несколько дней жидкости перемешаются, несмотря на то, что плотность купороса больше плотности воды. Так же диффундирует вода со спиртом и прочие жидкости.

Диффузия в твердых телах происходит еще медленнее, чем в жидкостях (от нескольких часов до нескольких лет). Она может наблюдаться только в хорошо пришлифованных телах, когда расстояния между поверхностями пришлифованных тел близки к расстояниям между молекулами (10 -8 см). При этом скорость диффузии увеличивается при повышении температуры и давления.

Доказательства силового взаимодействия молекул:

а) деформация тел под влиянием силового воздействия;

б) сохранение формы твердыми телами;

в) поверхностное натяжение жидкостей и, как следствие, явление смачивания и капиллярности.

Между молекулами существуют одновременно силы притяжения и силы отталкивания. Эти силы имеют электромагнитную природу.

Рассмотрим различные случаи взаиморасположения молекул и покажем какие силы преобладают. Введем следующие обозначения:

r – Расстояние между молекулами.

d – диаметр молекулы

F np сила притяжения

F om сила отталкивания

→ - стремиться

    Следовательно

    r→∞ => F=0 (силы короткодействующие)

    r > d (≈2-3 диаметра)=> F np > F om

    r→d=>F np →0

Молекулярная физика раздел физики, в котором изучаются физические свойства тел в различных агрегатных состояниях на основе рассмотрения их молекулярного строения, силы взаимодействия между частицами, образующими тела и характеры теплового движения этих частиц.

Многочисленные исследования, проведенные этими учеными позволили сформулироватьосновные положения молекулярно-кинетической теории – МКТ.

МКТ объясняет строение и свойства тел на основе закономерностей движения и взаимодействия молекул, из которых состоят тела.

В основе МКТ лежат три важных положения, подтвержденные экспериментально и теоретически.

  1. Все тела состоят из мельчайших частиц – атомов, молекул, в состав которых входят еще более мелкие элементарные частицы (электроны, протоны, нейтроны). Строение любого вещества дискретно (прерывисто).
  2. Атомы и молекулы вещества всегда находятся в непрерывном хаотическом движении.
  3. Между частицами любого вещества существуют силы взаимодействия – притяжения и отталкивания. Природа этих сил электромагнитная.

Эти положения подтверждаются опытным путем.

Опытное обоснование 1 положения.

Все тела состоят из мельчайших частиц. Во-первых, об этом говорит возможность деления вещества (все тела можно разделить на части).

Наиболее ярким экспериментальным подтверждением представлений молекулярно-кинетической теории о беспорядочном движении атомов и молекул является броуновское движение .

Оно было открыто английским ботаником Р. Броуном (1827 г.). В 1827 году англ. ботаник Броун, изучая внутреннее строение растений с помощью микроскопа обнаружил, что частички твердого вещества в жидкой среде совершают непрерывное хаотическое движение.

Тепловое движение взвешенных в жидкости (или газе) частиц получило название броуновского движения.

Броуновские частицы движутся под влиянием беспорядочных ударов молекул. Из-за хаотического теплового движения молекул эти удары никогда не уравновешивают друг друга. В результате скорость броуновской частицы беспорядочно меняется по модулю и направлению, а ее траектория представляет собой сложную зигзагообразную кривую. Теория броуновского движения была создана А. Эйнштейном (1905 г.). Экспериментально теория Эйнштейна была подтверждена в опытах французского физика Ж. Перрена (1908–1911 гг.).

Причиной броуновского движения является непрерывное хаотическое движение молекул жидкости или газа, которые, беспорядочно ударяясь со всех сторон о частичку, приводят её в движение. Причина броуновского движения частицы в том, что удары молекул о неё не компенсируются. Значит броуновское движение является еще и опытным обоснованием 2 положения МКТ.

Непрерывное движение молекул любого вещества (твердого, жидкого, газообразного) подтверждается многочисленными опытами по диффузии.

Диффузией называют явление самопроизвольного проникновения молекул одного вещества в промежутки между молекулами другого. Т.е. это самопроизвольное перемешивание веществ.

Если пахучее вещество (духи) внести в помещение, то через некоторое время запах этого вещества распространится по всему помещению. Это свидетельствует о том, что молекулы одного вещества без воздействия внешних сил проникают в другое. Диффузия наблюдается и в жидкостях, и в твердых телах.

При изучении строения вещества было установлено, что между молекулами одновременно действуют силы притяжения и отталкивания, называемые молекулярными силами. Это силы электромагнитной природы.

Способность твердых тел сопротивляться растяжению, особые свойства поверхности жидкости приводят к выводу, что между молекулами действуют силы притяжения .

Малая сжимаемость весьма плотных газов и особенно жидкостей и твердых тел означает, что между молекулами существуют силы отталкивания .

Эти силы действуют одновременно. Если бы этого не было, то тела не были бы устойчивыми: либо разлетелись бы на частицы, либо слипались.

Межмолекулярное взаимодействие – это взаимодействие электрически нейтральных молекул и атомов.

Силы, действующие между двумя молекулами, зависят от расстояния между ними. Молекулы представляют собой сложные пространственные структуры, содержащие как положительные, так и отрицательные заряды. Если расстояние между молекулами достаточно велико, то преобладают силы межмолекулярного притяжения. На малых расстояниях преобладают силы отталкивания. Зависимости результирующей силы F и потенциальной энергии E p взаимодействия между молекулами от расстояния между их центрами качественно изображены на рисунке. При некотором расстоянии r = r 0 сила взаимодействия обращается в нуль. Это расстояние условно можно принять за диаметр молекулы. Потенциальная энергия взаимодействия при r = r 0 минимальна. Чтобы удалить друг от друга две молекулы, находящиеся на расстоянии r 0 , нужно сообщить им дополнительную энергию E 0 . Величина E 0 называется глубиной потенциальной ямы или энергией связи .

Между электронами одной молекулы и ядрами другой действуют силы притяжения, которые условно принято считать отрицательными (нижняя часть графика). Одновременно между электронами молекул и их ядрами действуют силы отталкивания, которые условно считают положительными (верхняя часть графика). На расстоянии равном размеру молекул результирующая сила равна нулю, т.е. силы притяжения уравновешивают силы отталкивания. Это наиболее устойчивое расположение молекул. При увеличении расстояния притяжение превосходит силу отталкивания, при уменьшении расстояния между молекулами – наоборот.

Атомы и молекулы взаимодействуют и значит обладают потенциальной энергией .

Атомы и молекулы находятся в постоянном движении, и значит, обладают кинетической энергией.

Масса и размеры молекул

Большинство веществ состоит из молекул, поэтому для объяснения свойств макроскопических объектов, объяснения и предсказания явлений важно знать основные характеристики молекул.

Молекулой называют наименьшую устойчивую частицу данного вещества, обладающую его основными химическими свойствами.

Молекула состоит из ещё более мелких частиц – атомов, которые в свою очередь, состоят из электронов и ядер.

Атомом называют наименьшую частицу данного химического элемента.

Размеры молекул очень малы.

Порядок величины диаметра молекулы 1*10 - 8 см = 1*10 - 10 м

Порядок величины объёма молекулы 1*10 - 20 м 3

О том что размеры молекул малы можно судить и из опыта. В 1 л (м 3) чистой воды разведем 1 м 3 зеленых чернил, тете разбавим чернила в 1 000 000 раз. Увидим, что раствор имеет зеленую окраску и вместе с тем однороден. Это говорит о том, что даже при разбавлении в 1 000 000 раз в воде находится большое количество молекул красящего вещества. Этот опыт показывает, как малы размеры молекул.

В 1 см 3 воды содержится 3,7*10 -8 молекул.

Порядок величины массы молекул 1*10 -23 г = 1*10 -26 кг

В молекулярной физике принято характеризовать массы атомов и молекул не их абсолютными значениями (в кг), а относительными безразмерными величинами относительной атомной массой и относительной молекулярной массой.

По международному соглашению в качестве единичной атомной массы m 0 принимается 1/12 массы изотопа углерода 12 С (m 0С):

m 0 =1/12 m 0С =1,66 *10 -27

Относительную молекулярную массу можно определить, если абсолютное значение массы молекулы (m мол в кг) разделить на единичную атомную массу.

M 0 = m мол / 1/12 m 0С

Относительная молекулярная (атомарная) масса вещества (из таблицы Менделеева)

7 14 N Азот M 0 N = 14 M 0 N 2 = 28

Относительное число атомов или молекул, содержащихся в веществе характеризуется физической величиной, называемой количеством вещества.

Количество вещества ע – это отношение числа молекул (атомов) N в донном макроскопическом теле к числу молекул в 0,012 кг углерода N A

Количество вещества выражают в молях

Один моль – это количество вещества, в котором столько же молекул (атомов), сколько атомов содержится в 0,012 кг углерода.

Моль любого вещества содержит одинаковое число молекул. Это число называют постоянной Авогадро N A =6, 02 * 10 23 моль -1

Масса одного моля вещества называется молярной массой.

Число молекул в данной массе вещества:

Масса вещества (любого количества вещества):

Определение молярной массы:

Видеоресурс: Масса молекул. Количество вещества.

{youtube}bfPw9aZJVqk&list=PLhOzgnnk_5jyM6NXfLniX5sX3rZTrpoea&index=18{/youtube}

Понятие температуры – одно из важнейших в молекулярной физике.

Температура - это физическая величина, которая характеризует степень нагретости тел.

Беспорядочное хаотическое движение молекул называется тепловым движением .

Кинетическая энергия теплового движения растет с возрастанием температуры. При низких температурах средняя кинетическая энергия молекулы может оказаться небольшой. В этом случае молекулы конденсируются в жидкое или твердое вещество; при этом среднее расстояние между молекулами будет приблизительно равно диаметру молекулы. При повышении температуры средняя кинетическая энергия молекулы становится больше, молекулы разлетаются, и образуется газообразное вещество.

Понятие температуры тесно связано с понятием теплового равновесия. Тела, находящиеся в контакте друг с другом, могут обмениваться энергией. Энергия, передаваемая одним телом другому при тепловом контакте, называется количеством теплоты .

Рассмотрим пример. Если положить нагретый металл на лед, то лед начнет плавится, а металл – охлаждаться до тех пор, пока температуры тел не станут одинаковыми. При контакте между двумя телами разной температуры происходит теплообмен, в результате которого энергия металла уменьшается, а энергия льда увеличивается.

Энергия при теплообмене всегда передается от тела с более высокой температурой к телу с более низкой температурой. В конце концов, наступает состояние системы тел, при котором теплообмен между телами системы будет отсутствовать. Такое состояние называют тепловым равновесием .

Тепловое равновесие это такое состояние системы тел, находящихся в тепловом контакте, при котором не происходит теплопередачи от одного тела к другому, и все макроскопические параметры тел остаются неизменными.

Температура это физический параметр, одинаковый для всех тел, находящихся в тепловом равновесии. Возможность введения понятия температуры следует из опыта и носит название нулевого закона термодинамики.

Тела, находящиеся в тепловом равновесии, имеют одинаковые температуры.

Для измерения температур чаще всего используют свойство жидкости изменять объем при нагревании (и охлаждении).

Прибор, с помощью которого измеряется температура, называется термометр.

Для создания термометра необходимо выбрать термометрическое вещество (например, ртуть, спирт) и термометрическую величину, характеризующую свойство вещества (например, длина ртутного или спиртового столбика). В различных конструкциях термометров используются разнообразные физические свойства вещества (например, изменение линейных размеров твердых тел или изменение электрического сопротивления проводников при нагревании). Термометры должны быть откалиброваны. Для этого их приводят в тепловой контакт с телами, температуры которых считаются заданными. Чаще всего используют простые природные системы, в которых температура остается неизменной, несмотря на теплообмен с окружающей средой – это смесь льда и воды и смесь воды и пара при кипении при нормальном атмосферном давлении.

Обыкновенный жидкостный термометр состоит из небольшого стеклянного резервуара, к которому присоединена стеклянная трубка с узким внутренним каналом. Резервуар и часть трубки наполнены ртутью. Температуру среды, в которую погружен термометр определяют по положению верхнего уровня ртути в трубке. Деления на шкале условились наносить следующим образом. Цифру 0 ставят в том месте шкалы, где устанавливается уровень столбика жидкости, когда термометр опущен в тающий снег (лед), цифру 100 – в том месте, где устанавливается уровень столбика жидкости, когда термометр погружен в пары воды, кипящей при нормальном давлении (10 5 Па). Расстояние между этими отметками делят на 100 равных частей, называемых градусами. Такой способ деления шкалы введен Цельсием. Градус по шкале Цельсия обозначают ºС.

По температурной шкале Цельсия точке плавления льда приписывается температура 0 °С, а точке кипения воды – 100 °С. Изменение длины столба жидкости в капиллярах термометра на одну сотую длины между отметками 0 °С и 100 °С принимается равным 1 °С.

В ряде стран (США) широко используется шкала Фаренгейта (T F), в которой температура замерзающей воды принимается равной 32 °F, а температура кипения воды равной 212 °F. Следовательно,

Ртутные термометры применяют для измерения температуры в области от -30 ºС до +800 ºС. Наряду с жидкостными ртутными и спиртовыми термометрами применяются электрические и газовые термометры.

Электрический термометр – термосопротивление – в нем используется зависимость сопротивления металла от температуры.

Особое место в физике занимают газовые термометр , в которых термометрическим веществом является разреженный газ (гелий, воздух) в сосуде неизменного объема (V = const), а термометрической величиной – давление газа p . Опыт показывает, что давление газа (при V = const) растет с ростом температуры, измеренной по шкале Цельсия.

Чтобы проградуировать газовый термометр постоянного объема, можно измерить давление при двух значениях температуры (например, 0 °C и 100 °C), нанести точки p 0 и p 100 на график, а затем провести между ними прямую линию. Используя полученный таким образом калибровочный график, можно определять температуры, соответствующие другим значениям давления.

Газовые термометры громоздки и неудобны для практического применения: они используются в качестве прецизионного стандарта для калибровки других термометров.

Показания термометров, заполненных различными термометрическими телами, обычно несколько различаются. Чтобы точное определение температуры не зависело от вещества, заполняющего термометр, вводится термодинамическая шкала температур.

Чтобы её ввести, рассмотрим, как зависит давление газа от температуры, когда его масса и объём остаются постоянными.

Термодинамическая шкала температур. Абсолютный нуль.

Возьмем закрытый сосуд с газом, и будем нагревать его, первоначально поместив в тающий лед. Температуру газа t определим с помощью термометра, а давление p манометром. С увеличением температуры газа его давление будет возрастать. Такую зависимость нашел французский физик Шарль. График зависимости p от t, построенный на основании такого опыта, имеет вид прямой линии.

Если продолжить график в область низких давлений, можно определить некоторую «гипотетическую» температуру, при которой давление газа стало бы равным нулю. Опыт показывает, что эта температура равна –273,15 °С и не зависит от свойств газа. Невозможно на опыте получить путем охлаждения газ в состоянии с нулевым давлением, так как при очень низких температурах все газы переходят в жидкие или твердые состояния. Давление идеального газа определяется ударами хаотически движущихся молекул о стенки сосуда. Значит, уменьшение давления при охлаждении газа объясняется уменьшением средней энергии поступательного движения молекул газа Е; давление газа будет равно нулю, когда станет равна нулю энергия поступательного движения молекул.

Английский физик У. Кельвин (Томсон) выдвинул идею о том, что полученное значение абсолютного нуля соответствует прекращению поступательного движения молекул всех веществ. Температуры ниже абсолютного нуля в природе быть не может. Это предельная температура при которой давление идеального газа равно нулю.

Температуру, при которой должно прекратиться поступательное движение молекул, называют абсолютным нулем (или нулем Кельвина).

Кельвин в 1848 г. предложил использовать точку нулевого давления газа для построения новой температурной шкалы – термодинамической шкалы температур (шкала Кельвина ). За начало отсчета по этой шкале принята температура абсолютного нуля.

В системе СИ принято единицу измерения температуры по шкале Кельвина называть кельвином и обозначать буквой К.

Размер градуса кельвина определяют так, чтобы он совпадал с градусом Цельсия, т.е 1К соответствует 1ºС.

Температура, отсчитанная по термодинамической шкале температур, обозначается Т. Её называют абсолютной температурой или термодинамической температурой .

Температурная шкала Кельвина называется абсолютной шкалой температур . Она оказывается наиболее удобной при построении физических теорий.

Кроме точки нулевого давления газа, которая называется абсолютным нулем температуры , достаточно принять еще одну фиксированную опорную точку. В шкале Кельвина в качестве такой точки используется температура тройной точки воды (0,01 °С), в которой в тепловом равновесии находятся все три фазы – лед, вода и пар. По шкале Кельвина температура тройной точки принимается равной 273,16 К.

Связь между абсолютной температурой и температурой по шкале Цельсия выражается формулой Т = 273,16 + t , где t – температура в градусах Цельсия.

Чаще пользуются приближенной формулой Т = 273 + t и t = Т – 273

Абсолютная температура не может быть отрицательной.

Температура газа – мера средней кинетической энергии движения молекул.

В опытах Шарлем была найдена зависимость p от t. Эта же зависимость будет и между р и Т: т.е. между р и Т прямопропорциональная зависимость .

С одной стороны, давление газа прямопропорционально его температуре, с другой стороны, мы уже знаем, что давление газа прямопропорционально средней кинетической энергии поступательного движения молекул Е (p = 2/3*E*n). Значит, Е прямопропорциональна Т.

Немецкий ученый Больцман предложил ввести коэффициент пропорциональности (3/2)k в зависимость Е от Т

Е = (3/2) k Т

Из этой формулы следует, что среднее значение кинетической энергии поступательного движения молекул не зависит от природы газа, а определяется только его температурой.

Так как Е = m*v 2 /2, то m*v 2 /2 = (3/2)kТ

откуда средняя квадратичная скорость молекул газа

Постоянная величина k называется постоянная Больцмана.

В СИ она имеет значение k = 1,38*10 -23 Дж/К

Если подставить значение Е в формулу p = 2/3*E*n , то получим p = 2/3*(3/2)kТ* n, сократив, получим p = n * k

Давление газа не зависит от его природы, а определяется только концентрацией молекул n и температурой газа Т.

Соотношение p = 2/3*E*n устанавливает связь между микроскопическими (значения определяются с помощью расчетов) и макроскопическими (значения можно определить по показаниям приборов) параметрами газа, поэтому его принято называть основным уравнением молекулярно – кинетической теории газов .



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта