Главная » Выращивание » Решение квадратичных уравнений. Решение квадратных уравнений

Решение квадратичных уравнений. Решение квадратных уравнений

Якупова М.И. 1

Смирнова Ю.В. 1

1 Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа № 11

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

История квадратных уравнений

Вавилон

Необходимость решать уравнения не только первой степени, но и второй ещё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков, с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне. Правила решения этих уравнений, изложенные в вавилонских текстах, совпадает по существу с современными, но в этих текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

Древняя Греция

Решением квадратных уравнений занимались и в Древней Греции такие ученые как Диофант, Евклид и Герон. Диофант Диофант Александрийский - древнегреческий математик, живший предположительно в III веке нашей эры. Основное произведение Диофанта - «Арифметика» в 13 книгах. Евклид. Евклид древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике Герон. Герон - греческий математик и инженер впервые в Греции в I век н.э. дает чисто алгебраический способ решения квадратного уравнения

Индия

Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме: ax2 + bх = с, а> 0. (1) В уравнении (1) коэффициенты, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим. В Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Вот одна из задач знаменитого индийского математика XII в. Бхаскары.

«Обезьянок резвых стая

А двенадцать по лианам Всласть поевши, развлекалась

Стали прыгать, повисая

Их в квадрате часть восьмая

Сколько ж было обезьянок,

На поляне забавлялась

Ты скажи мне, в этой стае?»

Решение Бхаскары свидетельствует о том, что автор знал о двузначности корней квадратных уравнений. Соответствующее задаче уравнение Бхаскара пишет под видом x2 - 64x = - 768 и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 322, получая затем: x2 - б4х + 322 = -768 + 1024, (х - 32)2 = 256, х - 32= ±16, x1 = 16, x2 = 48.

Квадратные уравнения в Европе XVII века

Формулы решения квадратных уравнений по образцу Ал - Хорезми в Европе были впервые изложены в « Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи. Этот объемистый труд, в котором отражено влияние математики, как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из « Книги абака» переходили почти во все европейские учебники XVI - XVII вв. и частично XVIII. Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. Учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. Благодаря труда Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

Определение квадратного уравнения

Уравнение вида ax 2 + bx + c = 0, где a, b, c - числа, называется квадратным.

Коэффициенты квадратного уравнения

Числа а, b, с - коэффициенты квадратногоуравнения.а - первый коэффициент (перед х²), а ≠ 0;b - второй коэффициент (перед х);с - свободный член (без х).

Какие из данных уравнений не являются квадратными ?

1. 4х² + 4х + 1 = 0;2. 5х - 7 = 0;3. - х² - 5х - 1 = 0;4. 2/х² + 3х + 4 = 0;5. ¼ х² - 6х + 1 = 0;6. 2х² = 0;

7. 4х² + 1 = 0;8. х² - 1/х = 0;9. 2х² - х = 0;10. х² -16 = 0;11. 7х² + 5х = 0;12. -8х²= 0;13. 5х³ +6х -8= 0.

Виды квадратных уравнений

Название

Общий вид уравнения

Особенность (какие коэффициенты)

Примеры уравнений

ax 2 + bx + c = 0

a, b, c - числа, отличные от 0

1/3х 2 + 5х - 1 = 0

Неполные

х 2 - 1/5х = 0

Приведенные

x 2 + bx + c = 0

х 2 - 3х + 5 = 0

Приведённым называют квадратное уравнение, в котором старший коэффициент равен единице. Такое уравнение может быть получено делением всего выражения на старший коэффициент a:

x 2 + px + q =0, p = b/a, q = c/a

Полным называют такое квадратное уравнение, все коэффициенты которого отличны от нуля.

Неполным называется такое квадратное уравнение, в котором хотя бы один из коэффициентов, кроме старшего (либо второй коэффициент, либо свободный член), равен нулю.

Способы решения квадратных уравнений

I способ. Общая формула для вычисления корней

Для нахождения корней квадратного уравнения ax 2 + b + c = 0 в общем случае следует пользоваться приводимым ниже алгоритмом:

Вычислить значение дискриминанта квадратного уравнения: таковым для него называется выражениеD = b 2 - 4ac

Выведение формулы:

Примечание: очевидно, что формула для корня кратности 2 является частным случаем общей формулы, получается при подстановке в неё равенства D=0, а вывод о отсутствии вещественных корней при D0, а {displaystyle {sqrt {-1}}=i} = i.

Изложенный метод универсален, однако он далеко не единственный. К решению одного уравнения можно подойти различными способами, предпочтения обычно зависят от самого решающего. Кроме того, часто для этого некоторый из способов оказывается значительно более элегантным, простым, менее трудоёмким, чем стандартный.

II способ. Корни квадратного уравнения при чётном коэффициенте b III способ. Решение неполных квадратных уравнений

IV способ. Использование частных соотношений коэффициентов

Существуют частные случаи квадратных уравнений, в которых коэффициенты находятся в соотношениях между собой, позволяющих решать их гораздо проще.

Корни квадратного уравнения, в котором сумма старшего коэффициента и свободного члена равна второму коэффициенту

Если в квадратном уравнении ax 2 + bx + c = 0 сумма первого коэффициента и свободного члена равна второму коэффициенту:a + b = c , то его корнями являются -1 и число, противоположное отношению свободного члена к старшему коэффициенту (-c/a ).

Отсюда, прежде, чем решать какое-либо квадратное уравнение, следует проверить возможность применения к нему этой теоремы: сравнить сумму старшего коэффициента и свободного члена со вторым коэффициентом.

Корни квадратного уравнения, сумма всех коэффициентов которого равна нулю

Если в квадратном уравнении сумма всех его коэффициентов равна нулю, то корнями такого уравнения являются 1 и отношение свободного члена к старшему коэффициенту (c/a ).

Отсюда, прежде, чем решать уравнение стандартными методами, следует проверить применимость к нему этой теоремы: сложить все коэффициенты данного уравнения и посмотреть, не равна ли нулю эта сумма.

V способ. Разложение квадратного трёхчлена на линейные множители

Если трёхчлен вида {displaystyle ax^{2}+bx+c(anot =0)}ax 2 + bx + c(a ≠ 0) удастся каким-либо образом представить в качестве произведения линейных множителей {displaystyle (kx+m)(lx+n)=0}(kx + m)(lx + n), то можно найти корни уравнения ax 2 + bx + c = 0 - ими будут -m/k и n/l, действительно, ведь {displaystyle (kx+m)(lx+n)=0Longleftrightarrow kx+m=0cup lx+n=0}(kx + m)(lx + n) = 0 kx + mUlx + n, а решив указанные линейные уравнения, получим вышеописанное. Отметим, что квадратный трёхчлен не всегда раскладывается на линейные множители с действительными коэффициентами: это возможно, если соответствующее ему уравнение имеет действительные корни.

Рассмотрим некоторые частные случаи

Использование формулы квадрата суммы (разности)

Если квадратный трёхчлен имеет вид {displaystyle (ax)^{2}+2abx+b^{2}}ax 2 + 2abx + b 2 , то применив к нему названную формулу, мы сможем разложить его на линейные множители и, значит, найти корни:

(ax) 2 + 2abx + b 2 = (ax + b) 2

Выделение полного квадрата суммы (разности)

Также названную формулу применяют, пользуясь методом, получившим названия «выделение полного квадрата суммы (разности)». Применительно к приведённому квадратному уравнению с введёнными ранее обозначениями, это означает следующее:

Примечание: если вы заметили, данная формула совпадает с предлагаемой в разделе «Корни приведённого квадратного уравнения», которую, в свою очередь, можно получить из общей формулы (1) путём подстановки равенства a=1. Этот факт не просто совпадение: описанным методом, произведя, правда некоторые дополнительные рассуждения, можно вывести и общую формулу, а также доказать свойства дискриминанта.

VI способ. Использование прямой и обратной теоремы Виета

Прямая теорема Виета (см. ниже в одноимённом разделе) и обратная ей теорема позволяют решать приведённые квадратные уравнения устно, не прибегая к достаточно громоздким вычислениям по формуле (1).

Согласно обратной теореме, всякая пара чисел (число) {displaystyle x_{1},x_{2}}х 1 , х 2 будучи решением нижеприведённой системы уравнений, являются корнями уравнения

В общем случае, то есть для не приведённого квадратного уравнения ax 2 + bx + c = 0

х 1 + х 2 = -b/a, х 1 * х 2 = c/а

Подобрать устно числа, удовлетворяющие этим уравнениям, поможет прямая теорема. С её помощью можно определить знаки корней, не зная сами корни. Для этого следует руководствоваться правилом:

1) если свободный член отрицателен, то корни имеют различный знак, и наибольший по модулю из корней — знак, противоположный знаку второго коэффициента уравнения;

2) если свободный член положителен, то оба корня обладают одинаковым знаком, и это — знак, противоположный знаку второго коэффициента.

VII способ. Метод «переброски»

Так называемый метод «переброски» позволяет сводить решение неприведённых и непреобразуемых к виду приведённых с целыми коэффициентами путём их деления на старший коэффициент уравнений к решению приведённых с целыми коэффициентами. Он заключается в следующем:

Далее уравнение решают устно описанным выше способом, затем возвращаются к исходной переменной и находят корни уравнений {displaystyle y_{1}=ax_{1}} y 1 = ax 1 и y 2 = ax 2 .{displaystyle y_{2}=ax_{2}}

Геометрический смысл

Графиком квадратичной функции является парабола. Решениями (корнями) квадратного уравнения называют абсциссы точек пересечения параболы с осью абсцисс. Если парабола, описываемая квадратичной функцией, не пересекается с осью абсцисс, уравнение не имеет вещественных корней. Если парабола пересекается с осью абсцисс в одной точке (в вершине параболы), уравнение имеет один вещественный корень (также говорят, что уравнение имеет два совпадающих корня). Если парабола пересекает ось абсцисс в двух точках, уравнение имеет два вещественных корня (см. изображение справа.)

Если коэффициент {displaystyle a}a положительный, ветви параболы направлены вверх и наоборот. Если коэффициент {displaystyle b} bположительный (при положительном {displaystyle a}a , при отрицательном наоборот), то вершина параболы лежит в левой полуплоскости и наоборот.

Применение квадратных уравнений в жизни

Квадратное уравнение широко распространено. Оно применяется во многих расчетах, сооружениях, спорте, а также и вокруг нас.

Рассмотрим и приведем некоторые примеры применения квадратного уравнения.

Спорт. Прыжки в высоту: при разбеге прыгуна для максимально четкого попадания на планку отталкивания и высокого полета используют расчеты, связанные с параболой.

Также подобные расчеты нужны в метании. Дальность полета объекта зависит от квадратного уравнения.

Астрономия. Траекторию движения планет можно найти с помощью квадратного уравнения.

Полет самолета. Взлет самолета главная составляющая полета. Здесь берется расчет для маленького сопротивления и ускорения взлета.

Также квадратные уравнения применяются в различных экономических дисциплинах, в программах для обработки звука, видео, векторной и растровой графики.

Заключение

В результате проделанной работы выяснилось, что квадратные уравнения привлекали ученых еще в глубокой древности, они уже сталкивались с ними при решении некоторых задач и пробовали их решать. Рассматривая различные способы решения квадратных уравнений, я пришла к выводу, что не все они просты. На мой взгляд самым лучшим способом решения квадратных уравнений является решение по формулам. Формулы легко запоминаются, этот метод универсальный. Гипотеза, что уравнения широко применяются в жизни и математике подтвердилась. Изучив тему, я узнала много интересных фактов о квадратных уравнениях, их использовании, применении, видах, решениях. И я с удовольствием продолжу их изучение. Надеюсь, что это поможет мне хорошо сдать экзамены.

Список использованной литературы

Материалы сайтов:

Википедия

Открытый урок.рф

Справочник по элементарной математике Выгодский М. Я.

Квадратное уравнение – решается просто! *Далее в тексте «КУ». Друзья, казалось бы, что может быть в математике проще, чем решение такого уравнения. Но что-то мне подсказывало, что с ним у многих есть проблемы. Решил посмотреть сколько показов по запросу в месяц выдаёт Яндекс. Вот что получилось, посмотрите:


Что это значит? Это значит то, что около 70000 человек в месяц ищут данную информацию, при чём это лето, а что будет среди учебного года — запросов будет в два раза больше. Это и неудивительно, ведь те ребята и девчата, которые давно окончили школу и готовятся к ЕГЭ, ищут эту информацию, также и школьники стремятся освежить её в памяти.

Несмотря на то, что есть масса сайтов, где рассказывается как решать это уравнение, я решил тоже внести свою лепту и опубликовать материал. Во-первых, хочется чтобы по данному запросу и на мой сайт приходили посетители; во-вторых, в других статьях, когда зайдёт речь «КУ» буду давать ссылку на эту статью; в-третьих, расскажу вам о его решении немного больше, чем обычно излагается на других сайтах. Приступим! Содержание статьи:

Квадратное уравнение – это уравнение вида:

где коэффициенты a, b и с произвольные числа, при чём a≠0.

В школьном курсе материал дают в следующем виде – условно делается разделение уравнений на три класса:

1. Имеют два корня.

2. *Имеют только один корень.

3. Не имеют корней. Здесь стоит особо отметить, что не имеют действительных корней

Как вычисляются корни? Просто!

Вычисляем дискриминант. Под этим «страшным» словом лежит вполне простая формула:

Формулы корней имеют следующий вид:

*Эти формулы нужно знать наизусть.

Можно сразу записывать и решать:

Пример:


1. Если D > 0, то уравнение имеет два корня.

2. Если D = 0, то уравнение имеет один корень.

3. Если D < 0, то уравнение не имеет действительных корней.

Давайте рассмотрим уравнение:


По данному поводу, когда дискриминант равен нулю, в школьном курсе говорится о том, что получается один корень, здесь он равен девяти. Всё правильно, так и есть, но…

Данное представление несколько несколько некорректно. На самом деле получается два корня. Да-да, не удивляйтесь, получается два равных корня, и если быть математически точным, то в ответе следует записывать два корня:

х 1 = 3 х 2 = 3

Но это так – небольшое отступление. В школе можете записывать и говорить, что корень один.

Теперь следующий пример:


Как нам известно – корень из отрицательного числа не извлекается, поэтому решения в данном случае нет.

Вот и весь процесс решения.

Квадратичная функция.

Здесь показано, как решение выглядит геометрически. Это крайне важно понимать (в дальнейшем в одной из статей мы подробно будем разбирать решение квадратного неравенства).

Это функция вида:

где х и у — переменные

a, b, с – заданные числа, при чём a ≠ 0

Графиком является парабола:

То есть, получается, что решая квадратное уравнение при «у» равном нулю мы находим точки пересечения параболы с осью ох. Этих точек может быть две (дискриминант положительный), одна (дискриминант равен нулю) и ни одной (дискриминант отрицательный). Подробно о квадратичной функции можете посмотреть статью у Инны Фельдман.

Рассмотрим примеры:

Пример 1: Решить 2x 2 +8 x –192=0

а=2 b=8 c= –192

D = b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

Ответ: х 1 = 8 х 2 = –12

*Можно было сразу же левую и правую часть уравнения разделить на 2, то есть упростить его. Вычисления будут проще.

Пример 2: Решить x 2 –22 x+121 = 0

а=1 b=–22 c=121

D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

Получили, что х 1 = 11 и х 2 = 11

В ответе допустимо записать х = 11.

Ответ: х = 11

Пример 3: Решить x 2 –8x+72 = 0

а=1 b= –8 c=72

D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

Дискриминант отрицательный, решения в действительных числах нет.

Ответ: решения нет

Дискриминант отрицательный. Решение есть!

Здесь речь пойдёт о решении уравнения в случае когда получается отрицательный дискриминант. Вы что-нибудь знаете о комплексных числах? Не буду здесь подробно рассказывать о том, почему и откуда они возникли и в чём их конкретная роль и необходимость в математике, это тема для большой отдельной статьи.

Понятие комплексного числа.

Немного теории.

Комплексным числом z называется число вида

z = a + bi

где a и b – действительные числа, i – так называемая мнимая единица.

a+bi – это ЕДИНОЕ ЧИСЛО, а не сложение.

Мнимая единица равна корню из минус единицы:

Теперь рассмотрим уравнение:


Получили два сопряжённых корня.

Неполное квадратное уравнение.

Рассмотрим частные случаи, это когда коэффициент «b» или «с» равен нулю (или оба равны нулю). Они решаются легко без всяких дискриминантов.

Случай 1. Коэффициент b = 0.

Уравнение приобретает вид:

Преобразуем:

Пример:

4x 2 –16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = –2

Случай 2. Коэффициент с = 0.

Уравнение приобретает вид:

Преобразуем, раскладываем на множители:

*Произведение равно нулю тогда, когда хотя бы один из множителей равен нулю.

Пример:

9x 2 –45x = 0 => 9x (x–5) =0 => x = 0 или x–5 =0

x 1 = 0 x 2 = 5

Случай 3. Коэффициенты b = 0 и c = 0.

Здесь понятно, что решением уравнения всегда будет х = 0.

Полезные свойства и закономерности коэффициентов.

Есть свойства, которые позволяют решить уравнения с большими коэффициентами.

а x 2 + bx + c =0 выполняется равенство

a + b + с = 0, то

— если для коэффициентов уравнения а x 2 + bx + c =0 выполняется равенство

a + с = b , то

Данные свойства помогают решить определённого вида уравнения.

Пример 1: 5001 x 2 –4995 x – 6=0

Сумма коэффициентов равна 5001+( 4995)+( 6) = 0, значит

Пример 2: 2501 x 2 +2507 x +6=0

Выполняется равенство a + с = b , значит

Закономерности коэффициентов.

1. Если в уравнении ax 2 + bx + c = 0 коэффициент «b» равен (а 2 +1), а коэффициент «с» численно равен коэффициенту «а», то его корни равны

аx 2 + (а 2 +1)∙х+ а= 0 = > х 1 = –а х 2 = –1/a.

Пример. Рассмотрим уравнение 6х 2 +37х+6 = 0.

х 1 = –6 х 2 = –1/6.

2. Если в уравнении ax 2 – bx + c = 0 коэффициент «b» равен (а 2 +1), а коэффициент «с» численно равен коэффициенту «а», то его корни равны

аx 2 – (а 2 +1)∙х+ а= 0 = > х 1 = а х 2 = 1/a.

Пример. Рассмотрим уравнение 15х 2 –226х +15 = 0.

х 1 = 15 х 2 = 1/15.

3. Если в уравнении ax 2 + bx – c = 0 коэффициент «b» равен (a 2 – 1), а коэффициент «c» численно равен коэффициенту «a» , то его корни равны

аx 2 + (а 2 –1)∙х – а= 0 = > х 1 = – а х 2 = 1/a.

Пример. Рассмотрим уравнение 17х 2 +288х – 17 = 0.

х 1 = – 17 х 2 = 1/17.

4. Если в уравнении ax 2 – bx – c = 0 коэффициент «b» равен (а 2 – 1), а коэффициент с численно равен коэффициенту «а», то его корни равны

аx 2 – (а 2 –1)∙х – а= 0 = > х 1 = а х 2 = – 1/a.

Пример. Рассмотрим уравнение 10х 2 – 99х –10 = 0.

х 1 = 10 х 2 = – 1/10

Теорема Виета.

Теорема Виета называется по имени знаменитого французского математика Франсуа Виета. Используя теорему Виета, можно выразить сумму и произведение корней произвольного КУ через его коэффициенты.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

В сумме число 14 дают только 5 и 9. Это корни. При определённом навыке, используя представленную теорему, многие квадратные уравнения вы сможете решать сходу устно.

Теорема Виета, кроме того. удобна тем, что после решения квадратного уравнения обычным способом (через дискриминант) полученные корни можно проверять. Рекомендую это делать всегда.

СПОСОБ ПЕРЕБРОСКИ

При этом способе коэффициент «а» умножается на свободный член, как бы «перебрасывается» к нему, поэтому его и называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Если а ± b+c ≠ 0, то используется прием переброски, например:

2х 2 – 11х+ 5 = 0 (1) => х 2 – 11х+ 10 = 0 (2)

По теореме Виета в уравнении (2) легко определить, что х 1 = 10 х 2 = 1

Полученные корни уравнения необходимо разделить на 2 (так как от х 2 «перебрасывали» двойку), получим

х 1 = 5 х 2 = 0,5.

Каково обоснование? Посмотрите что происходит.

Дискриминанты уравнений (1) и (2) равны:

Если посмотреть на корни уравнений, то получаются только различные знаменатели, и результат зависит именно от коэффициента при х 2:


У второго (изменённого) корни получаются в 2 раза больше.

Потому результат и делим на 2.

*Если будем перебрасывать тройку, то результат разделим на 3 и т.д.

Ответ: х 1 = 5 х 2 = 0,5

Кв. ур-ие и ЕГЭ.

О его важности скажу кратко – ВЫ ДОЛЖНЫ УМЕТЬ РЕШАТЬ быстро и не задумываясь, формулы корней и дискриминанта необходимо знать наизусть. Очень многие задачи, входящие в состав заданий ЕГЭ, сводятся к решению квадратного уравнения (геометрические в том числе).

Что стоит отметить!

1. Форма записи уравнения может быть «неявной». Например, возможна такая запись:

15+ 9x 2 - 45x = 0 или 15х+42+9x 2 - 45x=0 или 15 -5x+10x 2 = 0.

Вам необходимо привести его к стандартному виду (чтобы не запутаться при решении).

2. Помните, что х это неизвестная величина и она может быть обозначена любой другой буквой – t, q, p, h и прочими.

», то есть уравнения первой степени. В этом уроке мы разберем, что называют квадратным уравнением и как его решать.

Что называют квадратным уравнением

Важно!

Степень уравнения определяют по наибольшей степени, в которой стоит неизвестное.

Если максимальная степень, в которой стоит неизвестное — «2 », значит, перед вами квадратное уравнение.

Примеры квадратных уравнений

  • 5x 2 − 14x + 17 = 0
  • −x 2 + x +
    1
    3
    = 0
  • x 2 + 0,25x = 0
  • x 2 − 8 = 0

Важно! Общий вид квадратного уравнения выглядит так:

A x 2 + b x + c = 0

«a », «b » и «c » — заданные числа.
  • «a » — первый или старший коэффициент;
  • «b » — второй коэффициент;
  • «c » — свободный член.

Чтобы найти «a », «b » и «c » нужно сравнить свое уравнение с общим видом квадратного уравнения «ax 2 + bx + c = 0 ».

Давайте потренируемся определять коэффициенты «a », «b » и «c » в квадратных уравнениях.

5x 2 − 14x + 17 = 0 −7x 2 − 13x + 8 = 0 −x 2 + x +
Уравнение Коэффициенты
  • a = 5
  • b = −14
  • с = 17
  • a = −7
  • b = −13
  • с = 8
1
3
= 0
  • a = −1
  • b = 1
  • с =
    1
    3
x 2 + 0,25x = 0
  • a = 1
  • b = 0,25
  • с = 0
x 2 − 8 = 0
  • a = 1
  • b = 0
  • с = −8

Как решать квадратные уравнения

В отличии от линейных уравнений для решения квадратных уравнений используется специальная формула для нахождения корней .

Запомните!

Чтобы решить квадратное уравнение нужно:

  • привести квадратное уравнение к общему виду «ax 2 + bx + c = 0 ». То есть в правой части должен остаться только «0 »;
  • использовать формулу для корней:

Давайте на примере разберем, как применять формулу для нахождения корней квадратного уравнения. Решим квадратное уравнение.

X 2 − 3x − 4 = 0


Уравнение « x 2 − 3x − 4 = 0 » уже приведено к общему виду «ax 2 + bx + c = 0 » и не требует дополнительных упрощений. Для его решения нам достаточно применить формулу нахождения корней квадратного уравнения .

Определим коэффициенты «a », «b » и «c » для этого уравнения.


x 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =

С её помощью решается любое квадратное уравнение.

В формуле «x 1;2 = » часто заменяют подкоренное выражение
«b 2 − 4ac » на букву «D » и называют дискриминантом . Более подробно понятие дискриминанта рассматривается в уроке «Что такое дискриминант ».

Рассмотрим другой пример квадратного уравнения.

x 2 + 9 + x = 7x

В данном виде определить коэффициенты «a », «b » и «c » довольно сложно. Давайте вначале приведем уравнение к общему виду «ax 2 + bx + c = 0 ».

X 2 + 9 + x = 7x
x 2 + 9 + x − 7x = 0
x 2 + 9 − 6x = 0
x 2 − 6x + 9 = 0

Теперь можно использовать формулу для корней.

X 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =
x =

6
2

x = 3
Ответ: x = 3

Бывают случаи, когда в квадратных уравнениях нет корней. Такая ситуация возникает, когда в формуле под корнем оказывается отрицательное число.

Цели:

  • Ввести понятие приведенного квадратного уравнения;
  • “открыть” зависимость между корнями и коэффициентами приведенного квадратного уравнения;
  • развивать интерес к математике, показав на примере жизни Виета, что математика может быть увлечением.

Ход урока

1. Проверка домашнего задания

№ 309(г) х 1 =7, х 2 =

№ 311(г) х 1 =2, х 2 =-1

№ 312 (г) корней нет

2. Повторение изученного материала

У каждого на столенаходится таблица. Найдите соответствие между левым и правым столбиками таблицы.

Словесная формулировка Буквенное выражение
1. Квадратный трехчлен А. ах 2 =0
2. Дискриминант Б. ах 2 +с=0, с< 0
3. Неполное квадратное уравнение, имеющее один корень равный 0. В.
Д > 0
4. Неполное квадратное уравнение, один корень которого 0, а другой не равен 0. Г.
Д < 0
5. Не полное квадратное уравнение, корни которого равны по модулю, но противоположны по знаку. Д.
ах 2 +вх+с=0
6. Не полное квадратное уравнение, не имеющее действительных корней. Е.
Д=в 2 +4ас
7. Общий вид квадратного уравнения. Ж.
х 2 +рх+q=0
8. Условие, при котором квадратное уравнение имеет два корня З.
ах 2 +вх+с
9. Условие, при котором квадратное уравнение не имеет корней И.
ах 2 +с=0, с > 0
10. Условие, при котором квадратное уравнение имеет два равных корня К.
ах 2 +вх=0
11. Приведенное квадратное уравнение. Л.
Д = 0

Правильные ответы занесите в таблицу.

1-З; 2-Е; 3-А; 4-К; 5-Б; 6-И; 7-Д; 8-В; 9-Г; 10-Л; 11-Ж.

3. Закрепление изученного материала

Решите уравнения:

а) -5х 2 + 8х -3=0;

Решение :

Д=64 – 4(-5)(-3) = 4,

х 1 = х 2 = = а + в + с =-5+8-3=0

б) 2 х 2 +6х – 8 = 0;

Решение :

Д=36 – 4 2 (-8)= 100,

х 1 = = х 2 = а + в + с = 2+6-8=0

в) 2009 х 2 +х – 2010 =0

Решение :

а + в + с = 2009+1 + (-2010) =0 , то х 1 =1 х 2 =

4. Расширение школьного курса

ах 2 +вх+с=0, если а+в+с=0, то х 1 =1 х 2 =

Рассмотрим решение уравнений

а) 2х 2 + 5х +3 = 0

Решение :

Д= 25 -24 =1 х 1 = х 2 = а – в + с = 2-5+3=0

б) -4х 2 -5х -1 =0

Решение :

Д =25 – 16 = 9 х 1 = – 1 х 2 = а –в + с = -4-(-5) – 1=0

в)1150х 2 +1135х -15 = 0

Решение :

а – в+с = 1150-1135 +(-15) = 0 х 1 = – 1 х 2 =

ах 2 +вх+с=0, если а-в+с=0, то х 1 = – 1 х 2 =

5. Новая тема

Проверим выполнение вами первого задания. С какими новыми понятиями вывстретились. 11 – ж, т. е.

Приведенное квадратное уравнение – х 2 +рх+q=0.

Тема нашего урока.
Заполним следующую таблицу.
Левый столбик сами в тетрадях и один ученик у доски.
Решение уравнения ах 2 +вх+с=0
Правый столбик, более подготовленный ученик у доски
Решение уравнения х 2 + рх + q = 0, при а = 1, в = р, с = q

Учитель (при необходимости) помогает, остальные в тетрадях.

6. Практическая часть

Х 2 – 6х + 8 = 0,

Д = 9 – 8 = 1,

х 1 = 3 – 1 = 2

х 2 = 3 + 1 = 4

Х 2 + 6х + 8 = 0,

Д = 9 – 8 = 0,

х 1 = -3 – 1 = -4

х 2 = -3 + 1 = -2

Х 2 + 20х + 51 = 0,

Д = 100 – 51 = 49

х 1 = 10 – 7 = 3

х 2 = 10 + 7 = 17

Х 2 – 20х – 69 = 0,

Д = 100 – 69 = 31

По результатам наших вычислений заполним таблицу.

№ уравнения р х 1+ х 2 q х 1 х 2
1 -6 6 8 8

Сравним полученные результаты с коэффициентами квадратных уравнений.
Какой вывод можно сделать?

7. Историческая справка

Впервые зависимость между корнями и коэффициентами квадратного уравнения установил знаменитый французский ученый Франсуа Виет (1540–1603).

Франсуа Виет был по профессии адвокатом и много лет работал советником короля. И хотя математика была его увлечением, или как говорят хобби, благодаря упорному труду он добился в ней больших результатов. Виет в 1591 г. ввел буквенное обозначения для неизвестных и коэффициентов уравнений. Что дало возможность записывать общими формулами корни и другие свойства уравнения.

Недостатком алгебры Виета было то, что он признавал только положительные числа. Чтобы избежать отрицательных решений, он заменял уравнения или искал искусственные приемы решения, что отнимало много времени, усложняло решение и часто приводило к ошибкам.

Много разных открытий сделал Виет, но сам он больше всего дорожил установлением зависимости между корнями и коэффициентами квадратного уравнения, то есть той зависимостью, которая называется “теоремой Виета”.

Эту теорему мы будем рассматривать на следующем уроке.

8. Обобщение знаний

Вопросы :

  1. Какое уравнение называют приведенным квадратным уравнением?
  2. По какой формуле можно найти корни приведенного квадратного уравнения?
  3. От чего зависит число корней приведенного квадратного уравнения?
  4. Что называют дискриминантом приведенного квадратного уравнения?
  5. Как связаны корни приведенного квадратного уравнения и его коэффициенты?
  6. Кто установил эту связь?

9. Домашняя работа

п. 4.5, №321(б,е) №322(а,г,ж,з)

Заполните таблицу.

Уравнение Корни Сумма корней Произведение корней
Х 2 – 8х + 7 = 0 1 и 7 8 7

Литература

С.М. Никольский и др., “Алгебра 8” учебник серии “МГУ-школе” – М.: Просвещение, 2007.

Конспект урока

учителя математики

МБОУ СОШ №2 г. Ворсма

Киселевой Ларисы Алексеевны

Тема: «Приведенное квадратное уравнение. Теорема Виета»

Цель урока: Введение понятия приведенного квадратного уравнения, теоремы Виета и обратной ей теоремы.

Задачи:

Образовательные:

    Ввести понятие приведенного квадратного уравнения,

    Вывести формулу корней приведенного квадратного уравнения,

    Сформулировать и доказать теорему Виета,

    Сформулировать и доказать теорему, обратную теореме Виета,

    Научить учащихся решать приведенные квадратные уравнения, пользуясь теоремой, обратной теореме Виета.

Развивающие:

    развитие логического мышления, памяти, внимания, общеучебных умений, умений сравнивать и обобщать;

Воспитательные:

    воспитание трудолюбия, взаимопомощи, математической культуры.

Тип урока: урок ознакомления с новым материалом.

Оборудование: учебник алгебры под ред. Алимова и др., тетрадь, раздаточный материал, презентация к уроку.

План урока.

Этап урока

Содержание (цель)этапа

Время (мин)

Организационный момент

Проверка домашнего задания

Проверочная работа

Разбор работы, ответы на вопросы.

Изучение нового материала

Формирование опорных знаний, формулировка правил, решение задач, анализ результатов, ответы на вопросы учащихся.

Усвоение изученного материала путем его применения при решении задач по аналогии под контролем учителя.

Подведение итогов урока

Оценка знаний отвечавших учеников. Проверка знаний и понимания формулировок правил методом фронтального опроса.

Домашнее задание

Ознакомление учащихся с содержанием задания и получение необходимых пояснений.

Дополнительные задания

Разноуровневые задания для обеспечения развития учащихся.

Ход урока.

    Организационный момент. Постановка цели урока. Создание благоприятных условий для успешной деятельности. Мотивация учения.

    Проверка домашнего задания. Фронтальная, индивидуальная проверка и коррекция знаний и умений учащихся.

Уравнение

Количество корней

Учитель: Как, не решая квадратного уравнения, определить количество его корней? (ответы учащихся)

    Проверочная работа. Ответы на вопросы.

Текст проверочной работы:

Вариант №1.

    Решите уравнения:

А) ,

Б)

имеет:

    Один корень,

    Два различных корня.

Вариант №2.

    Решите уравнения:

А) ,

Б)

2.Найдите значение параметра а, при которых уравнение имеет:

    Один корень,

    Два различных корня.

Проверочная работа выполняется на отдельных листах, сдается учителю на проверку.

После сдачи работы решение высвечивается на экран.

    Изучение нового материала.

4.1. Франсуа Виет – французский математик 16 века. Он был адвокатом, позднее – советником французских королей Генриха III и Генриха II .

Однажды он сумел расшифровать очень сложное испанское письмо, перехваченное французами. Инквизиция чуть не сожгла его на костре, обвинив в сговоре с дьяволом.

Франсуа Виета называют «отцом буквенной современной алгебры»

Как связаны между собой корни квадратного трёхчлена и его коэффициенты p и q ? Ответ на этот вопрос дает теорема, которая носит имя «отца алгебры», французского математика Ф.Виета, которую мы будем сегодня изучать.

Знаменитая теорема была обнародована в 1591 году.

4.2.Сформулируем определение приведенного квадратного уравнения.

Определение. Квадратное уравнение вида называется приведенным.

Это значит, что старший коэффициент уравнения равен единице.

Пример. .

Всякое квадратное уравнение может быть приведено к виду . Для этого необходимо разделить обе части уравнения на .

Например , уравнение 7Х 2 – 12Х + 14 = 0 делением на 7 приводится к виду

Х 2 – 12/7Х + 2 = 0

4.3. Вывести формулы корней приведенного квадратного уравнения.

a , b , c

a=1 , b=p , c=q

Решите уравнение Х 2 – 14Х – 15 =0 (Ученик решает у доски)

Вопросы:

Назовите коэффициенты p и q (-14, -15);

Запишите формулу корней приведенного квадратного уравнения;

Найдите корни данного уравнения (Х 1 = 15, Х 2 = -1)

4.4. сформулировать и доказать теорему Виета.

Если и - корни уравнения , то справедливы формулы , т.е. сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

После этого учителем проводится доказательство теоремы. Затем совместно с учащимися делает вывод.

Пример. . p =-5,q =6.

Значит числа и - числа

положительные. Необходимо найти два положительных числа, произведение которых

равно 6, а сумма равна 5. =2, =3 – корни уравнения.

4.5. Применение теоремы Виета .

С её помощью можно:

Найти сумму и произведение корней квадратного уравнения, не решая его,

Зная один из корней, найти другой,

Определить знаки корней уравнения,

Подобрать корни уравнения, не решая его.

4.6. Сформулируем теорему обратную теореме Виета.

Если числа p , q , и таковы, что удовлетворяют соотношения , то , - корни квадратного уравнения .

Доказательство теоремы, обратной теореме Виета, выносится на дом для самостоятельно изучения сильным учащимся.

4.7. рассмотреть решение задачи 5 на странице учебника 125.

    Закрепление изученного материала

450 (1)

451 (1, 3, 5) - устно

452 (устно)

455 (1,3)

456 (1, 3)

    Подведение итогов урока.

Ответьте на вопросы:

    Сформулируйте теорему Виета.

Зачем нужна теорема Виета?

Сформулируйте обратную теорему теореме Виета.

    Домашнее задание.

§29 (до задачи 6), № 450(2,4,6); 455(2,4); 456(2,4,6).

    Дополнительные задания.

Уровень А.

    Найдите сумму и произведение корней уравнения:

2. Пользуясь теоремой, обратной теореме Виета, составьте квадратное уравнение, корни которого равны 2 и 5.

Уровень В.

1.Найдите сумму и произведение корней уравнения:

2. Пользуясь теоремой, обратной теореме Виета, составьте квадратное уравнение, корни которого равны и .

Уровень С.

1. Разобрать доказательство теоремы, обратной теореме Виета

2. Решите уравнение и выполните проверку по теореме, обратной теореме Виета:

Схема конспекта урока

Этапы работы

Содержание этапа

Организационный момент , включающий:

    постановку цели, которая должна быть достигнута учащимися на данном этапе урока (что должно быть сделано учащимися, чтобы их дальнейшая работа на уроке была эффективной)

    описание методов организации работы учащихся на начальном этапе урока, настроя учеников на учебную деятельность, предмет и тему урока (с учетом реальных особенностей класса, с которым работает педагог)

Программные требования к математической подготовке учащихся по этой теме заключается в введении понятия приведенного квадратного уравнения, теоремы Виета и обратной ей теоремы (из программы для общеобразовательных учреждений).

Учащиеся 8-го класса – дети подросткового возраста, который характеризуется неустойчивостью внимания. Лучший способ организовать внимание – так организовать учебную деятельность, чтобы у учеников не было ни времени, ни желания, ни возможности отвлекаться на длительное время.

На основании сказанного выше целью урока является решение следующих задач:
а) образовательные: введение понятия приведенного квадратного уравнения, теоремы Виета и обратной ей теоремы.

б) развивающие: развитие логического мышления, памяти, внимания, общеучебных умений, умений сравнивать и обобщать;
в) воспитательные: воспитание трудолюбия, взаимопомощи, математической культуры.

Для того, чтобы учащиеся восприняли урок как логически законченный, целостный, ограниченный во времени отрезок учебно-воспитательного процесса, он начинается с постановки обоснования задач и заканчивается подведением итогов и постановкой задач на следующие уроки.

Опрос учащихся по заданному на дом материалу , включающий:

    определение целей, которые учитель ставит перед учениками на данном этапе урока (какой результат должен быть достигнут учащимися);

    определение целей и задач, которых учитель хочет достичь на данном этапе урока;

    описание методов, способствующих решению поставленных целей и задач;

    описание критериев достижения целей и задач данного этапа урока;

    определение возможных действий педагога в случае, если ему или учащимся не удается достичь поставленных целей;

    описание методов организации совместной деятельности учащихся с учетом особенностей класса, с которым работает педагог;

    описание методов мотивирования (стимулирования) учебной активности учащихся в ходе опроса;

    описание методов и критериев оценивания ответов учащихся в ходе опроса.

На первом этапе происходит фронтальная, индивидуальная проверка и коррекция знаний и умений учащихся. При этом происходит повторение решения квадратных уравнений и закрепление определения количества корней по его дискриминанту. Осуществляется переход к определению приведенного квадратного уравнения.

На втором этапе рассматриваются уравнения двух видов. Чтобы учащиеся не уставали от однообразной работы, применяются различные формы работы и варианты заданий, включены задания более высокого уровня (с параметром).

Устная работа учащихся чередуется с письменной, которая состоит в обосновании выбора способа решения квадратного уравнения, анализе решения уравнения

Одним из приёмов педагогической поддержки, является использование в качестве наглядности информационных технологий, которые помогают учащимся разных уровней подготовленности легко усваивать материал, поэтому отдельные моменты урока проводятся с использованием презентации (показ решения самостоятельной работы, вопросы, домашнее задание)

Изучение нового учебного материала. Данный этап предполагает:

    изложение основных положений нового учебного материала, который должен быть освоен учащимися;

    описание форм и методов изложения (представления) нового учебного материала;

    описание основных форм и методов организации индивидуальной и групповой деятельности учащихся с учетом особенностей класса, в котором работает педагог;

    описание критериев определения уровня внимания и интереса учащихся к излагаемому педагогом учебному материалу;

    описание методов мотивирования (стимулирования) учебной активности учащихся в ходе освоения нового учебного материала

Дается определение приведенного квадратного уравнения. Учитель совместно с учениками проводит вывод формул корней приведенного квадратного уравнения, учащиеся осознают значимость учебного материала урока. Разбор формулировки и доказательства теоремы Виета также происходит совместно с учениками

Такая работа является также закреплением изучения нового материала.

Методы:

    наглядный;

    практический;

    словесный;

    частично-поисковый

Закрепление учебного материала , предполагающее:

    постановку конкретной учебной цели перед учащимися (какой результат должен быть достигнут учащимися на данном этапе урока);

    определение целей и задач, которые ставит перед собой учитель на данном этапе урока;

    описание форм и методов достижения поставленных целей в ходе закрепления нового учебного материала с учетом индивидуальных особенностей учащихся, с которыми работает педагог.

    описание критериев, позволяющих определить степень усвоения учащимися нового учебного материала;

    описание возможных путей и методов реагирования на ситуации, когда учитель определяет, что часть учащихся не освоила новый учебный материал.

Закрепление учебного материала происходит при ответах на вопросы и в работе с учебником:

Разбор задачи №5 на странице 125;

Решение упражнений

450 (1), 451 (1, 3, 5) – устно, 452 (устно);

455 (1,3); 456 (1, 3)

На протяжении всего урока наблюдается высокая активность учащихся, учитель имеет возможность опросить всех учащихся класса, а некоторых даже не один раз.

Подводится итог урока в форме фронтального опроса учащихся по вопросам:

    Какие уравнения называются приведенными?

    Можно ли обычное квадратное уравнение сделать приведенным?

    Запишите формулу корней приведенного квадратного уравнения

    Сформулируйте теорему Виета.

    Чему равна сумма и произведение корней уравнения:

Задание на дом , включающее:

    постановку целей самостоятельной работы для учащихся (что должны сделать учащиеся в ходе выполнения домашнего задания);

    определение целей, которые хочет достичь учитель, задавая задание на дом;

    определение и разъяснение учащимся критериев успешного выполнения домашнего задания.

В домашней работе предполагается, что учащиеся работают в соответствии со своими возможностями. Сильные учащиеся работают самостоятельно и в конце работы имеют возможность проверить правильность своих решений, сверив их с решениями, записанными на доске в начале следующего урока. Другие учащиеся могут получить консультацию своих одноклассников или учителя. Слабые учащиеся работают, опираясь на примеры, используют решения уравнений, разобранных в классе. Таким образом, создаются условия для работы на различных уровнях сложности.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта