Главная » Выращивание » Высотные струйные течения приводят к разрушительным погодным явлениям. Струйное течение

Высотные струйные течения приводят к разрушительным погодным явлениям. Струйное течение

Скорости воздушных течений на высотах зависят главным образом от характера поля температуры ниже лежащих слоев воздуха. Чем больше горизонтальные градиенты температуры в системе высотной фронтальной зоны, тем сильнее струйное течение, указывающее на наличие сильных ветров в этой зоне. Иначе говоря, в формировании и эволюции струйных течений главную роль играет распределение температуры в атмосфере и возникающие горизонтальные градиенты температуры.
Струйные течения, причинно связанные с высотными фрон­тальными зонами, возникают, усиливаются или ослабевают вследствие возникновения и разрушения тропосферных фрон­тов. В первом случае в результате сближения холодных и теп­лых воздушных масс горизонтальные градиенты температуры, давления и скорости ветра возрастают. Во втором случае при удалении друг от друга холодного и теплого воздуха градиенты температуры и давления уменьшаются, ветры ослабевают.
Струйные течения возникают в тропосфере и стратосфере. В тропосфере они почти постоянно наблюдаются в субтропи­ческой зоне северного и южного полушарий: зимой между ши­ротами 25 и 35°, летом между 35 и 45°. Струйные течения в тропосфере очень часто возникают и развиваются и во внетропических широтах, вплоть до Центральной Арктики и Ан­тарктики. В соответствии с районами их возникновения в тро­посфере различают субтропические и внетропические струйные течения.
Наибольшие скорости ветра в тропосфере обычно наблю­даются вблизи тропопаузы. Данные о распределении ветра на высотах показывают, что наибольшие скорости отмечаются чаще всего под тропопаузой и реже над тропопаузой. В страто­сфере они наблюдаются временами при определенных условиях циркуляции зимой на высотах 25-30 км.
Тропосферные струйные течения наблюдаются почти над всеми частями земного шара, но не везде одинаково часто. Есть, например, районы, где на высотах 9-12 км максималь­ные скорости в струе почти всегда превышают 200 км/час. В ча­стности, к таким районам относится Тихоокеанское побережье-Азии на широте 30-40°. Здесь, особенно над юго-восточной частью Китая и Японскими островами, в течение 6-8 месяцев, скорости воздушных потоков (преимущественно западного на­правления), превышающие 200 км/час, на высотах 9-12 км яв­ляются обычными.
Сильные струйные течения непрерывно возникают вблизи восточных берегов США и нередко над Канадой. Над Европой струи наиболее часто образуются в районе Британских остро­вов.
Районы большой повторяемости струйных течений совпа­дают с областями больших горизонтальных градиентов темпе­ратуры. Поэтому районы наибольшей повторяемости струйных течений зимой лежат на стыке холодных материков Азия, Се­верная Америка, а также Гренландии, с одной стороны, и теплых океанов, с другой. Большая повторяемость субтропических струйных течений характерна для севера Африки и для Южной Азии.
Малая повторяемость тропосферных струйных течений при­ходится на районы с более или менее однородной подстилаю­щей поверхностью. Это океаны южнее 30-40° с. ш. и севернее 30-40° ю. ш., северные части материков Азия и Америка с при­легающими районами Арктики, а в южном полярном районе - Центральная Антарктида.
Струйные течения обычно изображаются в горизонтальной и вертикальной плоскостях. При этом скорости ветра представ­ляются изотахами, т. е. линиями одинаковых скоростей ветра.
На рис. 69 и 70 представлены карты абсолютной барической топографии поверхности 200 мб за различные сроки. Первая карта относится к середине зимы, вторая - к середине лета. Карта барической топографии поверхности 200 мб (высота около 12 км) отражает распределение максимальных скоро­стей ветра в верхней тропосфере и нижней стратосфере. Нетрудно видеть, что на фоне редких изогипс ясно вырисовы­вается зона их сгущения, опоясывающая все северное полуша­рие. В этих зонах наблюдаются наибольшие скорости ветра - струйные течения. В местах слияния струй отмечается увели­чение скоростей ветра. Там, где происходит ветвление струй, наблюдается ослабление ветра.

В частности, вечером 5 января 1956 г. (рис. 69) в месте слияния юго-западных и северо-западных воздушных потоков, между Исландией и Скандинавией, возникли сильные струйные течения. Такие же сильные струи легко обнаружить над Юж­ной и Юго-Восточной Азией, Аляской и т. д. Следует обратить внимание на то, что сгущение изолиний, т. е. большие скоро­сти ветра, в зимние месяцы почти постоянно можно обнаружить южнее 40° с. ш. (субтропические струи), в то время как в уме­ренных и высоких широтах, особенно над СССР, струйные те­чения ослабевают, распадаются и снова возникают в связи с возникновением и развитием циклонов и антициклонов.
Летом южнее 40° с. ш. струйные течения встречаются очень редко. Они чаще обнаруживаются в умеренных и высоких ши­ротах. Типичное распределение струй в северном полушарии летом представлено на рис. 70. Как видно, зона сгущения изогипс и сильных ветров на изобарической поверхности 200 мб 31 июля 1956 г. проходила через умеренные широты северного полушария, а над низкими широтами и Арктикой ветры были слабыми. Однако в отдельные дни струйные течения могут быть, интенсивными и в высоких широтах.

Пространственную структуру струйных течений изображают и в вертикальной плоскости, перпендикулярной направлению потока. Это обычные вертикальные разрезы атмосферы с изо­термами и изотахами, разрезами фронтов и тропопаузы. На рис. 71 и 72 приведено два типичных примера вертикаль­ных разрезов струйных течений для зимы и лета. На этих раз­резах представлены субтропическая и внетропическая струи. В центре струйных течений буквами обозначены основные на­правления воздушных течений.
На среднем месячном вертикальном разрезе атмосферы, построенном по данным наблюдений за январи 1957-1959 гг. примерно до высоты 25 км между экватором и Северным полю­сом (рис. 71) изображено два западных струйных течения с осями, расположенными на уровнях 10 и 12 км. Средние мак­симальные скорости ветра на оси субтропической струи (слева), достигавшие 180 км/час, наблюдались над Ираком. Вторая струя (справа) находилась над Москвой на уровне около 9 км. Здесь средние максимальные скорости ветра были равны 100 км/час. Между тем у поверхности земли средние скорости ветра не превышали 10-20 км/час. Летом (29 августа 1957 г.) субтропическая струя находилась над Закавказьем, а внетропическая- над Москвой. В первой струе максимальная ско­рость достигала 140 км/час, во второй - 120 км/час. Несмотря на типичность представленных здесь разрезов, в отдельные периоды расположение струйных течений может быть иным.
Необходимо заметить, что ввиду значительного несоответст­вия между горизонтальным и вертикальным масштабом обыч­ная сплюснутая форма струи на приведенных разрезах не вы­ражена. Однако если учесть, что, например, в системе южной струи на рис. 71 расстояние между низким и высоким положе­нием изотахи 100 км/час, т. е. по вертикали, равно приблизи­тельно 10 км, а по горизонтали - более 2000 км, то станет оче­видным, что струя имеет форму довольно сплюснутого эллипса. Аналогичны соотношения между вертикальной и горизонталь­ной протяженностью и в других струйных течениях.

Характерные структурные особенности высотных фронталь­ных зон и струйных течений не претерпевают заметных сезон­ных изменений. Сезонные различия выражаются главным образом в интенсивности и широтном положении южных (суб­тропических) струй.
В связи с большими контрастами температур между низ­кими и высокими широтами скорости ветра в струе в холодное время года больше, чем летом, причем максимальные скорости отмечаются на более низких уровнях. В теплое время года ско­рости ветра меньше, а максимальные скорости наблюдают­ся на более высоких уровнях, чем зимой. Субтропические струйные течения испытывают междусезонные смещения вдоль меридианов. Это видно и на приведенных разрезах (рис. 71 и 72).

Кроме того, в системе субтропического струйного течения тропопауза всегда разорвана, а ось струи находится между тропической и внетропическои (полярной) тропопаузами. На­оборот, в зоне внетропического струйного течения тропопауза, как правило, наклонена, разрыв ее наблюдается в редких слу­чаях, а ось струи чаще всего располагается под тропопаузой. Поэтому в низких широтах зона максимальных скоростей ветра обычно находится выше, чем в средних и высоких широтах. Разрыв и наклон тропопаузы выражены и на приведенных выше вер­тикальных разрезах атмосферы.
Некоторые данные о вертикальной и горизонтальной протя­женности тропосферных струйных течений, а также о средних максимальных скоростях в их системе можно найти в табл. 27 и 28.


Из табл. 27 следует, что субтропические струйные течения являются сравнительно мощными. Субтропические струи боль­шой вертикальной и горизонтальной протяженности (в преде­лах скоростей ветра более 100 км/час) встречаются чаще, чем такие же внетропические струи.
В частности, субтропические струи шириной более 2000 км и высотой более 12 км встречаются значительно чаще, чем внетропические. Однако в отдельных случаях внетропические струи бывают мощными, скорости ветра в центре струи иногда достигают 400 км/час и более.
Наиболее часто средние максимальные скорости в системе внетропических струйных течений составляют 150-250 км/час, а в субтропических - 200-300 км/час. Иначе говоря, и по мак­симальным скоростям в центре субтропические струи являются в среднем более интенсивными, чем внетропические (табл. 28).

Циркуляция атмосферы - система замкнутых течений воздушных масс, проявляющихся в масштабах полушарий или всего земного шара. Подобные течения приводят к переносу вещества и энергии в атмосферекак в широтном, так и в меридиональном направлениях, из-за чего являются важнейшим климатообразующим процессом, влияя на погоду в любом месте планеты.

Основная причина циркуляции атмосферы - солнечная энергия и неравномерность её распределения на поверхности планеты, в результате чего различные участки почвы, воздуха и воды имеют различную температуру и, соответственно, различное атмосферное давление (барический градиент). Кроме Солнца на движение воздуха влияет вращение Земли вокруг своей оси и неоднородность её поверхности, что вызывает трение воздуха о почву и его увлечение.

Воздушные течения по своим масштабам изменяются от десятков и сотен метров (такие движения создают локальные ветра) до сотен и тысяч километров, приводя к формированию в тропосфере циклонов,антициклонов, муссонов и пассатов. В стратосфере происходят преимущественно зональные переносы (что обуславливает существование широтной зональности). Глобальными элементами атмосферной циркуляции являются так называемые циркуляционные ячейки - ячейка Хадли, ячейка Феррела, полярная ячейка.

струйное течение - сильный ветер в виде узкого воздушного потока в верхнейтропосфере или нижней стратосфере, на тропопаузе, для которого характерны большие скорости (обычно на оси более 30 м/с) и градиенты более 5 м/с на 1 км по высоте и более 10 м/с на 100 км по горизонтали.

Высотное струйное течение связано с высотными фронтальными зонами. Имеет эллиптическое по форме вертикальное поперечное сечение. Размеры ВСТ по горизонтали - сотни километров в ширину и тысячи километров в длину, по вертикали - 2-4 км. Скорости ветра в ВСТ изменяются вдоль струи, причем очаги максимальных скоростей на оси ВСТ перемещаются по ветру. Струи перемещаются в виде извивающихся «воздушных рек» и в основном направлены к востоку, но могут иметь меридиональное и ультраполярное направление.

Высотные струйные течения являются звеньями общей зональной циркуляции атмосферы.

Пасса́т (от исп. viento de pasada - ветер, благоприятствующий переезду, передвижению) -ветер, дующий между тропиками круглый год, в Северном полушарии с северо-восточного, в Южном - с юго-восточного направления, отделяясь друг от друга безветренной полосой. На океанах пассаты дуют с наибольшей правильностью; на материках и на прилегающих к последним морях направление их отчасти видоизменяется под влиянием местных условий. ВИндийском океане, вследствие конфигурации берегового материка, пассаты совершенно меняют свой характер и превращаются в муссоны.


Благодаря своему постоянству и силе в эпоху парусного флота пассаты наряду с западными ветрами были основным фактором для построения маршрутов движения судов в сообщении между Европой и Новым Светом.

Муссо́н (от араб. موسم(«mixon») - время года , посредством фр. mousson ) - устойчивые ветра, периодически меняющие свое направление; летом дуют с океана, зимой - с суши; свойственны тропическим областям и некоторым приморским странам умеренного пояса (Дальний Восток). Муссонный климат характеризуется повышенной влажностью в летний период.

Летом муссоны дуют с океана на материки, зимой - с материков на океаны; свойственны тропическим областям и некоторым приморским странам умеренного пояса (например, Дальний Восток) . Наибольшей устойчивостью и скоростью ветра муссоны обладают в некоторых районах тропиков (особенно в экваториальной Африке, странах Южной и Юго-Восточной Азии и в Южном полушарии вплоть до северных частей Мадагаскара и Австралии). В более слабой форме и на ограниченных территориях муссоны обнаруживаются и в субтропических широтах (в частности, на юге Средиземного моря и в Северной Африке, в области Мексиканского залива, на востоке Азии, в Южной Америке, на юге Африки и Австралии).

Струйное течение в атмосфере

(СТ) - сильный узкий поток с почти горизонтальной осью в верхней тропосфере или в стратосфере, характеризующийся большими вертикальными и горизонтальными сдвигами ветра и одним или более максимумами скорости. Обычно длина СТ составляет тысячи км, ширина - сотни км, толщина - несколько км. Вертикальный около 5-10 м/с на 1 км, а горизонтальный в атмосфере5 м/с на 100 км. Нижний предел скорости в СТ условно считается равным 100 км/ч и выбран с учётом того, что , скорость которого превышает 100 км/ч, оказывает заметное влияние на путевую скорость летательных аппаратов, выполняющих в зоне СТ. Центральная часть СТ, где скорости ветра наибольшие, называют сердцевиной, линия максимального ветра внутри сердцевины - осью СТ. Слева от оси, если смотреть по потоку, расположена циклоническая сторона СТ, справа - антициклоническая. Горизонтальные сдвиги на циклонической стороне СТ гораздо больше, чем на антициклонической, вертикальный сдвиг ветра обычно больше над осью СТ, чем под ней. Чем сильнее СТ, тем больше вертикальный сдвиг ветра в нём. Различают тропосферные и стратосферные СТ.
Тропосферные С. т. формируются в переходной зоне между высокими холодными циклонами и высокими тёплыми антициклонами в верхней тропосфере, образующими высотные фронтальные зоны. Высотные фронтальные зоны (ВФЗ) могут объединяться, образуя планетарную (сравнимую по размерам с размерами Земли) фронтальную зону. Оси тропосферных С. т. располагаются вблизи тропопаузы и в северном полушарии находятся на высоте 6-8 км над Арктикой, 8-12 км - в умеренных широтах, 12-16 км - в субтропиках. С. т. высоких и средних широт связаны с ВФЗ и атмосферными фронтами; они меняют своё положение вместе с ними. Субтропическое западное С. т. сравнительно устойчиво и сильно. Наиболее мощное на Земле субтропическое С. т. наблюдается в зимнее время над западной частью Тихого океана, где создаются большие контрасты температуры в тропосфере между тёплым воздухом над поверхностью океана и холодным воздухом над восточной Азией.
На картах представлены средние скорости ветра на изобарической поверхности 300 гПа (соответствует высоте около 9 км) в северном полушарии зимой и летом. Видно, что зимой во внетропических широтах С. т. образуются над севером Атлантического океана и Европы. Субтропические С. т. почти окаймляют земной шар на широте 25-30(). Они более мощные, чем внетропические С. т. Средние скорости в центре С. т. превышают 150 км/ч, а над Японскими островами - 200 км/ч. Летом в связи с прогревом воздуха во внетропических широтах и уменьшением горизонтального градиента температуры между низкими и высокими широтами С. т. ослабевают. Они чаще образуются над севером Европы. В соответствии с сезонными радиационными условиями субтропические С. т., ослабевая, перемещаются к северу. Над Азией и Северной Америкой они находятся летом на широте 40-45(°). С. т. изображаются и с помощью вертикальных разрезов атмосферы.
Стратосферные С. т. расположены выше тропопаузы. Зимние западные С. т. возникают в зоне больших меридиональных градиентов температуры и давления зимнего стратосферного циклона, расположенных между приполюсной областью и более низкими широтами. Ось этого С. т. находится на высоте 50-60 км на широте около 50(°), скорость ветра меняется от 180 до 360 км/ч. Положение и высота западного стратосферного С. т. может меняться при зимних стратосферных потеплениях, во время которых холодный меняет своё местоположение и интенсивность и замещается теплым антициклоном. В соответствии с радиационными условиями летнее стратосферное С. т. устойчивого восточного направления возникает на обращённой к экватору периферии летнего стратосферного тёплого антициклона. Ось С. т. расположена на высоте 50-60 км, на широте около 45(°); средняя скорость ветра на оси до 180 км/ч. Экваториальное С. т. восточного направления находится летом вблизи экватора (от 0 до 15-20(°) широты) с осью на высоте 20-30 км и максимальными скоростями ветра до 180 км/ч.
При метеорологическом обеспечении полётов летательных аппаратов прогнозируется положение тропосферных С. т., высоты осей С. т. и ветра. Эти данные включаются в авиационные прогностические карты барической топографии, вручаемые экипажам воздушных судов.

Авиация: Энциклопедия. - М.: Большая Российская Энциклопедия . Главный редактор Г.П. Свищев . 1994 .


Смотреть что такое "Струйное течение в атмосфере" в других словарях:

    В атмосфере узкое воздушное течение в верхней тропосфере и нижней стратосфере со скоростями до 50 100 м/с. Длина струйного течения порядка тысячи км, ширина сотни км, толщина несколько км … Большой Энциклопедический словарь

    струйное течение Энциклопедия «Авиация»

    струйное течение - в северном полушарии. Январь. струйное течение (СТ) в атмосфере — сильный узкий поток с почти горизонтальной осью в верхней тропосфере или в стратосфере, характеризующийся большими вертикальными и горизонтальными сдвигами ветра и одним или… … Энциклопедия «Авиация»

    струйное течение - в северном полушарии. Январь. струйное течение (СТ) в атмосфере — сильный узкий поток с почти горизонтальной осью в верхней тропосфере или в стратосфере, характеризующийся большими вертикальными и горизонтальными сдвигами ветра и одним или… … Энциклопедия «Авиация»

    струйное течение - в северном полушарии. Январь. струйное течение (СТ) в атмосфере — сильный узкий поток с почти горизонтальной осью в верхней тропосфере или в стратосфере, характеризующийся большими вертикальными и горизонтальными сдвигами ветра и одним или… … Энциклопедия «Авиация»

    В атмосфере, узкое воздушное течение в верхней тропосфере и нижней стратосфере со скоростями до 50 100 м/с. Длина струйного течения порядка тысяч километров, ширина сотни километров, толщина несколько километров. * * * СТРУЙНОЕ ТЕЧЕНИЕ СТРУЙНОЕ… … Энциклопедический словарь

    Воздушное течение в верхней тропосфере (См. Тропосфера) и в нижней стратосфере (См. Стратосфера) с почти горизонтальной осью, характеризующееся большими скоростями, относительно малыми поперечными размерами и большими вертикальными и… …

    В атмосфере, узкое возд. течение в верх. тропосфере и ниж. стратосфере со скоростями до 50 100 м/с. Длина С. т. порядка тысяч км, ширина сотни км, толщина неск. км … Естествознание. Энциклопедический словарь

    Форма течения жидкости, при к рой жидкость (газ) течёт в среде (газе, жидкости, плазме) с отличающимися от С. параметрами (скоростью, темп рой, плотностью и т. п.). Струйные течения чрезвычайно распространены и разнообразны (от С., вытекающей из… … Физическая энциклопедия

    Летание на аппаратах легче воздуха (в отличие от авиации (См. Авиация)). До начала 20 х гг. 20 в. термин «В.» обозначал передвижение по воздуху вообще. Зарождение научных основ В. и первые попытки подняться в воздух, используя законы… … Большая советская энциклопедия

Воздушные потоки могут спровоцировать разрушительные погодные аномалии

Существуют такие погодные аномалии, которые предсказать заранее невозможно, например, из-за недостатка знаний о некоторых явлениях в атмосфере Земли. Европейская жара в 2003 году, засуха в Калифорнии в 2014-м, суперураган Сэнди в 2012-м – все эти катастрофические события, унёсшие немало человеческих жизней, были спровоцированы феноменом блокировки струйных течений. Но до сих пор учёные не могли найти убедительный способ объяснить происходящее.

Струйные течения впервые были обнаружены метеорологом Чикагского университета Карлом Россби в первой половине двадцатого века. Под этим термином понимаются узкие потоки сильного ветра (в среднем 45-50 метров в секунду) в верхней тропосфере и нижней стратосфере, имеющие довольно сложную структуру в горизонтальном и вертикальном направлениях. Практически одновременно с открытием струйных течений стало известно, что они могут весьма резко "тормозить".

И вот, наконец, геофизик Нобору Накамура (Noboru Nakamura) и его аспирантка Клэр Хуан (Clare Huang) связали события в единое целое. Интересно, что решением задачи стала математическая модель, описывающая своего рода образование автомобильной пробки на высокоскоростном многополосном шоссе.

Одной из проблем в описании процесса "торможения" стал подбор параметров, которые наиболее точно характеризовали бы движение воздушных масс. Авторам новой работы пришлось добавить несколько не использовавшихся ранее параметров, в частности, меандр, то есть степень извилистости струйного течения. (Подобная характеристика обычно используется при описании русла реки.)

Возвращаясь к аналогии с дорожным трафиком, исследователи обнаружили у струйного течения пропускную способность воздушных масс. Очевидно, что, когда пороговое значение этого показателя превышается, скорость потока снижается. Аналогичный эффект возникает при слиянии нескольких воздушных "магистралей".

В пресс-релизе университета учёные отмечают, что их неожиданно простая модель не только объясняет блокировку струйных течений, но и даёт долгожданную возможность её предсказать. Более того, речь идёт как о краткосрочном прогнозировании погоды, так и о моделях долгосрочного поведения воздушных масс в регионах, которые подвержены частым засухам или наводнениям.

"Это один из самых неожиданных моментов просветления в моей карьере учёного – поистине, дар от Бога, – говорит Накамура. – Очень сложно что-то прогнозировать, пока вы не поймёте, почему это происходит. Вот почему наша модель должна быть чрезвычайно полезна".

Немаловажно, что новая модель, в отличие от большинства современных климатических расчётов, оказалась проста с точки зрения вычислений. При этом авторы отмечают, что при её использовании стоит максимально внимательно отнестись к метеорологическим особенностям конкретного региона. В частности, в Тихом океане "воздушные пробки" могут рассасываться десятилетиями.

Более подробно с достижениями чикагских геофизиков можно познакомиться, прочитав их статью, опубликованную в издании Science.

Описание других важных открытий и исследований в области метеорологии и прочих климатических наук можно найти в соответствующем разделе проекта "Вести.Наука" (nauka.vesti.ru).

Интересно, почему отечественные климатологи и метеорологи всячески избегают упоминания волн Россби и Джет Стрима, как одного из определяющих факторов погодной кухни!?

Как видите, весеннее тепло в Центральной России, сопровождалось аномально холодной штормовой погодой в Европе. И объяснение этому, нехарактерное для сезона положение высотных струйных течений. Зато позже атмосферная ситуация изменилась в обратную сторону, в Европу пришло тепло, зато в Центральную Россию пошел заток арктического воздуха, принесший осадки и пониженную температуру. Вот как это выглядело:

Температурная карта конца мая.

Струйное течение в высоких слоях атмосферы. Вы видите, как его волны соответствуют затоку арктических масс.

Струйные течения в средних слоях атмосферы. Хорошо видно зарождение циклонов и антициклонов в изгибах джет стрима - в зависимости от их направления, по часовой или против часовой стрелке.

Будем надеяться, что анонсированная новым главой Минприроды реформа, улучшит качество прогнозов и приведет к более современным методам.

Минприроды предложило ликвидировать Росгидромет

Минприроды выступило с инициативой распустить Федеральную службу по гидрометеорологии и мониторингу окружающей среды (Росгидромет). На ее основе планируется создать отдельную госкомпанию. Об этом сообщил глава ведомства Сергей Донской, передает «Интерфакс».

"В качестве приоритетной мы рассматриваем задачу по реформированию системы Росгидромета и создания на его базе соответствующей государственной компании", - заявил он.

Ранее глава Росгидромета Максим Яковенко сообщил агентству, что служба внесла в правительство РФ предложение о слиянии метеорологических служб России в единую госкорпорацию.

Он напомнил, что Росгидромет управляет разветвленной структурой подведомственных учреждений, которых у ведомства около 50 по всей России, пояснив, что в целом ряде регионов их работа приносит убытки, но в каких-то может приносить прибыль.

Конечно, формально заявленные причины оптимизации имеют место, но мы помним, какой скандал с последующим выходом на пенсию главы Росгидромета последовал за смертельным штормом в Москве, который метеорологи прозевали самым печальным образом.

Климат меняется по всей планете, и служба его мониторинга получает такое же важное значение, как и МЧС, в предупреждении последствий погодных аномалий. Государство не может позволить себе содержать неэффективное ведомство, пользующееся старинными методами предсказания погоды, что негативно сказывается на народном хозяйстве и приводит к серьезным разрушениям и смертям жителей России.

СТРУЙНЫЕ ТЕЧЕНИЯ, ИХ КЛ АССИФИКАЦИЯ, УСЛОВИЯ ОБРАЗОВАНИЯ И ПОЛ ЕТОВ В НИХ

Струйным течением (СТ ) называется узкая зона сильных вет ров со скорост ью

100 км/ч (30 м/с) и более большой горизонт альной протяженности.

Максимальная скорост ь ветра наблюдает ся в цент ральной части СТ, которая называется осью СТ . Вправо и влево от оси скорость ветра уменьшается. При эт ом горизонт альные сдвиги ветра могут достигать 10 м/с и более на 100 км расстояния, а вертикальные – 5…10 м/с и более на 100 м высоты.

СТ могут наблюдаться как в тропосфере (т ропосферные СТ), так и в ст ратосфере

(стратосферные СТ). При этом тропосферные СТ бывают: внет ропические, субтропические и экваториальные.

В Северном полушарии тропосферны е СТ направлены, как правило, с запада на восток,

но иногда они могут от клоняться к югу или к северу.

В поперечном сечении СТ может быть представлено в виде сильно сплющ енной

“т рубы” (рис. 10.2).


Рис. 10.2. Схематическое изображение струйного течения

Тропосферны е СТ наблюдают ся на высотах 7…11 км. Ось СТ обычно располагается на

1,5…2,0 км ниже т ропопаузы.

На террит ории СНГ СТ чаще образуются в холодное время года. Максимальная

скорость ветра (до 300 км/ч и более) наблюдается над Дальним Востоком, над остальной т еррит орией она достигает поряд ка 200 км/ч.

Наиболее интенсивными и устойчивыми являются субт ропические СТ. Максимальные скорости (650…750 км/ч и более) наблюд аются над Японией и Тихим океаном.

Для СТ характерно неодинаковое распределение т емперат уры и давления на правой и

левой сторонах (рис. 10.3).

Рис. 10.3. Распределение температуры и дав ления в струйном течении

На правой стороне от оси находит ся ТВ и наблюдается высокое давление, поэтому э та сторона называется антициклонической или теплой. На левой стороне нах одится ХВ и наблюдается низкое давление, поэтому эта сторона называется циклонической и холодной. Такое распределение температуры и давления в СТ объясняется тем, что в ХВ барическая ступень значительно меньше, чем в ТВ. Поэтому, на высотах низкое давление буд ет наблюдаться в ХВ, а высокое – в ТВ. А так как СТ – эт о ветер, т о в Северном пол уш арии оно направлено таким образом, чтоб ы слева ост авалось низкое давление и, следовательно, ХВ, а справа – высокое давление и ТВ.


Внетропические СТ связаны с главными атмосферными фронтами и высот ными фронт альными зонами (ВФЗ). Процесс образования СТ можно объяснить следующим образом (рис. 10.4). Больш ие контрасты температуры (8°С…10°С и более), наблюдаемые по обе ст ороны фронта, являются причиной возникновения больших горизонтальных градиент ов давления, а значит, и силы горизонтального барического град иента. Под воздействием эт ой силы начинается восходящее движение ТВ по фронтальной поверхности. При эт ом, чем больше конт раст температ уры, тем интенсивнее движение. В верхних слоях тропосферы ТВ встречает мощный задерживающий слой – тропопаузу. Тропопауза сверху, а фронтальная поверхност ь снизу образуют своего рода воздушные барьеры, ограничивающие свободный подъем ТВ. Под напором поднимающихся снизу масс воздуха верхний ТВ, “зажатый” с одной стороны тропопаузой, а с другой – фронтальной поверхностью, приобрет ает большую скорость и проносится вдоль ВФЗ как бы вдоль своеобразной аэ родинамической трубы. Восход ящие д вижения ТВ могут “поднимат ь” тропопаузу над СТ. По этому на левой стороне СТ т ропопауза, как правило, имеет очень крутой наклон.

Ось СТ, в основном, параллельна атмосферным фронтам, с кот орыми оно связано. Если

СТ связано с ТФ, то оно располагает ся в верхней тропосфере вперед и приземной линии теплого фронта на расстоянии 400…500 км. Если же участ ок СТ связан с ХФ, то СТ располагается в верхней тропосфере позади приземной линии ХФ на расстоянии 100…300 км (рис. 10.4).

Рис. 10.4. Синоптические условия образов ания струйного течения

СТ могут наблюдаться при ясном небе, но иногда они сопровождаются облаками верхнего яруса, которые располагаются преимущ ественно на правой стороне СТ. Сильными ветровыми потоками облака расчленяются на отдельные полосы, которые быстро перемещаются и своим движением указывают направление С Т. Облака обы чно располагаются ниже оси СТ на несколько сотен метров. В облаках возможна болтанка ВС, интенсивность которой можно определить по внешнему виду облаков – чем “неспокойнее” их вид, тем сильнее болт анка.


Наиболее опасным явлением в зоне СТ является возникновение на его периферии очагов т урбулентности. Причиной возникновения этих очагов является сильное торможение СТ на его внешних границах окружающим более спокойным возд ухом. В связи с резким т орможением пот ока образуются сд виги ветр а, приводящие к вихреобразованию. При этом очаги турб улентности черед уются со спокойными участками, их интенсивность и местоположение непрерывно изменяются. Наиболее интенсивными и опасными турбулентные очаги бывают на левой, циклонической стороне СТ, где горизонтальные сдвиги ветра в

1,5…2 раза больш е, чем на правой стороне (рисунки 10.5 и 10.6).

Рис. 10.5. Вихреобразование в струйном течении

Р ис. 10.6. Повторяемость болтанки в различных частях струйного течения

При от сут ствии облаков, ТЯН, вызывающая сильную болтанку, может начаться внезапно д ля экипажа и привест и к т яжелым последст виям. Опасная болт анка в зоне СТ наб людает ся в тех районах, гд е горизонт альные сдвиги вет ра более 6 м/с на 100 км расст ояния, и/или верт икальные – более 3 м/с на 100 м высот ы. Толщина слоя сильной б олтанки, как правило,

Самые благоприятные условия для полетов наблюдаются в цент ральной части СТ и на

его правой стороне. Но при этом необходимо учитыват ь, чт о при полет ах в СТ на высотах, б лизких к потолку, от клонение ВС в ст орону повыш ения температуры пред ставляет опасност ь, так как не исключена возможность его выхода в область значительных положительных от клонений температуры от стандартной атмосферы. В эт их сл учаях ВС может оказаться на высот е выше предельно допустимой, его уст ойчивост ь и управляемость б уд ут нарушаться, оно может непроизвольно терять высоту и “проваливаться”. Если при э том в атмосфере происход ят вертикальные пульсации ветра, ВС может попасть на критические углы атаки и срывные режимы.




Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта