Главная » Галлюциногенные » Активные силы в теоретической механике. Потенциал - зависимые ионные каналы

Активные силы в теоретической механике. Потенциал - зависимые ионные каналы

Федеральное агентство по образованию РФ ГОУ СПО

«Воронежский государственный

промышленно - технологический колледж».

Наумов О. Е.

ЭЛЕМЕНТЫ ТЕХНИЧЕСКОЙ МЕХАНИКИ

Учебно-методическое пособие для подготовки

к зачету

ОСНОВЫ ТЕОРЕТИЧЕСКОЙ МЕХАНИКА

Воронеж 2012 г.

ББК 30.12

Данное методическое пособие представляет краткий сборник лекций по предмету «Элементы технической механики » студентов НПО профессии 30.20 «Автомеханик» и является дополнительным пособием для подготовки студентов к зачету и при выполнении расчетно-графических задач. Методическое пособие разработано в соответствии с рабочей программой по дисциплине, составленной на основе требований Государственного стандарта.

Рецензенты: профессор кафедры механизации

и проектирования машин ВГЛТА,

доктор технических наук

П.И. Попиков

доцент кафедры «Транспортных машин» ВГАСУ,

преподаватель спецдисциплин ГОУ СПО «ВГПТК» ,

кандидат технических наук

С.А.Никитин

Печатается по решению методического совета Воронежского государственного промышленно-технологического колледжа

Пояснительная записка.

Методическое пособие предназначено для студентов второго курса НПО специальности 30.20 «Автомеханик». Пособие составлено на основе образовательных стандартов и рабочей программы предмета «Элементы технической механики» при изучении курса объёмом 52 аудиторных часа. Оно является первой частью трех общих разделов курса и рассматривает вопросы

«Теоретической механики ». Пособие состоит из следующих разделов:

1.Статика.

2.Кинематика.

3.Динамика.

В пособии в краткой форме изложены основные теоретические вопросы, определения, формулы, которые рассматриваются на занятиях со студентами.

Материал построен таким образом, что по мере изучения основных формул и понятий каждой темы студенту предлагается ответить на вопросы. Рассматриваемые вопросы относятся к зачетному материалу, на них студент будет отвечать по окончанию изучения всего курса. Полный список вопросов для подготовки к зачету, и дополнительная литература предложена в конце пособия.

В методическом пособии намеренно опущены все поясняющие схемы и графические рисунки, так как они подробно рассматриваются на уроках предмета «Элементы технической механики» и в процессе решения расчетно-графических задач.

Такой нестандартный подход позволяет дифференцированно обучать и оценивать знания студентов. Слабому студенту он дает возможность усвоить минимальный объем знаний для сдачи зачета, сильному - более углубленно и творчески изучить предмет, преподавателю - высвободить время для прямого диалога со студентами при изучении сложных тем и разделов предмета «Элементы технической механики ».

Раздел 1. СТАТИКА

    1. Основные понятия и аксиомы статики

Теоретическая механика - это наука, в которой изучается меха­ническое движение тел, и устанавливаются общие законы этого движения. Теоретическая механика разделяется на статику, кине­матику и динамику.

Статика - это раздел теоретической механики, в котором изу­чаются законы приведения и условия равновесия сил, действующих на материальные точки.

Встречающиеся в природе материальные тела обладают способ­ностью под действием приложенных сил в той или иной мере де­формироваться, т.е. менять форму вследствие изменения взаимного расположения образующих их частиц. Однако у большинства твер­дых тел (металлов, дерева) в нормальных условиях эти деформации пренебрежимо малы. Учет их приобретает практическое значение только при рассмотрении вопроса прочности соответствующих конструкций. Эти вопросы изучаются в разд. «Сопротивление ма­териалов». При рассмотрении же общих условий равновесия де­формациями большинства твердых тел в первом приближении можно пренебречь. В связи с этим в механике вводится понятие абсолютно твердого тела.

Абсолютно твердым телом называется тело, расстояние между любыми двумя точками которого всегда остается неизменным.

В статике мы будем рассматривать все тела как абсолютно твердые, в дальнейшем для краткости называя их твердыми телами или просто телами.

Другим основным понятием в статике являет­ся понятие силы.

Силой называется векторная величина, представляющая собой меру механи­ческого воздействия одних тел на другие.

Механическим воздейст­вием называется такое взаи­модействие материальных тел, в результате которого с течением времени происхо­дит изменение взаимного положения этих тел в про­странстве (механическое дви­жение) или изменение вза­имного положения частиц этих тел (деформация). На­пример, при штамповке деталей верхний штамп, падая, останавливается в результате взаимо­действия с нижним штампом. Если же между ними положить заго­товку, то в результате такого же взаимодействия происходит деформация заготовки.

Итак, сила Р как векторная величина имеет модуль Р, точку приложения А и направление (линию действия силы)

Проекции вектора силы Р на оси координат определяются сле­дующим образом:

Модуль вектора Р, т.е. значение силы, определяется по теоре­ме Пифагора:

Введем следующие определения:

Материальной точкой называется абсолютно твердое тело, размерами которого можно пренебречь, мысленно сосредоточив всю массу этого тела в точке. Например, движение спутника во­круг планеты можно рассматривать как движение материальной точки, так как размеры спутника ничтожно малы по сравнению с размерами планеты.

Системой сил называется совокупность нескольких сил, дейст­вующих на данное тело.

Две системы называются эквивалентными, если, действуя на одно и то же твердое тело, они производят одинаковое механиче­ское воздействие.

Силы, действующие на частицы тела со стороны других мате­риальных тел, называются внешними силами. Силы, действующие на частицы данного тела со стороны других частиц этого же тела, называются внутрен­ними силами.

Если под действием данной системы сил свободное тело может находиться в покое, то такая система сил называется уравновешен­ной или системой, эквивалентной нулю.

Если система сил эквивалентна одной си­ле, то эта сила называется равнодействующей данной системы сил. Сила, приложенная к телу в какой-нибудь одной точке, назы­вается сосредоточенной силой. Силу, действующую на определен­ную часть поверхности тела, называют распределенной.

Какие системы сил называются эквивалентными, и как они связаны с внешними и внутренними силами?

Все теоремы и уравнения статики базируются на нескольких исходных положениях, принимаемых без математических доказа­тельств и называемых аксиомами. Аксиомы статики представля­ют собой результат знаний, накопленных человечеством, и отра­жают объективные процессы. Справедливость этих аксиом под­тверждается многочисленными опытами и наблюдениями.

Аксиома 1. Две силы, действующие на свободное аб­солютно твердое тело, находятся в равновесии тогда и только тогда, когда они равны по модулю и направлены вдоль одной прямой в противоположные стороны.

Аксиома 2 . Действие данной системы сил на абсолютно твер­дое тело не изменится, если к ней прибавить или от нее отнять уравновешенную систему сил.

Следствие из аксиом 1 и 2: точку приложения силы, действую­щей на абсолютно твердое тело, можно переносить вдоль ее линии действия в любую другую точку тела.

Аксиома 3 . Две силы, приложенные к телу в одной точке, имеют равнодействующую, являющуюся диагональю параллелограмма, построенного на этих силах как на сторонах.

Из аксиомы 3 следует, что равнодействующая двух сил, при­ложенных в одной точке, равна их геометрической сумме и при­ложена в той же точке.

Аксиома 4. Два материальных тела действуют друг на друга с силами, равными по величине и противоположно направленны­ми. Такая система сил не является уравновешенной, так как силы приложены к разным телам.

Аксиома 5 . Если деформируемое тело находится в равновесии под действием данной системы сил, то равновесие не нарушится, если тела станут абсолютно твердыми. Эта аксиома называется аксиомой затвердевания.

Из аксиомы 5 следует, что это условие, являясь необходимым и для абсолютно твердого тела и для деформируемого, не явля­ется для последнего достаточным.

Следствие из каких аксиом характеризует перенос сил вдоль линии её действия?

    1. Связи и их реакции

Тело, которое может совершать любые перемещения в про­странстве, называется свободным. Примером свободного тела может служить самолет или снаряд, летящие в воздухе. В различ­ного рода сооружениях и конструкциях мы обычно встречаемся с телами, на перемещения которых наложены ограничения. Такие тела называются несвободными.

Тело, ограничивающее свободу движения твердого тела, является по отношению к нему связью. Если приложенные к телу силы будут стремиться сдвинуть его по тому или иному направлению, а связь препятствует такому пере­мещению, то тело будет воздействовать на связь с силой давления на связь. По аксиоме 4 статики связь будет действовать на тело с такой же силой, но противоположно направленной. Сила, с кото­рой данная связь действует на тело, препятствуя тому или иному перемещению, называется силой реакции связи.

Из изложенного следует принцип освобождаемости твердого тела от связи, или аксиома связи: всякое несвободное тело можно рассматривать как свободное, если мысленно отбро­сить наложенные на тело связи и приложить вместо них силы реакции этих связей.

Силы, действующие на тела, будем разделять на заданные, или активные силы, и реакции связей, или пассивные силы .

Активные силы отличаются тем, что модуль и направление каждой силы наперед известны и не зависят от действия других приложенных к данному телу сил. Примерами активных сил могут служить мускульная сила человека, сила тяжести, сила сжатой пружины.

Реакции связи на покоящееся тело возникают лишь в тех случаях, когда это тело под действием активных сил оказывает давление на связь, поэтому они и называются пассивными си­лами.

По аксиоме связи реакция связи направлена в сторону, про­тивоположную той, куда связь не дает перемещаться телу. Сле­довательно, если известно, в каком направлении связь препятст­вует перемещению твердого тела, то известно и направление реакции связи.

Рассмотрим наиболее часто встречающиеся типы связей.

1. Гладкая поверхность или плоскость . Гладкой бу­дем называть такую поверхность, на которой в первом прибли­жении можно пренебречь трением. Связь в виде гладкой поверх­ности не дает телу перемещаться только в одном направлении - перпендикулярном к этой поверхности. Поэтому реакция глад­кой поверхности направлена по нормали к этой поверхности и приложена к телу в точке касания.

2. Гладкая опора. Связь, осуществленная в виде гладкой опоры, не дает телу перемещаться в направлении, перпендикуляр­ном к поверхности тела в точке опоры. Реак­ция гладкой опоры направлена по нормали к опирающейся по­верхности и приложена к телу в точках касания .

3. Нить . Связь, осуществляемая в виде гибкой нити, не позволяет телу удаляться от точки привеса, поэтому реакция связи всегда направлена вдоль нити к точке ее закрепления.

4. Цилиндрический шарнир . Цилиндрический шарнир допускает вращение вала, но препятствует его перемеще­нию в плоскости хОу. Поэтому реакция цилин­дрического шарнира расположена в плоско­сти, перпендикулярной оси возможного вращения, и ее направление определяют две взаимно перпендикулярные проекции на оси Ох и Оу.

5. Невесомый стержень . Жесткий невесомый (массой его пренебрегают) стержень, шарнирно прикрепленный к телу, испытывает действие только двух сил, приложенных в шар­нирах А и В. Как и вся конструкция, стержень АВ находится в равновесии. Если стержень находится в равновесии под действием двух сил, то в соответствии с аксиомой 1 статики эти силы должны быть равны по модулю, но противоположно направлены по одной линии действия.

6. Жесткая заделка. Заделка исключает возможность лю­бых перемещений вдоль осей Ох и Оу, а также поворот в плоскости хОу. Поэто­му такая связь при освобождении тела от связи будет заменяться реакцией

Какая из связей допускает вращение вала препятствуя его перемещению вдоль оси?

    1. Плоская система сил

Система сил, линии, действия которых лежат в одной плоско­сти, называется плоской.

На плоскости могут быть приложены произвольно располо­женные силы, пары сил и силы, сходящиеся в одной точке. Рас­смотрим равновесие системы сходящихся сил.

Сходящимися называются силы, линии, действия которых пере­секаются в одной точке. Существуют два способа сложения пересекающихся сил: геометрический и аналитический.

Условием равновесия системы сходящихся сил является равен­ство нулю модуля равнодействующей, т.е. силовой многоуголь­ник должен быть замкнутым (при геометрическом способе сложе­ния) или, аналитически, проекции равнодействующей силы на оси координат должны быть равны нулю. Отсюда для плоской системы сходящихся сил получим два уравнения равнове­сия этих сил:

Следовательно, для равновесия системы сходящихся сил необхо­димо и достаточно, чтобы сумма проекций всех сил на каждую из осей координат была равна нулю.

Моментом силы F относительно некоторого центра О называ­ется величина, равная произведению силы на кратчайшее рас­стояние от точки О до линии действия силы и взятая с соответст­вующим знаком. Знак «плюс» соответствует моменту силы, кото­рая стремится повернуть тело вокруг точки О против хода часо­вой стрелки, а знак «минус» - если сила стремится повернуть тело по направлению движения часовой стрелки. Если линия действия силы проходит через точку, то момент силы относительно этой точки равен нулю.

Перпендикуляр, опущенный из точки О на линию действия си­лы F , называется ее плечом относительно центра О.

Пара сил. Система двух равных по модулю, параллельных и противоположно направленных сил, приложенных телу в двух разных точках, называется парой сил.

Плечом пары называется кратчайшее рас­стояние между линиями действия сил, составляющих пару.

Мо­ментом пары сил называется взятое со знаком «плюс» или «минус» произведение модуля одной из сил на плечо пары.

Произвольную плоскую систему сил можно заменить одной си­лой, равной геометрической сумме всех сил, приложенных в произ­вольно выбранном центре, и моментом, равным алгебраической сумме моментов присоединенных пар.

Полученная в результате приведения сила R называется резуль­тирующей силой (она не является равнодействующей для задан­ной системы сил, так как не заменяет их действия), а М 0 - резуль­тирующим моментом.

Приняты следующие определения:

1. Точка О называется центром приведения .

2. Вектор R, равный геометрической сумме всех сил, является главным вектором. Его значение не зависит от выбора центра приведения, т.е. R - инвариантная величина.

3. Момент М 0 , равный алгебраической сумме моментов при­соединенных пар, называется главным моментом; его значение зависит от выбора центра приведения.

1.4. Частные случаи приведения.

1. R=0, М 0 0 - система сил приводится к паре с моментом, равным алгебраической сумме моментов всех сил относительно центра приведения. В этом случае главный момент не зависит от центра приведения.

2. R 0, М о =0 - система приводится к одной равнодействую­щей силе, приложенной в точке О; главный вектор в этом случае является равнодействующей, так как он один заменяет совокуп­ность действующих сил.

3. R 0, М 0 0 - такая система сил может быть заменена од­ной равнодействующей силой, приложенной в новом центре при­ведения, расположенном от прежнего на расстоянии d = М 0 /R.

4. R = 0, М о = 0 - плоская система сил находится в равновесии.

Аналитические условия равновесия плоской системы сил. Необ­ходимыми и достаточными условиями равновесия являются: R = 0 и М 0 = 0. Спроектировав вектор R на оси координат, получим

R х = 0 и R у = 0, так как

(1.1)

Зная, что

(1.2)

получим

аналитические условия равновесия произвольной плоской системы сил:

(1.3)

Часто эти уравнения называют основными уравнениями равновесия. В зависимости от расположения сил иногда целесообразно составлять условия равновесия в виде двух уравнений моментов и одного уравнения проекций:

В этом случае ось Ох не должна быть перпендикулярна АВ.

    1. Пространственная система сил

Пространственной будем называть систему сил, линии, действия которых имеют любые направления в пространстве.

Момент силы относительно точки (центра). Вектор момента силы относительно некоторого центра есть векторное произведе­ние радиуса-вектора точки приложения силы, проведенного из этого центра, на вектор силы

В соответствии с опре­делением

(1.4)

Модуль вектора момента силы относи­тельно центра О будет равен моменту силы относительно точки О, находящейся с этой силой в одной плоскости.

Известно, что всякий вектор можно разложить по осям коор­динат, так же можно разложить по осям координат радиус-вектор r точки приложения силы и силу F.

Проекции вектора момента силы на ось численно равны мо­менту силы относительно оси:

М х = yF z - zF у;

М y = zF х – хF z ; (1.5)

М z = хF у - уF х;

(1.6)

Первые три уравнения являются аналитическим выражением для определения моментов силы относительно осей координат.

Теорема о приведении пространственной системы сил к задан­ному центру. Всякая пространственная система сил, действующих на абсолютно твердое тело, может быть заменена одной силой, геометрически равной сумме всех действующих сил, приложенных в произвольно выбранном цент­ре, и вектором-моментом, равным геометрической сумме моментов всех сил относительно центра при­ведения.

Аналитическое выражение для определения главного вектора и главного момента. Главный вектор R и главный момент М 0 были найдены геометрическим путем (построением векторных много­угольников). Для пространственной системы сил их проще опреде­лять аналитически. Принимаем центр приведения за начало коор­динат. Тогда, проектируя на оси координат векторные равенства, получаем:

(1.7)

Что называется главным вектором системы сил, и зависит ли он от точки приведения?

Частные случаи приведения. Любая произвольная пространст­венная система может быть заменена главным вектором и глав­ным моментом. Рассмотрим возможные частные случаи:

а) случай равновесия:

M 0 = 0 ; R = 0

б) система сил сводится к паре (твердое тело вращается):

R = 0 ; М 0 0 ;

в) система сил сводится к равнодействующей:

1-й случай – R 0, М 0 = 0 - равнодействующая проходит че­рез центр приведения (точку О);

2-й случай – R 0 , М 0 0 - при этом и результирующая сила и результирующая пара лежат в одной плоскости, т.е. R М 0 . Это частный случай плоской системы сил. Ранее было показано, что такой случай может иметь равнодействующую, приложенную не в центре приведения, а в другой точке, отстоящей от него на расстоянии, равном М 0 /R. Таким образом пространственная систе­ма заменена одной равнодействующей, не проходящей через центр приведения;

г) система сводится к динамическому винту:

R 0 ; М 0 0 ,

и они не перпендикулярны.

Аналитические условия равновесия пространственной системы сил. Необходимыми и достаточными условиями равновесия про­извольной пространственной системы сил является равенство нулю главного вектора и главного момента:

R = 0; М 0 = 0.

Поскольку

(1.8)

то R х , R у и R z должны быть

равны нулю. Аналогичное рассуждение справедливо и для векто­ра главного момента. Следовательно, для равновесия произволь­ной пространственной системы сил необходимо и достаточно:

(1.9)

Запишите основные уравнения равновесия произвольной пространственной системы сил.

1.6. Определение центра тяжести

Центр тяжести твердого тела. Силы притяжения отдельных частиц тела направлены приблизительно к центру Земли. Так как размеры рассматриваемых тел малы по сравнению с радиусом Земли, то эти силы можно считать параллельными. Равнодейст­вующая этих параллельных сил, равная их сумме, есть вес тела, а центр этой системы параллельных сил, в котором приложен вес тела, называется центром тяжести тела.

Точка приложения равнодействующей системы параллельных сил действующих на одно твердое тело называется центром параллельных сил. Положение центра параллельных сил относительно начала координат определяется координатами центра параллельных сил x C , y C , z C .

Координаты центра параллельных сил определяются по формулам:

(1.10)

Координаты центра тяжести твердого тела. Если в формулах для определения координат центра параллельных сил вместо F , F iy , F iz , и R подставить т i g х т i g у , т i g z , и тg, то получим зависимо­сти для определения координат центра тяжести тела:

(1.11)

где т i , v i - соответственно масса и объем каждой частицы твер­дого тела, а т и V - вся масса и объем однородного тела.

    1. Способы определения центров тяжести.

Способ разбиения на фигуры, положение центров тяжести кото­рых известно. Применяется в случаях, когда тело можно разбить на конечное число элементов.

Способ дополнения является частным случаем способа разбие­ния на простейшие фигуры. Применяется, когда тело разбивается на простейшие фигуры, положения центров тяжести которых известны, но некоторые из геометрических фигур представляют из себя пустоты.

Способ интегрирования применяется в случаях, когда для опре­деления центра тяжести не могут быть применены первые два способа.

Экспериментальный способ осуществляется двумя методами - подвешивания и взвешивания.

Метод подвешивания заключается в том, что плоское тело, которое нельзя разбить на простейшие фигуры с известным положением центра тяжести, подвешивают на нити. Прочерчи­вают линию вдоль этой нити на плоскости тела. Затем эту пло­скую фигуру открепляют и подвешивают за другую точку, после чего вновь проводят вертикальную линию (вдоль линии подвеса). Пересечение этих двух линий дает точку, в которой находится центр тяжести.

Метод взвешивания. Обычно применяется для крупных изделий: самолетов, вертолетов и других машин. Если известна масса, то ставят на весы задние колеса и по показанию весов определяют реакцию. Затем со­ставляют одно из уравнений равнове­сия , и далее находят искомую величи­ну, т.е. положение центра тяжести.

Перечислите способы определения координат центра тяжести твердого тела. Укажите отличие экспериментального способа от способа дополнения.

Раздел 2. КИНЕМАТИКА.

2.1. Кинематика точки

Основные понятия. Кинематикой называется раздел механики, в котором изучается движение материальных тел в пространстве с геометрической точки зрения, вне связи с силами, вызывающими это движение.

В теоретической механике изучается простейшая форма дви­жения - механическое движение. Механическое движение всегда рассматривается относительно выбранной системы отсчета, кото­рая может быть подвижной или условно неподвижной. Например, при рассмотрении механического движения тел, находящихся на земле, за неподвижную систему осей координат выбираем систему осей, неизменно связанных с Землей.

Что изучает кинематика?

Способы задания движения материальной точки. Движущаяся точка описывает в пространстве некоторую линию, или траекто­рию точки.

Движение точки будет задано естественным способом, если будут известны:

    траектория точки - S ;

    зависимость измене­ния длины участка траектории от времени или уравнение движения материальной точки

- S = f (t ) (2.1.)

    начало дви­жения;

    направление отсчета.

Положение точки в пространстве определяется ра­диусом-вектором r , проведенным из некоторого неподвижного центра в данную точку М. Такой способ задания движения называется векторным.

Положение точки в пространстве в этом случае будет опреде­ляться геометрическим местом концов векторов r .

При координатном способе задания движения долж­ны быть известны зависимости, по которым можно определить, как со временем изменяются коор­динаты точки в пространстве:

x = f 1 (t ) ; y = f 2 (t ) ; z = f 3 (t ) (2.2)

Эти уравнения называются урав­нениями движения точки в декарто­вых координатах, с их помощью для каждого момента времени можно определить положение точки в про­странстве. Если точка движется на плоскости, то ее положение опреде­лится двумя уравнениями

x = f 1 (t ) ; y = f 2 (t ) (2.3)

если точка движется по прямой, то ее движение определится только одним уравнением:

x = f 1 (t ) (2.4)

2.2. Скорость точки.

Скорость точки характеризует быстроту и на­правление движения точки. При векторном способе задания дви­жения положение точки в каждый момент времени определяется радиусом-вектором r 1 = r(t).

Пусть в момент времени t точка занимает положение М, опре­деляемое радиусом-вектором r = r(t) . В момент времени t + t точка займет положение М 1 , определяемое радиусом-вектором r , . Этот радиус-вектор будет равен сумме: r 1 = r + r .

Отношение r / t является вектором средней скорости, а векторная производная от r по времени t и будет вектором скорости в данный момент времени:

(2.5)

Поскольку v есть производная от функции r = r(t) , то вектор скорости всегда направлен по касательной к траектории дви­жения материальной точки.

Если же движение точки задано естественным способом, то из­вестны ее траектория АВ, начало движения, направление и урав­нение движения

S = S (t ) (2.6)

Воспользуемся полученной зависимостью для скорости
и представим величину средней скорости без учета единичного вектора

(2.7)

Поскольку S - величина скалярная, то вектор S / t будет иметь направление касательной к траектории в точке М.

При движении точки по криволинейной траектории оценку скорости целесообразно проводить на предельно малом участке при условии что время стремится к предельно малому значению:

(2.8)

Производная представляет собой алгебраическое значе­ние скорости.

Абсолютная скорость материальной точки есть дифференциал пути по времени или первая производная пути от времени.

Так как скорость является векторной величиной, то для пространственной системы отсчета ее абсолютная величина будет равна диагонали параллелепипеда построенного на проекциях векторов скоростей v х , v у и v z . Тогда модуль вектора скорости можно определить:

(2.9)

2.3. Ускорение точки.

Вектор ускорения точки

(2.10)

Абсолютное ускорение материальной точки есть дифференциал скорости по времени или вторая производная пути от времени. Если известны проекции а х , а у и а z этого вектора на оси коор­динат, то можно определить модуль ускорения:

(2.11)

При естественном способе задания траектории движения мате­риальной точки ее вектор ускорения можно разложить по естест­венным осям координат a и a n :

(2.12)

Проекция ускорения на орт a называется касательным ускоре­нием, которое изменяет модуль скорости:


(2.13)

Касательное ускорение существует только при неравномерном криволинейном движении.

Нормальное ускорение a n изменяет направление векто­ра скорости v , поэтому материальная точка движется по криво­линейной траектории

(ρ - радиус кривизны траектории).

(2.14)

2.4. Частные случаи движения материальной

точки.

1. a n = 0 ; а τ = 0. Следовательно, полное ускорение а = 0. Точка движется равномерно по прямой линии. Закон движения в этом случае

S = S 0 + v 0 t (2.15)

где S 0 - дуговая координата в начальный момент времени; v 0 -скорость движения точки в начальный момент движения (ско­рость не изменится и в любой другой момент времени t , так как движение не ускоренное).

2. а n 0; а τ = 0. - равномерное криволи­нейное движение. Вектор скорости мате­риальной точки изменяется лишь по на­правлению. Закон движения по криволи­нейной траектории запишется аналогично первому случаю:

S = S 0 + v 0 t (2.16)

3. a n = 0 ; а τ 0 - прямолинейное уско­ренное движение по закону

(2.17)

4. a n 0; а τ 0 - криволинейное уско­ренное движение по закону

(2.18)

2.5. Простейшие движения твердого тела

Поступательное движение. Поступательным называется такое движение твердого тела, при котором любая прямая, взятая на теле, во время движения остается параллельной своему начальному положению.

При поступательном движении все точки описывают одинако­вые траектории и в каждый момент времени имеют геометрически равные скорости и ускорения. Это основное свойство поступа­тельного движения дает возможность изучать движение по одной из его точек. Примером поступательного движения является дви­жение поршня паровой машины, ползуна с резцом в поперечно-строгальном станке. В этих случаях траектории точек тела прямо­линейные. В спарнике двух колес (рис. 1.) траектории точек пред­ставляют окружность; сам спарник АА 1 движется поступательно, а колеса вращаются. Существуют еще более сложные траектории движения точек при поступательном движении тела. При выпуске шасси у истребителя МиГ-21 колеса совершают поступательное движение, причем траектории точек колеса имеют пространствен­ную кривую.

Рис.1.

Вращательное движение относительно неподвижной оси. Вра­ щательным называется такое движение твердого тела, при кото­ ром точки тела движутся в плоскостях, перпендикулярных непод­ вижной прямой, называемой осью вращения тела, и описывают окружности, центры которых лежат на этой оси. Для осуществ­ления этого движения следует неподвижно закрепить две точки твердого тела А и В (рис. 2). Тогда прямая, проходящая через эти точки, является осью вращения.

При вращении тела угол поворота тела меняется в зависимости от времени:

φ = f (t) (2.19) Рис. 2

Эта зависимость называется уравнением вращательного движе­ ния тела.

Величина, характеризующая быстроту изменения угла поворо­та φ с течением времени, называется угловой скоростью тела. Ее значение определяется по формуле

(2.20)

Учитывая, что S = r φ и, следовательно,

,

Получим
(2.21)

Отсюда найдем линейную скорость точки вра щающегося тела

v M = ω r . (2.22)

Величина, характеризующая быстроту из­менения угловой скорости с течением време­ни, называется угловым ускорением

(2.23)

Если / dt > 0 и / dt > 0, то движение ускоренное; если / dt < 0, a / dt > 0 , то движение замедленное.

Какое движение называется поступательным,

а какое - вращательным?

2.6. Частные случаи вращательного

движения тела.

1. ω = const - равномерное вращательное движение по

закону

φ = φ 0 + ω t (2.24)

    ε = const - равнопеременное вращательное движение

(равно­ускоренное или равнозамедленное). Его закон движения:

(2.25)

Плоское движение твердого тела. Плоским, или плоско-парал­ лельным, движением твердого тела называется такое движение, при котором каждая точка тела движется в плоскости, парал­ лельной некоторой неподвижной плоскости. Примерами плоского движения являются движение шайбы по льду, колеса поезда по прямолинейному участку пути.

Плоское движение тела можно разложить на поступательное и вращательное относительно выбранного центра. На рис. 3 пока­зано, что тело из положения I можно переместить в положение II , используя два варианта.

    вариант. Перемещаем тело поступательно так, чтобы прямая АВ, перемещаясь параллельно самой себе, заняла в пространстве положение А 2 В 1 . После этого повернем тело вокруг точки В 1 на угол φ 1 .

    вариант. Переместим тело поступательно из положения I так, чтобы прямая А В совместилась с прямой А 1 В 2 , ей параллельной. После этого будем вращать тело вокруг точки A 1 до тех пор, пока точка В 2 не попадет в точку В 1 . Поскольку A 1 B 2 || A 2 B 1 , то углы φ 1 = φ 2 . Следовательно, чтобы занять положение II , тело может

Рис. 3

совершить различные поступательные движе­ния (в зависимости от выбранного полюса), а вращение, как в первом, так и во втором варианте, будет одинаковым.

Следовательно, любое плоское движение можно разложить на

поступательное движе­ние тела вместе с выбранным полюсом и

вра­ щательное относительно полюса. Рис. 4
Чаще всего за такой полюс выбирают центр масс тела.

Мгновенный центр скоростей. Неизменно связанная с телом точка, скорость которой равна нулю, называет­ся мгновенным центром скоростей. Мгновенный центр скоростей (МЦС) лежит на перпендикулярах к скоростям точек тела, опу­щенных из этих точек (рис. 4). Различные случаи определения мгновенного центра скоростей показаны на рис. 5, а-в.

Рис. 5

Преобразование движений. В машинах очень часто происходит преобразование одного движения в другое. Например, в кривошипно-шатунном механизме (рис.6) кривошип ОА совершает вращательное движение, которое преобразуется в поступательное перемещение ползуна В. При решении практических задач бывает необходимо найти законы этого движения или скорости. Рассмот­рим пример.

Рис. 6.

Раздел 3. ДИНАМИКА.

    1. Законы динамики и уравнения

движения точки

Динамикой называется раздел механики, в котором изучается движение материальных тел под действием приложенных к ним сил.

В основе динамики лежат законы, сформулированные Ньютоном.

Первый закон - закон инерции, установленный Галилеем, гласит: материальная точка сохраняет состояние покоя или равномерного прямолинейного движения, пока воздействие других тел не изменит это состояние.

Второй закон - основной закон динамики - устанавливает связь между ускорением, массой и силой: ускорение материальной точки пропорционально приложенной к ней силе и имеет одинаковое с ней направление. Запишем этот закон в форме, которую придал этому закону Эйлер (рис. 7):

та = F . (3.1)

В классической механике мас­са т принята за постоянную ве­личину. Масса является мерой инертности материальных тел в их поступательном движении. Запишем основной закон дина­мики в виде скалярных равенств, проектируя векторное равенство на оси координат: Рис.7

ma x = F x

та у = F y (3.2)

ma z = F z .

Третий закон формулируется следующим образом: всякому дей­ ствию соответствует равное и противоположно направленное про­ тиводействие. Этот закон устанавливает, что при взаимодействии двух тел, в каком бы кинематическом состоянии они не находились, силы, приложенные к каждому из них,

равны по модулю и направ­лены по одной прямой впротивоположные стороны.

Что называется динамикой?

Четвертый закон не был сформулирован Ньютоном как отдель­ный закон механики, но таковым можно считать сделанное им обобщение правила параллелограмма сил: несколько одновременно действующих сил сообщают точке такое ускорение, какое сообщала бы одна сила, равная их геометрической сумме.

Векторное выражение основного закона динамики можно спро­ектировать либо на декартовы, либо на естественные оси коорди­нат. В первом случае получим уравнения движения материальной точки в прямоугольной декартовой системе координат:

(3.3)

где

Во втором случае получим естественные уравнения движения:

m a n = F n ; т а τ = F τ ; m a n = F n (3.4)

где а п = v 2 / ρ ; a τ = d 2 S / dt 2 .

Назовите отдельный закон механики обобщающий векторное действие сил в пространстве.

3.2. Силы, действующие на точки

механической системы.

Механической системой называют мысленно выделенную сово­купность материальных точек, взаимодействующих между собой. Механическую систему иногда называют материальной системой или системой материальных точек. Существуют системы свободных точек (например, Солнечная система) и несвободных матери­альных точек (их движения ограничены связями). Примером сис­темы несвободных точек может служить любой механизм или машина.

Все силы, действующие на систему несвободных точек, можно разделить на задаваемые силы и реакции связей.

По другому признаку силы, действующие на точки любой ме­ханической системы, можно разделить на внешние и внутренние. Условимся обозначать внешние силы F E , а внутренние силы F J .

Внешними называют силы, действующие на точки системы со стороны материальных точек, не входящих в состав данной системы.

Внутренними силами называются силы взаимодействия между материальными точками данной механической системы. Примером внутренних сил могут служить силы упругости, действующие между частицами упругого тела, принятого за механическую систему.

Одна и та же сила может быть как внешней, так и внутренней в зависимости от того, какая механическая система рассматривается. Например, реакции подшипников вала являются внешними силами по отношению к валу. Эти же реакции можно отнести к внутренним силам, если рассматривать всю установку вместе со станиной.

Таким образом, в зависимости от типа классификации сил лю­бая сила может быть внешней или внутренней, в то же время она может быть задаваемой или реакцией связи. Движение точек системы зависит как от внешних, так и от внутренних сил.

По закону равенства действия и противодействия каждой внут­ренней силе соответствует другая внутренняя сила, равная ей по модулю и противоположная по направлению.

На основании этого можно сделать следующие выводы:

    Главный вектор всех внутренних сил системы равен нулю:

(3.5)

Следовательно, и суммы их проекций на координатные оси также равны нулю:

(3.6)

    Главный момент всех внутренних сил системы относительно любого центра и координатных осей равен нулю:

(3.7)

Или

(3.8)

Хотя эти уравнения имеют вид уравнений равновесия сил, про­извольно приложенных в пространстве, но внутренние силы не уравновешиваются, так как они приложены к разным точкам системы и могут вызвать перемещение этих точек относительно друг друга.

Если механическая система состоит из некоторого количества материальных точек k , то определив центр масс такой системы и используя основной закон динамики учитывая что главный вектор равен нулю можно получить уравнения:

Вычислим работу силы, постоянной по модулю и направлению (рис.8). Предположим, что точка М перемещается в точку М х . Вектор силы F с вектором перемещения составляет угол а. В этом случае работу выполняет только та составляющая силы, которая совпадает с направлением вектора перемещения U :

(3.10)

Из векторной алгебры известно, что скалярное произведение двух векторов
Следовательно, работа постоян ной по модулю и направлению силы на прямо­ линейном перемещении опреде-ляется скаляр­ ным произведением Рис. 8.

вектора силы на вектор перемещения ее точки приложения:

(3.11)

Рассмотрим частные случаи определения работы постоянной силы.

1. Сила F действует на тело в направлении вектора перемеще­ния U : A = FU .

2. Сила F направлена перпендикулярно вектору перемещения U : А = 0.

3. Сила F направлена в сторону, противоположную вектору перемещения U : А = - F U .

4. Работа силы тяжести не зависит от вида траектории, а опре­деляется только расстоянием по вертикали между начальной и конечной точками перемещения: если точка перемещается сверху вниз, то работа силы тяжести положительная:

А = mgH , (3.12)

где H - перепад высот;

если точка перемещается снизу вверх, то работа силы тяжести отрицательная:

А = - m g H . (3.13)

Из этого следует важный вывод: работа силы тяжести на замк­ нутом пути равна нулю.

3.4. Мощность

Одна и та же работа может быть выполнена за различные про­межутки времени. Поэтому вводят понятие мощности N , которая определяется отношением работы ко времени.

Если в выражение мощности подставить вместо перемещения U =vt , то при равномерном прямолинейном движении мощность можно определять через силу и скорость движения:

N = F v cosα (3.14)

При работе машин часто бывает необходимо выразить мощ­ность через угловую скорость вращения ω . Для равномерного вра­щательного движения справедлива следующая формула:

(3.15)

где M кр - крутящий момент относительно оси вращения; п - частота вращения, об/мин.

Что называется мощностью?

3.5. Коэффициент полезного действия

Чтобы произвести полезную работу, необходимо затратить не­сколько большую работу, так как часть ее расходуется на преодо­ление сил сопротивления (сил трения в зубчатых передачах и опо­рах, сопротивления воздуха и другой среды, в которой перемеща­ется материальная точка). Эффективность работы какой-либо установки или машины оценивается коэффициентом полезного действия η .

Коэффициентом полезного действия (КПД) машины называют отношение полезной работы к полной затраченной работе:

(3.16)

Вопросы и задания к зачету по разделу

«Теоретическая механика»

    Что изучает теоретическая механика?

    Что называется абсолютно твердым телом?

    Какие системы сил называются эквивалентными, как они связаны с внешними и внутренними силами?

    Следствие из каких аксиом характеризует перенос сил вдоль линии её действия?

    В чем состоит принцип освобождаемости твердого тела от связи?

    Чем отличаются активные силы от пассивных?

    Какая из связей допускает вращение вала, препятствуя его перемещению вдоль оси?

    Что называется плоской системой сил?

    Что называется моментом силы относительно точки?

    Чем отличается сходящиеся силы от произвольно расположенных?

    Что называется главным вектором системы сил, зависит ли он от точки приведения?

    Запишите основные уравнения равновесия произвольной плоской системы сил.

    Запишите основные уравнения равновесия произвольной пространственной системы сил.

    Запишите формулы координат центра тяжести объемного твердого тела.

    Перечислите способы определения координат центра тяжести твердого тела.

    Укажите отличие экспериментального способа от способа дополнения.

    Что изучает кинематика?

    Какие два способа задания движения материальной точки вы знаете? Запишите формулу естественного способа.

    Укажите основные отличия определения средней и абсолютной скорости.

    Как между собой связаны касательное и нормальное ускорение?

    Что называется абсолютной скоростью и абсолютным ускорением?

    Как от касательного и нормального ускорения зависит характер движения материальной точки?

    Какое движение называется поступательным, а какое - вращательным?

    Что такое плоское движение твердого тела?

    Что называется мгновенным центром скоростей?

    Что называется динамикой?

    Назовите отдельный закон механики, обобщающий векторное действие сил в пространстве.

    Что называется механической системой?

    Запишите теорему о движении центра масс механической системы.

    Что такое работа постоянной силы на прямолинейном пути?

    От каких факторов зависит работа силы действующей силы?

    Что называется мощностью?

    Что называется коэффициентом полезного действия?

Литература.

Вереина Л.И. Техническая механика: учебник для среднего проф. образов. – М.: Издательский центр «Академия»,2004. – 288с.

Аркуша А.И. Техническая механика: учеб. для средних спец. учеб. Заведений – М.:Высш.шк.,2003. – 352с.: ил;

Олофинская В.П. Техническая механика: Курс лекций с вариантами практических заданий: учебное пособие. – М.: ФОРУМ: ИНФРА-М, 2005. – 349с., ил. – (Профессиональное образование)

Для заметок

Для заметок

Учебно-методическое пособие

для подготовки к зачету студентов НПО

профессии 30.20 «Автомеханик»

Составил: преподаватель технических дисциплин

К.п.н. Наумов О. Е.

Редактор: к.т.н. Старчакова О.К.

ГОУ СПО

« Воронежский государственный промышленно - технологический колледж »

г. Воронеж, ул. 9 – го Января, д. 270

Условимся называть тело свободным, если его перемещения ничем не ограничены. Тело, перемещения которого ограничены другими телами, называется несвободным, а тела, ограничивающие перемещения данного тела, связями. Как уже упоминалось, в точках контакта возникают силы взаимодействия между данным телом и связями. Силы, с которыми связи действуют на данное тело, называются реакциями связей.

Силы, не зависящие от связей, называются активными силами (заданными), а реакции связей - пассивными силами.

В механике принимают следующее положение, называемое иногда принципом освобождаемости: всякое несвободное тело можно рассматривать как свободное, если действия связей заменить их реакциями, приложенными к данному телу.

В статике полностью определить реакции связей можно с помощью условий или уравнений равновесия тела, которые будут установлены в дальнейшем, но направления их во многих случаях можно определить из рассмотрения свойств связей:

Основные типы связей:

1. Если твердое тело опирается на идеально гладкую (без терния) поверхность, то точка контакта тела с поверхностью может свободно скользить вдоль поверхности, но не может перемещаться в направлении вдоль нормали к поверхности. Реакция идеально гладкой поверхности направлена по общей нормали к соприкасающимся поверхностям.

Если тело имеет гладкую поверхность и опирается на острие, то реакция направлена по нормали к поверхности самого тела.

2. Сферический шарнир.

3. Цилиндрическим шарниром называется неподвижная опора. Реакция такой опоры проходит через ее ось, причем направление реакции может быть любым (в плоскости параллельно оси опоры).

4. Цилиндрическая шарнирно – подвижная опора.

ОСНОВНЫЕ ЗАДАЧИ СТАТИКИ.

1.Задача о приведении системы сил: как данную систему заменить другой, в частности наиболее простой, ей эквивалентной?

2.Задача о равновесии: каким условиям должна удовлетворять система сил, приложенная к данному телу, чтобы она была уравновешенной системой?

Первая основная задача имеет важное значение не только в статике, но и в динамике. Вторая задача часто ставится в тех случаях, когда равновесие заведомо имеет место. При этом условия равновесия устанавливают зависимость между всеми силами, приложенными к телу. Во многих случаях с помощью этих условий удается определить опорные реакции. Хотя этим не ограничивается сфера интересов статики твердого тела, но нужно иметь в виду, что определение реакций связей (внешних и внутренних) необходимо для последующего расчета прочности конструкций.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

1. Клеточная мембрана: определение, функции мембран, физические свойства

Клеточная мембрана - это ультратонкая пленка на поверхности клетки или клеточной органеллы, состоящая из бимолекулярного слоя липидов с встроенными белками и полисахаридами.

Функции мембран:

· Барьерная -- обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.

· Транспортная -- через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов. Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза. При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа. Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K +) и выкачивают из неё ионы натрия (Na +).

· матричная-- обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.

· механическая-- обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных-- межклеточное вещество.

· энергетическая-- при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;

· рецепторная-- некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы). Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

· ферментативная-- мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.

· осуществление генерации и проведения биопотенциалов. С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К + внутри клетки значительно выше, чем снаружи, а концентрация Na + значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

· маркировка клетки-- на мембране есть антигены, действующие как маркеры-- «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Некоторые белковые молекулы свободно диффундируют в плоскости липидного слоя; в обычном состоянии части белковых молекул, выходящие по разные стороны клеточной мембраны, не изменяют своего положения.

Особая морфология клеточных мембран определяет их электрические характеристики, среди которых наиболее важными являются емкость и проводимость.

Емкостные свойства в основном определяются фосфолипидным бислоем, который непроницаем для гидратированных ионов и в то же время достаточно тонок (около 5 нм), чтобы обеспечивать эффективное разделение и накопление зарядов, и электростатическое взаимодействие катионов и анионов. Кроме того, емкостные свойства клеточных мембран являются одной из причин, определяющих временные характеристики электрических процессов, протекающих на клеточных мембранах.

Проводимость (g) -- величина, обратная электрическому сопротивлению и равная отношению величины общего трансмембранного тока для данного иона к величине, обусловившей его трансмембранной разности потенциалов.

Через фосфолипидный бислой могут диффундировать различные вещества, причем степень проницаемости (Р), т. е. способность клеточной мембраны пропускать эти вещества, зависит от разности концентраций диффундирующего вещества по обе стороны мембраны, его растворимости в липидах и свойств клеточной мембраны. Скорость диффузии для заряженных ионов в условиях постоянного поля в мембране определяется подвижностью ионов, толщиной мембраны, распределением ионов в мембране. Для неэлектролитов проницаемость мембраны не влияет на ее проводимость, поскольку неэлектролиты не несут зарядов, т. е. не могут переносить электрический ток.

Проводимость мембраны является мерой ее ионной проницаемости. Увеличение проводимости свидетельствует об увеличении количества ионов, проходящих через мембрану.

Важное свойство биологических мембран - текучесть. Все клеточные мембраны представляют собой подвижные текучие структуры: большая часть составляющих их молекул липидов и белков способна достаточно быстро перемещаться в плоскости мембраны

2. Жидко-кристаллическая модель мембраны. Функции мембранных белков, липидов, углеводов. Латеральная диффузия и флип-флоп переход липидов. Искусственные мембраны. Липосомы

Моделью организации на сегодняшний день признана жидкостно-кристаллическая модель. Впервые ее предложили Сингер и Николсон в 1972 г. Согласно этой модели основу любой мембраны составляет двойной фосфолипидный слой. Молекулы фосфолипидов ориентированы так, что их гидрофильные головки выходят наружу и образуют внешнюю и внутреннюю поверхности мембраны, а их гидрофобные хвосты направлены к середине бимолекулярного слоя. Белки как бы плавают в липидном слое. Поверхностные белки располагаются на внешней и внутренней поверхностях мембраны, удерживаясь преимущественно за счет электростатическими силами. Интегральные белки могут пронизывать двойной слой насквозь. Такие белки являются главным компонентом, ответственным за избирательную проницаемость кл. мембраны.

Кроме фосфолипидов и белков в биологических мембранах содержатся и другие хим. соединения (холестерин, гликолипиды, гликопротеиды).

Функции мембранных белков. Некоторые мембранные белки участвуют в транспорте малых молекул через мембрану клетки, изменяя ее проницаемость. Мембранные транспортные белки можно подразделить на белки-каналы и белки-переносчики. Белки-каналы содержат внутренние заполненные водой поры, которые позволяют ионам (через ионные каналы) или молекулы воды перемещаться через мембрану. Многие ионные каналы специализируются на транспорте только одного иона; так калиевые и натриевые каналы часто различают эти сходные ионы и пропускают только один из них. Белки-переносчики связывают каждую переносимую молекулу или ион и могут осуществлять активный транспорт с использованием энергии АТФ. Также белки играют важную роль в сигнальных системах клеток, при иммунном ответе и в кл. цикле.

Функции мембранных углеводов. Углеводная часть гликолипидов и гликопротеинов плазматической мембраны всегда находится на наружной поверхности мембраны, контактируя с межклеточным веществом. Полисахариды наряду с белками выполняют роль антигенов при развитии кл. иммунитета. Участвуют в транспорте гликопротеинов, направляя их к месту назначения в клетке или на ее поверхности.

Главная функция мембранных липидов состоит в том, что они формируют бислойный матрикс, с которым взаимодействуют белки.

Латеральная диффузия - это хаотическое тепловое перемещение молекул липидов и белков в плоскости мембраны. При латеральной диффузии рядом расположенные молекулы липидов скачком меняются местами и вследствие таких последовательных перескоков из одного места в другое молекула перемещается вдоль поверхности мембраны. Среднее квадратичное перемещение молекул при диффузии за время t можно оценивать по формуле Эйнштейна: Sкв = 2кор(Dt), где D - коэф. лат. диффузии молекулы.

Латеральная диффузия интегральных белков в мембране ограничена, это связано с их большими размерами, взаимодействием с др. мембр. белками. Белки мембран не совершают перемещений с одной стороны мембраны на другую ("флип-флоп" перескоки), подобно фосфолипидам.

Перемещение молекул по поверхности мембраны клетки за время t определено экспериментально методом флуоресцентных меток - флуоресцирующих молекулярных групп. Оказалось что среднее квадратичное перемещение фосфолипидной молекулы за секунду по поверхности мембраны эритроцита соответствует расстоянию 5 мкм, что сравнимо с размерами клеток. Аналогичная величина для белковых молекул составила 0,2 мкм за сек.

Рассчитанные по формуле Эйнштейна коэффициенты лат. диффузии для липидов 6*10 (в -12 ст) кВ.м/с, для белков - порядка 10 (в - 14 ст) кВ.м/с.

Частота перескоков молекулы с одного места на другое вследствие лат. диффузии может быть найдена по формуле: v = 2кор(3D/f), где f - площадь, занимаемая одной молекулой на мембране.

Искусственная мембрана обычно представляет собой жесткую селективно-проницаемую перегородку, разделяющую массообменный аппарат на две рабочие зоны, в которых поддерживаются различные давления и составы разделяемой смеси. Мембраны могут быть выполнены в виде плоских листов, труб, капилляров и полых волокон. Мембраны выстраиваются в мембранные системы. Наиболее распространенные искусственные мембраны -- полимерные мембраны. При определённых условиях, преимущественно могут быть использованы керамические мембраны. Некоторые мембраны работают в широком диапазоне мембранных операций, таких, как микрофильтрация, ультрафильтрация, обратный осмос, первапорация, сепарация газа, диализ или хроматография. Способ применения зависит от типа функциональности включеной в мембрану, которые могут быть основаны на изоляции по размеру, химическом родстве или электростатике.

Липосомы. или фосфолипидные везикулы (пузырьки), получают обычно при набухании сухих фосфолипидов в воде или при впрыскивании раствора липидов в воду. При этом происходит самосборка бимолекулярной липидной мембраны. При этом все неполярные гидрофобные хвосты находятся внутри мембраны и ни один из них не соприкасается с полярными молекулами воды, однако чаще получаются сферические многоламеллярные липосомы, состоящие из нескольких бимолекулярных слоев - многослойные липосомы.

Отдельные бимолекулярные слои многослойной липосомы отделены водной средой. Толщина липидных слоев составляет, в зависимости от природы липидов 6,5 - 7,5 нм, а расстояние между ними - 1,5 - 2 нм. Диаметр многослойных липосом колеблется от 60 нм до 400 нм и более. Однослойные липосомы можно получить различными методами, например из суспензии многослойных липосом, если обрапотать их ультразвуком. Диаметр однослойных липосом составляет 25 - 30 нм. Липосомы представляют собой в некотором роде прообраз клетки. Они служат моделью для исследований различных свойств кл. мембран. Липосомы нашли непосредственное применение и в медицине (фоффолипидная микрокапсула для доставки лекарства в определенные органы и ткани). Липосомы не токсичны, полностью усваиваются организмом.

3. Транспорт неэлектролитов через клеточные мембраны. Простая диффузия. Уравнение Фика. Облегченная диффузия: механизмы транспорта (подвижные, фиксированные переносчики), отличие от простой диффузии

Транспорт неэлектролитов (сахаров, аминокислот и нуклеотиды, вода) через клеточные мембраны осуществляется с помощью поры, образованные транспортным белками или липидами погруженными в мембрану.

Простая диффузия - самопроизвольное перемещение вещества из мест с большей концентрацией в места с меньшей концентрацией вещества вследствие хаотического теплового движения молекул. Диффузия вещества через липидный бислой вызывается градиентом концентрации в мембране

Уравнение Фика:

J m = - D dC/ dx

J m - плотность потока вещества.

dC/dx- градиент концентрации

D- коэффицент диффузии

«-»- диффузия направлена из места с большей концентрации к месту с меньшей концентрации

Стр 214- Антонов.

Плотность потока по Фику

J m = -DdC/dx = -D(C m 2 - C m 1)/1 = D(C m 1 - C m 2)/L

C m - концентрация вещ-ва около каждой поверхности

L- толщина мембраны.

В биологических мембранах был обнаружен еще один вид диффузии - облегченная диффузия. Облегченная диффузия происходит при участии молекул-переносчиков. Облегченная диффузия происходит от мест с большей концентрацией переносимого вещества к местам меньшей концентрацией. По-видимому, облегченной диффузией объясняется также перенос через биологические мембраны аминокислот, сахаров и других биологически важных веществ.

Отличия облегченной диффузии от простой:

1) перенос вещества с участием переносчика происходит значительно быстрее;

2) облегченная диффузия обладает свойством насыщения: при увеличении концентрации с одной стороны мембраны плотность потока вещества возрастает лишь до некоторого предела, когда все молекулы переносчика уже заняты;

3) при облегченной диффузии наблюдается конкуренция переносимых веществ в тех случаях, когда переносчиком переносятся разные вещества; при этом одни вещества переносятся лучше, чем другие, и добавление одних веществ затрудняет транспорт других;

4) есть вещества, блокирующие облегченную диффузию - они образуют прочный комплекс с молекулами переносчика.

Разновидностью облегченной диффузии является транспорт с помощью неподвижных молекул-переносчиков, фиксированных определенным образом поперек мембраны. При этом молекула переносимого вещества передается от одной молекулы переносчика к другой, как по эстафете.

4. Транспорт ионов через клеточные мембраны. Электрохимический потенциал. Уравнение Тиорелла. Уравнение Нерста-Планка. Смысл уравнения

Живые системы на всех уровнях организации - открытые системы, поэтому транспорт веществ через биологические мембраны - необходимое условие жизни. Большое значение для описания транспорта веществ имеет понятие электрохимического потенциала.

Химическим потенциалом данного вещества называется величина, численно равная энергии Гиббса, приходящаяся на 1 моль этого в-ва.

Математически химический потенциал определяется как частная производная от энергии Гиббса G по количеству k-го вещества, при постоянстве температуры Т, давления Р и количеств всех других веществ m1:

м (мю) = (dG/dmk)Р,Т,m1

Для разбавленного раствора:

м = м0 +RTlnC,

где м0 - стандартный химический потенциал, численно равный химическому потенциалу данного вещества при его концентрации 1 моль/л в растворе.

Электрохимический потенциал(мю с черточкой) - величина, численно равная энергии Гиббса G на 1 моль данного вещества, помещенного в электрическое поле.

Для разбавленных растворов

м (мю с черточкой) = м0 + RTlnC + zFф(фи),

где F = 96500 Кл/моль - число Фарадея, z - заряд иона электролита.

Транспорт веществ через биологические мембраны можно разделить на 2 основных типа: пассивный и активный.

Пассивный транспорт - это перенос вещества из мест с большим значением электрохимического потенциала к местам с его меньшим значением. Пассивный транспорт идет с уменьшением энергии Гиббса, и поэтому данный процесс может идти самопроизвольно без затраты энергии. Виды: осмос, фильтрация, диффузия (простая и облегченная).

Активный транспорт- это перенос вещестрва из мест с меньшим значение электрохимического потенциала в места с большим значением. Сопровождается ростом энергии Гибса, не может идти самопроизвольно, а только с затратами АТФ.

Плотность потока вещества jm при пассивном транспорте подчиняется уравнению Теорелла:

Jm = -UCdм(мю с черт.)/dx,

где U - подвижность частиц, С - концентрация. Знак минус показывает, что перенос происходит в сторону убывания электрохим. потенциала.

Плотность потока вещества - это величина, численно равная количеству вещества, перенесенного за единицу времени через единицу площади поверхности, перпендикулярной направлению переноса:

jm = m/S*t (моль/кВ.м*с)

Подставив выражение для электрохимического потенциала, получим для разбавленных растворов при м0 = const уравнение Нернста-Планка:

jm = -URTdC/dx - UczFdф(фи)/dx.

Уравнение Нернста-Планка описывает процесс пассивного транспорта ионов в поле электрохимического потенциала. Поток заряженных ионов пропорционален градиенту электрохимического потенциала в направлении оси x и зависит от подвижности и концентрации Cионов:

Где F-число Фарадея, Z- валентность иона, T- абсолютная температура, R-газовая постоянная, - электрический потенциал на мембране.

Итак, могут быть две причины переноса вещества при пассивном транспорте: градиент концентрации dC/dx и градиент электрического потенциала dф/dx.

Знаки минусов перед градиентами показывают, что градиент концентрации вызывает перенос вещества от мест с большей концентрацией к местам с его меньшей концентрацией, а градиент электрического потенциала вызывает перенос положительных зарядов от мест с большим к местам с меньшим потенциалом.

5. Ионные каналы. Определение. Молекулярная конструкция. Селективный фильтр. Механизм транспорта иона через ионный канал

Ионные каналы -- порообразующие белки (одиночные либо целые комплексы), поддерживающие разность потенциалов, которая существует между внешней и внутренней сторонами клеточной мембраны всех живых клеток. Относятся к транспортным белкам. С их помощью ионы перемещаются согласно их электрохимическим градиентам сквозь мембрану.

ИК состоят из белков сложной структуры. Белки ИК имеют определённую конфирмацию, образующую трансмембранную пору, и "вшиты" в липидный слой мембраны. Канальный белковый комплекс может состоять либо из одной белковой молекулы, либо из нескольких белковых субъединиц, одинаковых или разных по строению. Эти субъединицы могут кодироваться разными генами, синтезироваться на рибосомах По-отдельности и затем собираться в виде целостного канала. Домены - это отдельные компактно оформленные части канального белка или субъединиц. Сегменты - это части белкка-каналоформера, свёрнутые спирально и прошивающие мембрану. Практически все ИК имеют в составе своих субъединиц регуляторные домены, способные связываться с различными управляющими веществами (регуляторными молекулами) и за счёт этого менять состояние или свойства канала. В потенциал - активируемых ИК один из трансмембранных сегментов содержит специальный набор аминокислот с положительными зарядами и работает как сенсор электрического потенциала мембраны. ИК в своём составе могут иметь также вспомогательные субъединицы, выполняющие модуляторные, структурные или стабилизирующие функции. Один класс таких субъединиц - внутриклеточные, расположенные полностью в цитоплазме, а второй - мембранные, т.к. они имеют трансмембранные домены, прошивающие мембрану.

Свойства ионных каналов:

1) Селективность- это избирательная повышенная проницаемость ИК для определённых ионов. Для других ионов проницаемость понижена. Такая избирательность определяется селективным фильтром - самым узким местом канальной поры. Фильтр, кроме узких размеров, может иметь также локальный электрический заряд. Например, катионселективные каналы обычно имеют в области своего селективного фильтра отрицательно заряженные остатки аминокислот в составе белковой молекулы, которые притягивают положительные катионы и отталкивают отрицательные анионы, не пропуская их через пору.

2) Управляемая проницаемость-- это способность открываться или закрываться при определённых управляющих воздействиях на канал.

3) Инактивация -- это способность ионного канала через некоторое время после своего открытия автоматически понижать свою проницаемость даже в том случае, когда открывший их активирующий фактор продолжает действовать.

4) Блокировка-- это способность ионного канала под действием веществ - блокаторов фиксировать какое-то одно своё состояние и не реагировать на обычные управляющие воздействия. Блокировку вызывают вещества - блокаторы, которые могут называться антагонистами, блокаторами или литиками.

5) Пластичность-- это способность ионного канала изменять свои свойства, свои характеристики. Наиболее распространённый механизм, обеспечивающий пластичность-- это фосфорилирование аминокислот канальных белков с внутренней стороны мембраны ферментами-протеинкиназами.

Работа ионных каналов:

Лиганд - зависимые ионные каналы

Эти каналы открываются, когда медиатор, связываясь с их наружными рецепторными участками, меняет их конфирмацию. Открываясь, они впускают ионы, изменяя этим мембранный потенциал. Лиганд - зависимые каналы почти нечувствительны к изменению мембранного потенциала. Они генерируют электрический потенциал, сила которого зависит от количества медиатора, поступающего в синаптическую щель и времени, которое он там находится.

Потенциал - зависимые ионные каналы

Эти каналы отвечают за распространение потенциала действия, они открываются и закрываются в ответ на изменение мембранного потенциала. Например, натриевые каналы. Если мембранный потенциал поддерживается на уровне потенциала покоя, натриевые каналы закрыты и натриевый ток отсутствует. Если мембранный потенциал сдвигается в положительную сторону, то натриевые каналы откроются, и в клетку начнут входить ионы натрия по градиенту концентрации. Через 0,5 мс после установления нового значения мембранного потенциала, этот натриевый ток достигнет максимума. А еще через несколько миллисекунд падает почти до нуля. Это значит, что каналы через некоторое время закрываются вследствие ин активации, даже если клеточная мембрана остается деполяризованной. Но закрывшись, они отличаются от состояния, в котором находились до открытия, теперь они не могут открываться в ответ на деполяризацию мембраны, то есть они инактивированны. В таком состоянии они останутся до тех пор, пока мембранный потенциал не вернется к исходному значению и не пройдет восстановительный период, занимающий несколько миллисекунд.

6. Активный транспорт ионов. Мембранный насос. Определение. Молекулярная конструкция натриево-калиевого насоса

Активный транспорт - это перенос вещества из мест с меньшим значением электрохимического потенциала в места с его большим значением. Активный транспорт в мембране сопровождается ростом энергии Гиббса, он не может идти самопроизвольно, а только в сопровождении с процессом гидролиза АТФ, т.е за счет затраты энергии, запасенной в макроэргических связях АТФ. Активный транспорт веществ через биологические мембраны имеет огромное значение. За счет активного транспорта в организме создаются градиенты концентраций, градиенты электрических потенциалов, градиенты давления и т.д., поддерживающие жизненный процессы.

Мембранный насос-- объёмный насос, рабочий орган которого-- гибкая пластина (диафрагма, мембрана), закреплённая по краям; пластина изгибается под действием рычажного механизма (механический привод) или в результате изменения давления воздуха (пневматический привод) или жидкости (гидравлический привод), выполняя функцию, эквивалентную функции поршня в поршневом насосе.

Среди примеров активного транспорта против градиента концентрации лучше всего изучен натрий-калиевый насос. Во время его работы происходит перенос трех положительных ионов Na+ из клетки на каждые два положительных иона К в клетку. Эта работа сопровождается накоплением на мембране разности электрических потенциалов. При этом расщепляется АТФ, давая энергию. В течение многих лет молекулярная основа натрий-калиевого насоса оставалась неясной. В настоящее время установлено, что Na/K-транспортный белок представляет собой АТФазу. На внутренней поверхности мембраны она расщепляет АТФ на АДФ и фосфат. На транспортировку трех ионов натрия из клетки и одновременно двух ионов калия в клетку используется энергия одной молекулы АТФ, т. е. суммарно за один цикл из клетки удаляется один положительный заряд. Таким образом, Na/К-насос является электрогенным (создает электрический ток через мембрану), что приводит к увеличению электроотрицательности мембранного потенциала приблизительно на 10 мВ. Транспортный белок выполняет эту операцию с высокой скоростью: от 150 до 600 ионов натрия в секунду. Аминокислотная последовательность транспортного белка известна, однако еще не ясен механизм этого сложного обменного транспорта. Данный процесс описывают с использованием энергетических профилей переноса белками ионов натрия или калия (рис. 1.5,-6). По характеру изменения этих профилей, связанных с постоянными изменениями конформации транспортного белка (процесс, требующий затраты энергии), можно судить о стехиометрии обмена: два иона калия обмениваются на три иона натрия.

Помимо Na/K-насоса плазматическая мембрана содержит по крайней мере еще один насос--кальциевый; это насос откачивает ионы кальция (Са2+) из клетки и участвует в поддержании их внутриклеточной концентрации на крайне низком уровне. Кальциевый насос присутствует с очень высокой плотностью в саркоплазматическом ретикулуме мышечных клеток, которые накапливают ионы кальция в результате расщепления молекул АТФ

7. Мембранный потенциал, определение, величина. Способы измерения МП. Условия возникновения МП. Роль пассивных и активных сил

Мембранный потенциал - это разность электрических потенциалов между наружной и внутренней поверхностью биологической мембраны, обусловленное неодинаковой концентрацией ионов, главным образом Na, K.

МП (потенциал покоя) регистрируется между наружной и внутренней сторонами живой клетки. Его наличие обусловлено неравномерным распределением ионов. Внутренняя сторона мембраны заряжена отрицательно по отношению к внешней. Величина МП различна в разных клетках: нервная клетка - 60-80 мВ, поперечно-полосатые мышечные волокна - 80-90 мВ, сердечная мышца - 90-95 мВ. При неизменном функциональном состоянии клетки величина потенциала покоя не изменяется; поддержание постоянной его величины обеспечивается нормальным протеканием клеточного метаболизма. Под влиянием различных факторов величина МП может меняться.

Исследования МП нашло широкое применение в медико-биологических лабораториях, в клинической практике при диагностике различных заболеваний ЦНС, ССС и мышечной системы. При отведении суммарных биоэл. потенциалов от нервных стволов мышц, головного мозга, сердца и др. органов применяют поверхностные макроэлектроды. В некоторых случаях используют внутриполостные электроды или вводимые непосредственно в ткань. Для регистрации измерения МП отдельных клеток чаще всего пользуются внутриклеточным и точечно внеклеточных микроэлектродом. Электроды соединяют с усилителем постоянного или переменного тока. Усилитель может быть связан с устройством автоматизированной обработки биоэлектрических сигналов. Механизм возникновения связан с наличием определенных физ.-хим. градиентов между отдельными тканями организма, между жидкостью, окружающей клетку и ее цитоплазмой, между отдельными клеточными элементами. Возникновение в живых клетках обусловлено неравномерной концентрацией ионов на внутренней и наружной поверхности мембраны и ее различной проницаемостью для них.

8. Уравнение Нерста. Потенциал Нерста, его природа. Стационарный мембранный потенциал. Уравнение Гольдмана-Ходжкина

Потенциал действия - электрический импульс, возникающий между внутренней и наружной сторонами мембраны и обусловленный изменениями ионной проницаемости мембраны.

Фазы Пд.

1) Фаза деполяризации-

Фаза деполяризации. При действии деполяризующего раздражителя на клетку, например, электрического тока, начальная частичная деполяризация клеточной мембраны происходит без изменения ее проницаемости для ионов. Когда деполяризация достигает примерно 50% пороговой величины (50% порогового потенциала), возрастает проницаемость мембраны клетки для Na+, причем в первый момент сравнительно медленно. Естественно, что скорость входа Na+ в клетку при этом невелика. В этот период, как и во время всей первой фазы (деполяризации), движущей силой, обеспечивающей вход Na+ в клетку, являются концентрационный и электрический градиенты.

Напомним, что клетка внутри заряжена отрицательно (разноименные заряды притягиваются друг к другу), а концентрация Na+ вне клетки в 10 -- 12 раз больше, чем внутри клетки. Условием, обеспечивающим вход Na+ в клетку, является увеличение проницаемости клеточной мембраны, которая определяется состоянием воротного механизма Na-каналов (в некоторых клетках, в частности в кардиомио-цитах, в волокнах гладкой мышцы, важную роль в возникновении ПД играют управляемые каналы для Са2+). Длительность пребывания электроуправляемого канала в открытом состоянии зависит от величины мембранного потенциала. Суммарный ток ионов в любой момент определяется числом открытых каналов клеточной мембраны. Часть ионного канала, обращенная во внеклеточное пространство, отличается от части канала, обращенной внутрь клеточной среды (П. Г. Костюк).

Воротный механизм Na-каналов расположен на внешней и внутренней сторонах клеточной мембраны, воротный механизм К-каналов -- на внутренней (К+ движется из клетки наружу). В каналах для Na+ имеются активационные m-ворота, которые расположены с внешней стороны клеточной мембраны (Na+ движется внутрь клетки во время ее возбуждения), и инактивационные /г-ворота, расположенные с внутренней стороны клеточной мембраны. В условиях покоя активационные w-ворота закрыты, инактивационные /г-ворота преимущественно (около 80%) открыты; закрыты также калиевые активационные ворота, инактивационных ворот для К+ нет. Некоторые авторы w-ворота называют быстрыми, /г-ворота медленными, поскольку они в процессе возбуждения клетки реагируют позже, нежели m-ворота. Однако более поздняя реакция /г-ворот связана с изменением заряда клетки, как и m-ворот, которые открываются в процессе деполяризации клеточной мембраны. Закрываются /г-ворота в фазу инверсии, когда заряд внутри клетки становится положительным, что и является причиной их закрытия. При этом нарастание пика ПД прекращается. Поэтому m-ворота лучше назвать ранними, а А-ворота -- поздними.

Когда деполяризация клетки достигает критической величины (Екр, критический уровень деполяризации -- КУД), которая обычно составляет -50 мВ (возможны и другие величины), проницаемость мембраны для Na+ резко возрастает: открывается большое число потенциалзависимых /я-ворот Na-каналов и Na+ лавиной устремляется в клетку. Через один открытый Na-канал за 1 мс проходит до 6000 ионов. В результате интенсивного тока Na+ внутрь клетки процесс деполяризации проходит очень быстро. Развивающаяся деполяризация клеточной мембраны вызывает дополнительное увеличение ее проницаемости и, естественно, проводимости Na+: открываются все новые и новые активационные w-ворота Na-каналов, что придает току Na+ в клетку характер регенеративного процесса. В итоге ПП исчезает, становится равным нулю. Фаза деполяризации на этом заканчивается.

2) Фаза реполяризации.

В этой фазе проницаемость клеточной мембраны для ионов К + все еще высока, ионы К + продолжают быстро выходить из клетки согласно концентрационному градиенту. Клетка снова внутри имеет отрицательный заряд, а снаружи - положительный, поэтому электрический градиент препятствует выходу К* из клетки, что снижает его проводимость, хотя он продолжает выходить. Это объясняется тем, что действие концентрационного градиента выражено значительно сильнее действия электрического градиента. Таким образом, вся нисходящая часть пика ПД обусловлена выходом иона К + из клетки. Нередко в конце ПД наблюдается замедление реполяризации, что объясняется уменьшением проницаемости клеточной мембраны для ионов К + и замедлением выхода их из клетки вследствие закрытия ворот К-каналов. Другая причина замедления тока ионов К + связана с возрастанием положительного потенциала наружной поверхности клетки и формированием противоположно направленного электрического градиента. Главную роль в возникновении ПД играет ион Na+, входящий в клетку при повышении проницаемости клеточной мембраны и обеспечивающий всю восходящую часть пика ПД. При замене иона Nа + в среде на другой ион, например холин, или в случае блокировки Na-каналов тетродотоксином, ПД в нервной клетке не возникает. Однако проницаемость мембраны для иона К + тоже играет важную роль. Если повышение проницаемости для иона К + предотвратить тетраэтиламмонием, то мембрана после ее деполяризации реполяризуется гораздо медленнее, только за счет медленных неуправляемых каналов (каналы утечки ионов), через которые К + будет выходить из клетки. Роль ионов Са 2+ в возникновении ПД в нервных клетках незначительна, в некоторых нейронах она существенна, например в дендритах клеток Пуркинье мозжечка.

9. Ионный механизм возникновения потенциала действия

В основе потенциала действия лежат последовательно развивающиеся во времени изменения ионной проницаемости клеточной мембраны. При действии на клетку раздражителя проницаемость мембраны для ионов Na + (рис. 1) резко повышается за счет активации (открывания) натриевых каналов. При этом ионы Na + по концентрационному.

Рис. 1

При этом ионы Na + по концентрационному градиенту интенсивно перемещаются из вне - во внутриклеточное пространство. Вхождению ионов Na + в клетку способствует и электростатическое взаимодействие. В итоге проницаемость мембраны для Na + становится в 20 раз больше проницаемости для ионов К + .

Поскольку поток Na + в клетку начинает превышать калиевый ток из клетки, то происходит постепенное снижение потенциала покоя, приводящее к реверсии - изменению знака мембранного потенциала. При этом внутренняя поверхность мембраны становится положительной по отношению к ее внешней поверхности. Указанные изменения мембранного потенциала соответствуют восходящей фазе потенциала действия (фазе деполяризации).

Мембрана характеризуется повышенной проницаемостью для ионов Na + лишь очень короткое время 0.2 - 0.5 мс. После этого проницаемость мембраны для ионов Na + вновь понижается, а для К + возрастает. В результате поток Na + внутрь клетки резко ослабляется, а ток К + из клетки усиливается (рис. 2.).

В течение потенциала действия в клетку поступает значительное количество Na + , а ионы К + покидают клетку. Восстановление клеточного ионного баланса осуществляется благодаря работе Na + ,К + - АТ Фазного насоса, активность которого возрастает при повышении внутренней концентрации ионов Na + и увеличении внешней концентрации ионов К + . Благодаря работе ионного насоса и изменению проницаемости мембраны для Na + и К + первоначальная их концентрация во внутри - и внеклеточном пространстве постепенно восстанавливается.

Итогом этих процессов и является реполяризация мембраны: внутреннее содержимое клетки вновь приобретает отрицательный заряд по отношению к внешней поверхности мембраны.

10. Механический сердечный цикл. Сердце как 6-ти камерный насос. Ударный минутный оббьем крови. Работа, мощность сердца

Механическая работа сердца. Сердечный цикл.

Механическая работа сердца связана с сокращением его миокарда. Работа правого желудочка в три раза меньше работы левого желудочка. Сердце с механической точки зрения представляет собой насос ритмического действия, чему способствует клапанный аппарат. Ритмические сокращения и расслабления сердца обеспечивают непрерывный ток крови. Сокращение сердечной мышцы называется систолой, его расслабление - диастолой. При каждой систоле желудочков происходит выталкивание крови из сердца в аорту и легочный ствол. В обычных условиях систола и диастола четко согласованы во времени. Период, включающий одно сокращение и последующее расслабление сердца, составляет сердечный цикл. Его продолжительность у взрослого человека равна 0,8 секунды при частоте сокращений 70 - 75 раз в минуту. Началом каждого цикла является систола предсердий. Она длится 0,1 сек. По окончании систолы предсердий наступает их диастола, а также систола желудочков. Систола желудочков длится 0,3 сек. В момент систолы в желудочках повышается давление крови, оно достигает в правом желудочке 25 мм рт. ст., а в левом - 130 мм рт. ст. По окончании систолы желудочков начинается фаза общего расслабления, длящаяся 0,4 сек. В целом период расслабления предсердий равен 0,7 сек., а желудочков - 0,5 сек. Физиологическое значение периода расслабления состоит в том, что за это время в миокарде происходят обменные процессы между клетками и кровью, т. е. происходит восстановление работоспособности сердечной мышцы.

Основные показатели работы сердца

Систолический (ударный) объем - объем крови, выталкивающийся из сердца за одну систолу. Он в среднем в покое у взрослого человека равен 150 мл (по 75 мл для каждого желудочка). Умножив систолический объем на число сокращений в минуту, можно узнать минутный объем. Он составляет в среднем 4,5 - 5,0 литров. Систолический и минутный объемы непостоянны, они резко меняются в зависимости от физической и эмоциональной нагрузки.

Работа сердца

Ас=Алж+Апж

Апж=0,2Алж

Алж=Р*Vуд+ (mv 2 /2)

m=плотность на объем ударный

Ас=1,2Vуд(Р+ Плотность* v 2 /2)

Работа сердца при 1 сокращении примерно равна 1дж

Мощность сердца N=Ac

11. Механизм преобразования импульсного выброса крови из сердца в непрерывный кровоток в артериальных сосудах. Теория пульсирующей камеры. Пульс, пульсовая волна. Периферическое сердце

В связи с тем, что кровь выбрасывается сердцем отдельными порциями, кровоток в артериях имеет пульсирующий характер, поэтому линейная и объемная скорости непрерывно меняются: они максимальны в аорте и легочной артерии в момент систолы желудочков и уменьшаются во время диастолы. В капиллярах и венах кровоток постоянен, т. е. линейная скорость его постоянна. В превращении пульсирующего кровотока в постоянный имеют значение свойства артериальной стенки. Непрерывный ток крови по всей сосудистой системе обусловливают выраженные упругие свойства аорты и крупных артерий. В сердечно-сосудистой системе часть кинетической энергии, развиваемой сердцем во время систолы, затрачивается на растяжение аорты и отходящих от нее крупных артерий.

Последние образуют эластическую, или компрессионную, камеру, в которую поступает значительный объем крови, растягивающий ее; при этом кинетическая энергия, развитая сердцем, переходит в энергию эластического напряжения артериальных стенок. Когда систола заканчивается, растянутые стенки артерий стремятся спасаться и проталкивают кровь в капилляры, поддерживая кровоток во время диастолы.

Артериальным пульсом называют ритмические колебания стенки артерии, обусловленные повышением давления в период систолы.

Пульсовая волна, или колебательные изменения диаметра или объема артериальных сосудов, обусловлена волной повышения давления, возникающей в аорте в момент изгнания крови из желудочков. В это время давление в аорте резко повышается и стенка ее растягивается. Волна повышенного давления и вызванные этим растяжением колебания сосудистой стенки с определенной скоростью распространяются от аорты до артериол и капилляров, где пульсовая волна гаснет.

Периферическое сердце

При различных сокращениях мышечные волокна воздействуют на расположенные параллельно с ними кровеносные сосуды, и в виде многочисленных своеобразных внутримышечных микронасосов присасывают артериальную, кровь на входе в мышцу, облегчая тем самым нагнетательную работу сердца, проталкивают эту кровь по внутримышечным сосудам и нагнетают на выходе из скелетной мышцы венозную кровь к сердцу с энергией, превышающей максимальное артериальное давление в 2--3 раза. Если сердце, как мы хорошо знаем, нагнетает артериальную кровь с давлением 120 мм рт. ст., то скелетная мышца способна нагнетать венозную кровь с силой в 200, 250 и даже 300 мм рт. ст., возвращая ее к сердцу для его наполнения.

Полностью изолированная из организма мышца, будучи заключенной на искусственный круг кровообращения, способна при сокращении самостоятельно передвигать кровь по этому кругу по образу и подобию сердца. Поэтому ее можно назвать «периферическим сердцем» (ПС). Чрезвычайно важно, что эти многочисленные «периферические сердца» -- а их по количеству скелетных мышц у человека более 1000 -- работают самостоятельно как присасывающе-нагнетательные микронасосы не только при различных видах сокращений: ритмических, аритмических, тонических, тетанических, ауксотонических и др., но и при растяжении. Иначе можно сказать, что они не имеют «холостого хода».

12. Гемодинамика в одиночном сосуде. Уравнение Паузеля. Гидравлическое сопротивление. Законы общесистемной гемодинамики

Гемодинамика -- движение крови по сосудам, возникающее вследствие разности гидростатического давления в различных участках кровеносной системы (кровь движется из области высокого давления в область низкого).

Одиночный сосуд рассматриваем как трубку кругового сечения, протяженную по сравнению со своими поперечными размерами. Под эластичностью стенок понимается возможность изменения сечения сосудов под действием давления.

Пуайзель опытным путем установил, что средняя скорость ламинарного течения жидкости по неширокой горизонтальной круглой трубе постоянного сечения прямо пропорциональна разности давлений Р1 и Р2 при входе и выходи из трубы, квадрату радиуса трубы и обратно пропорциональна длине трубы l и вязкости n.

Vср = (R (в кВ) / 8n)*(P1 - P2)/l

Гидравлическое сопротивление, сопротивление движению жидкостей (и газов) по трубам, каналам и т.д., обусловленное их вязкостью.

w = 8nl/пи r (в 4 ст)

Величину w называют гидравлическим сопротивлением. Оно обратно пропорционально четвертой степени радиуса и поэтому значительно возрастает с уменьшением радиуса трубы.

Силой, создающей давление в сосудистой системе, является сердце. У человека среднего возраста при каждом сокращении сердца в сосудистую систему выталкивается 60--70 мл крови (систолический объем) или 4--5 л/мин (минутный объем). Движущей силой крови служат разность давлений, возникающая в начале и конце трубки.

Почти во всех отделах сосудистой системы кровоток носит ламинарный характер -- кровь движется отдельными слоями параллельно оси сосуда. При этом слой, прилежащий к стенке сосуда, остается практически неподвижным, по этому слою скользит второй, а по нему, в свою очередь, третий и т. д. Форменные элементы крови составляют центральный, осевой поток, плазма движется ближе к стенке сосуда. Следовательно, чем меньше диаметр сосуда, тем ближе располагаются центральные слои к стенке и больше тормозится скорость их движения из--за вязкого взаимодействия со стенкой. В целом это означает, что в мелких сосудах скорость кровотока ниже, чем в крупных. В правильности этого положения легко убедиться, сопоставив скорости кровотока в разных участках сосудистого русла. В аорте она составляет 50--70 см/с, в артериях -- от 40 до 10, артериолах -- 10--0,1, капиллярах -- меньше 0.1, венулах -- меньше 0,3, венах -- 0,3--5,0, полой вене -- 5--20 см/с.

Наряду с ламинарным в сосудистой системе существует турбулентное движение с характерным завихрением крови. Частицы крови перемещаются не только, параллельно оси сосуда, как при ламинарном кровотоке, но и перпендикулярно ей. Результатом такого сложного перемещения является значительное увеличение внутреннего трения жидкости. В этом случае объемная скорость тока крови будет уже не пропорциональной градиенту давления, а примерно равной квадратному корню из него. Турбулентное движение обычно возникает в местах разветвлений и сужений артерий, в участках крутых изгибов сосудов.

Кровь представляет собой взвесь форменных элементов в коллоидно--солевом растворе, она обладает определенной вязкостью, не являющейся величиной постоянной. При протекании крови через капилляр, диаметр которого меньше 1 мм, вязкость уменьшается. Последующее уменьшение диаметра капилляра еще более уменьшает вязкость протекающей крови. Этот гемодинамический парадокс объясняется тем, что во время движения крови эритроциты сосредоточиваются в центре потока. Пристеночный же слой состоит из чистой плазмы с гораздо меньшей вязкостью, по которому легко скользят форменные элементы. В итоге улучшаются условия тока крови и происходит снижение перепадов давления, что, в общем, компенсирует увеличение вязкости крови и снижение скорости ее тока в мелких артериях. Переход от ламинарного движения крови к турбулентному сопровождается значительным ростом сопротивления течению крови.

Соотношение между характером течения жидкости в жестких трубках и давлением обычно определяют по формуле Пуазейля. Используя эту формулу, можно вычислить сопротивление R току крови в зависимости от ее вязкости Ю, длины l и радиуса r сосуда:

Сосудистую систему в целом можно представить в виде последовательно и параллельно соединенных трубок разной длины и диаметра. В случае последовательного соединения общее сопротивление составляет сумму сопротивлений отдельных сосудов:

R = R 1 + R 2 + … + R n .

При параллельном соединении величину сопротивления вычисляют по другой формуле:

1/R = 1/R 1 + 1/R 2 + ... + + 1/Rn.

Учитывая сложность геометрии сосудов целого организма, ее непостоянство, зависящее от открытия и закрытия шунтов, коллатералей, степени сокращения гладких мышц, эластичности стенок, изменения вязкости крови и других причин, в реальных условиях рассчитать величину сосудистого сопротивления трудно. Поэтому его принято определять как частное от деления кровяного давления Р на минутный объем крови Q:

Для всей сосудистой системы организма в целом эта формула применима лишь при том условии, если в конце системы, т. е. в полых венах вблизи места их впадения в сердце, давление будет близким к нулю. Соответственно при необходимости вычисления сопротивления отдельного участка сосудистой системы формула приобретает вид

R=Р 1 --Р 2 /Q

Значения P 1 и P 2 отражают давление в начале и конце определяемого участка.

Основная кинетическая энергия, необходимая для движения крови, сообщается ей сердцем во время систолы. Одна часть этой энергии расходуется на проталкивание крови, другая -- превращается в потенциальную энергию растягиваемой во время систолы эластичной стенки аорты, крупных и средних артерий. Их свойства зависят от наличия эластических и коллагеновых волокон, растяжимость которых примерно в шесть раз выше, чем, например, резиновых нитей той же толщины. Во время диастолы энергия стенки аорты и сосудов переходит в кинетическую энергию движения крови.

Кроме эластичности и растяжимости, т. е. пассивных свойств, сосуды обладают еще способностью активно реагировать на изменение в них кровяного давления. При повышении давления гладкие мышцы стенок сокращаются и диаметр сосуда уменьшается. Таким образом, пульсирующий ток крови, создаваемый функцией сердца, благодаря особенностям аорты и крупных сосудов выравнивается и становится относительно непрерывным.

Основными показателями гемодинамики являются объемная скорость, скорость кругооборота крови, давление в разных областях сосудистой системы.

Объемная скорость движения крови характеризует ее количество (в миллилитрах), протекающее через поперечное сечение сосуда за единицу времени (1 мин). Объемная скорость кровотока прямо пропорциональна перепаду давления в начале и конце сосуда и обратно пропорциональна его сопротивлению току крови. В организме отток крови от сердца соответствует ее притоку к нему. Это означает, что объем крови, протекающей за единицу времени через всю артериальную и всю венозную систему большого и малого круга кровообращения, одинаков.

Линейная скорость движения крови (v) характеризует скорость перемещения ее частиц вдоль сосуда при ламинарном потоке. Она выражается в сантиметрах в секунду и определяется как отношение объемной скорости кровотока Q к площади поперечного сечения сосуда рr 2:

Полученная таким образом величина является сугубо средним показателем, так как, согласно законам ламинарного движения, скорость перемещения крови в центре сосуда является максимальной и падает в слоях, прилежащих к сосудистой стенке.

Линейная скорость кровотока различна и в отдельных участках сосудистого русла по ходу сосудистого дерева. Она зависит от общей суммы площади просветов сосудов этого калибра в рассматриваемом участке. Наименьшим поперечным сечением характеризуется аорта, в связи с чем и скорость движения крови в ней самая большая -- 50--70 см/с. Наибольшей суммарной площадью поперечного сечения обладают капилляры, у млекопитающих она приблизительно в 600--800 раз больше площади поперечного сечения аорты. Соответственно и скорость крови здесь около 0,05 см/с. В артериях она составляет 20--40 см/с, в артериолах -- 0,5 см/с. В силу того, что при слиянии вен их суммарный просвет уменьшается, линейная скорость кровотока снова возрастает, достигая в полой вене 20 см/с (рис. 9.30).

Кровь выталкивается отдельными порциями, поэтому кровоток в аорте и артериях пульсирует. При этом его линейная скорость возрастает в фазе систолы и снижается во время диастолы. В капиллярной сети в силу особенностей строения предшествующих ей артерий пульсовые толчки исчезают и линейная скорость кровотока приобретает постоянный характер.

...

Подобные документы

    Физические основы применения лазерной техники в медицине. Типы лазеров, принципы действия. Механизм взаимодействия лазерного излучения с биотканями. Перспективные лазерные методы в медицине и биологии. Серийно выпускаемая медицинская лазерная аппаратура.

    реферат , добавлен 30.08.2009

    Биполярные отведения электрокардиографии (по Эйнтховену). Расположение грудных электродов для ЭКГ. Прекордиальная картография. Формирование электрической оси сердца, экстрасистолия. Механизм возникновения зубца Р и Т, сегментов P-Q и ST, комплекса QRS.

    презентация , добавлен 08.01.2014

    Понятие метрологии и стандартизации, история и основные этапы развития, нормативные документы и правовые основы. Значение электрокардиографии в современной медицине, механизм ее реализации. Обоснование и проведение оптимизации поверки электрокардиографа.

    дипломная работа , добавлен 15.02.2014

    Источник энергии, необходимый для движения крови по сосудам. Основная функция сердца. Месторасположение сердца в грудной полости. Средние размеры сердца взрослого человека. Работа левого и правого желудочков, митрального и аортального клапанов.

    презентация , добавлен 25.12.2011

    Физиологические основы электрокардиографии. Верхушечный толчок сердца. Основные методы исследования тонов сердца, схема основных точек их выслушивания. Основные компоненты нормальной и ненормальной электрокардиограммы (зубцы, интервалы, сегменты).

    презентация , добавлен 08.01.2014

    Открытие Х-лучей Вильгельмом Рентгеном, история и значение данного процесса в истории. Устройство рентгеновской трубки и взаимосвязь ее главных элементов, принципы работы. Свойства рентгеновского излучения, его биологическое воздействие, роль в медицине.

    презентация , добавлен 21.11.2013

    История открытия рентгена. Механизм его получения при помощи катодной трубки. Биологическое воздействие рентгеновского излучения. Его применение в медицине и науке. Электронно-лучевой томограф. Влияние артефактов на качество изображения при сканировании.

    презентация , добавлен 29.03.2016

    Формулы расчета сердечного выброса или ударного объема крови. Факторы, повышающие минутный объем крови. Механическая деятельность сердца и принцип поликардиографии. Общие показатели механической деятельности сердца. Типы регуляторных эффектов на сердце.

    презентация , добавлен 13.12.2013

    Физические характеристики звука. Понятие ультразвука и принцип действия электромеханических излучателей. Медико-биологичесике приложения ультразвука. Методы диагностики и исследования: двумерная и доплеровская эхоскопия, визуализация на гармониках.

    презентация , добавлен 23.02.2013

    Организация мембран. Транспорт веществ через мембраны. Центральный механизм регуляции орагнов дыхания. Нефрон - структурно-функциональная единица почки. Функциональные связи гипоталамуса с гипофизом. Проблема локализации функций в коре большого мозга.

Механическая характеристика исполнительного механизма – зависимость М с =f(ω) .

Активными силами и моментами называются силы и моменты, создаваемые внешними по отношению к двигателю источниками механической энергии независимо от движения электропривода. Пример – момент, создаваемый весом опускаемого или поднимаемого груза (рисунок 1). Момент сопротивления при этом равен

и направлен вниз, независимо от направления вращения вала двигателя. Величина М С не зависит от скорости Рисунок 2.1 перемещения груза.

Реактивными силами и моментами называются силы и моменты сопротивления движению, возникающие как реакция на активный движущий момент, развиваемый двигателем. Реактивные силы и моменты зависят от скорости и подразделяются на силы и моменты сухого трения, вязкого трения и силы, и моменты вентиляторного типа.

Силы и моменты сухого трения (рисунок 2.2) неизменны по модулю, но скачком меняют свой знак при изменении знака скорости: . Они характерны для станочных приводов подачи, вентилей, дросселей и т.д. На рисунке 2.3 изображен нагрузочныймомент вязкого трения, характеризующийся линейной (или близкой к ней) зависимостью величины от скорости -

Зависимость нагрузочного момента от угловой скорости вентилятора, центробежного насоса, центрифуги имеет вид, показанный на рисунке 2.4, называется вентиляторным и описывается формулой , где n = 1,5…2.5.

Механическая характеристика электродвигателя – зависимость М=f(ω) . Из курса «Электрические машины» знаем, что механические характеристики ЭД (рисунок 5) могут быть абсолютно жесткими (1- синхронный ЭД), жесткими (3 – двигатель постоянного тока независимого возбуждения и 2 – асинхронный двигатель на рабочем участке) и мягкими (4 - двигатель постоянного тока последовательного возбуждения). Абсолютной жесткостью характеристики называется отношение приращения момента к приращению скорости

5. Приведение моментов статической нагрузки к валу двигателя

В системе действуют два момента: момент, развиваемый двигателем М Д, и момент статической нагрузки М С, в который входят момент, создаваемый рабочим органом механизма, и моменты трения. Эти моменты характеризуются величиной и направлением действия. Если М Д и М С действуют в направлении движения, их называют движущими , если их знаки противоположны знаку скорости, моменты называют тормозящими . В соответствии с принципом Деламбера, совместное действие М Д и М С определит величину и знак динамического момента , определяющего ускорение системы. Таким образом, уравнение движения системы в общем случае имеет вид

.

Проведем простейший анализ уравнения (1) для двигательного режима работы ЭП, когда

.

При М Д > М С dω/dt > 0 и имеет место режим ускорения привода, при М Д < М С dω/dt < 0 и имеет место режим замедления привода, а при М Д = М С динамический момент и ускорение равны нулю. Первые два режима называют переходными , а последний – установившимся (стационарным).

6. Приведение моментов инерции к валу двигателя

При приведении моментов статической нагрузки исходим из равенства мощности в реальной и приведенной схемах:

, Откуда .

, и

Суммарный приведенный к валу двигателя момент сопротивления

При приведении моментов инерции исходим из равенства запасов кинетической энергии в реальной и приведенной схемах. При вращательном движении

При возвратно – поступательном движении

; , где;.

Суммарный приведенный к валу двигателя момент инерции

7. Естественные электромеханические и механические характеристики двигателей постоянного тока независимого возбуждения

8. Построение естественных электромеханических и механических характеристик двигателей постоянного тока независимого возбуждения

9. Искусственные электромеханические и механические характеристики двигателей постоянного тока независимого возбуждения при изменении сопротивления цепи якоря

10. Искусственные электромеханические и механические характеристики двигателей постоянного тока независимого возбуждения при изменении напряжения якоря.

11. Искусственные электромеханические и механические характеристики двигателей постоянного тока независимого возбуждения при изменении магнитного потока.

12. Режимы торможения двигателей постоянного тока независимого возбуждения. Электродинамическое торможение.

13. Режимы торможения двигателей постоянного тока независимого возбуждения. Торможение противовключением.

14. Режимы торможения двигателей постоянного тока независимого возбуждения. Рекуперативное торможение.

Электромеханические и электромагнитные процессы в ДПТ НВ (рисунок 1) описываются уравнениями электрического равновесия (Кирхгофа) цепей якоря и обмотки возбуждения, а также уравнением электромагнитного момента:

Из совместного решения системы уравнений получаем уравнение электромеханической характеристики ω = f(I)

и уравнение механической характеристики ω = f(M)

В установившемся режиме работы привода

, и уравнения приобретают вид

Характеристики, построенные при номинальных значениях напряжения и потока и R доб =0, называются естественными , при U Я ≠U Н, Ф≠Ф Н или R доб ≠0 – искусственными электромеханическими или механическими характеристиками. Характерными точками электромеханической характеристики (рисунок 2) являются точки идеального холостого хода (I=0, ω=ω 0 =U Н /kФ Н), короткого замыкания (I=I К =U Н /R ЯΣ , ω=0) и номинального режима (I Я =I Н, ω=ω Н). По любой паре из этих координат можно построить характеристику.

Используя введенные значения жесткости характеристик

;

можно записать следующие выражения для электромеханических и механических характеристик:

; ;

Режимы работы привода, приведенные на рисунке 2, поясняются ниже.

В двигательном режиме работы (рисунок 2.9) ЭД потребляет энергию из электрической сети и передает на вал механическую энергию. В режиме противовключения (рисунок 2.10) ЭД потребляет энергию, накопленную механизмом, и рассеивает в элементах двигателя и добавочных сопротивлениях. В режиме рекуперативного (генераторного) торможения (рисунок 2.5) ЭД потребляет энергию, накопленную механизмом, и передает ее в электрическую сеть.

При R доб ≠0 получаем искусственные реостатные электромеханичеcкие характеристики. Увеличение в (2.4, 2.5) R ЯΣ приводит к уменьшению величины тока короткого замыкания (I К =U Н /R ЯΣ) при неизменной скорости холостого хода ω 0 =U Н /kФ Н (рисунок 3.1). При неизменном магнитном потоке Ф=Ф Н, механические характеристики будут аналогичны эл.механическим.

Магнитный поток машины можно изменять только в сторону уменьшения. При этом скорость холостого хода ω 0 =U Н /kФ Н возрастает при неизменном значении тока короткого замыкания I К =U Н /R ЯΣ (рисунок 3.2 – электромеханическая характеристика при Ф - var). Момент короткого замыкания М К =kФI К при Ф - var снижается. Механическая характеристика изображена на рисунке 3.3.

Напряжение, подаваемое на якорь машины, можно изменять только в сторону уменьшения от номинального значения. При этом пропорционально напряжению снижаются и скорость холостого хода ω 0 =U Н /kФ Н , и значение тока короткого замыкания I К =U Н /R ЯΣ (рисунок 3.4 – электромеханическая характеристика при U - var ). Момент машины М=kФI при Ф-const пропорционален току якоря и механическая характеристика имеет аналогичный вид.

В соответствии с рассмотренными режимами работы электропривода, следует выделить следующие способы торможения ДПТ НВ:

a) рекуперативное торможение (с отдачей энергии в сеть)

Направление действия электромагнитного момента электрической машины определяется направлением тока якоря ДПТ и магнитного потока (1.1 в лекции №1). В соответствии с 1.1, ток якоря

,

и его знак зависит от соотношения ЭДС якоря и питающего напряжения. При

момент положителен и машина работает в двигательном режиме. При - холостой ход, и примашина работает в генераторном режиме (режим рекуперации мощности в сеть). Для обеспечения рекуперативного торможения необходимо, чтобы частота вращения вала ω была больше скорости холостого хода при данной схеме включения и параметрах питания двигателя. На рисунке 3.5 представлены механические характеристики ДПТ НВ грузоподъемного механизма, работающего в режиме рекуперативного торможения;

б) Электродинамическое торможение

На рисунке 3.6 представлена схема электродинамического торможения ДПТ НВ. Якорь двигателя отключен от сети и замкнут на дополнительное тормозное сопротивление R Т, обмотка возбуждения подключена к источнику питания. При этом ток якоря меняет знак на обратный

.

Взаимодействуя с потоком возбуждения, ток якоря образует момент, направленный против скорости вращения якоря двигателя. Уравнения электромеханической и механической характеристик принимают вид

; .

Механическая характеристика в режиме динамического торможения (рисунок 3.7) проходит через начало координат. По мере снижения скорости тормозной момент уменьшается, и в случаях необходимости повысить его величину при сниженных скоростях прибегают к двух- или даже трехступенчатому торможению, уменьшая ступенями сопротивление якорной цепи двигателя по мере снижения его скорости;

C) торможение противовключением

В режиме противовключения изменяет знак скорость двигателя при сохранении знака момента или знак момента двигателя при сохранении знака скорости. Первый случай имеет место при воздействии активного момента статической нагрузки, превышающего момент короткого замыкания на данной характеристике (рисунки 3.7, 3.8).

В результате изменения знака скорости ЭДС двигателя будет совпадать с приложенным напряжением, и ток в якоре определится, как

Этот режим используется в подъемных установках для спуска груза с малыми скоростями («силовой спуск»).

Режим противовключения чаще используется для остановки или изменения направления вращения двигателя путем перемены полярности напряжения, подводимого к якорю (рисунки 3.9, 3.10). При этом ток якоря изменит направление на обратное, изменится соответственно и знак момента двигателя, который будет направлен, до остановки двигателя, в сторону, противоположную скорости:

Потенциал покоя и действия.

Мембранно-ионная теория происхождения потенциала покоя и действия.

Местнне и распространяющееся возбуждение.

Законы раздражнения.

Методы оценки возбудимости тканей: порог раздражения, полезное время, хронаксия, лабильность.

Общая физиология возбудимых тканей.

Нейроны, мышечная и железистая клетки относятся к возбудимым тканям и обладают следующими общими свойствами: раздражимостью, возбудимостью, проводимостью и лабильностью.

Раздражимость и возбудимость.

Нейроны, мышечная и железистая клетки относятся к возбудимым тканям и обладают следующими общими свойствами:

Раздражимостью.

Организм человека обладает выраженной способностью адаптироваться к постоянно меняющимся условиям внешней среды. В основе приспособительных реакций организма лежит универсальное свойство живой ткани -раздражимость -способность отвечать на действие раздражающих факторов изменением структурных и функциональных свойств. Раздражимостью обладают все ткани животных и растительных организмов.

Раздражителями являются физические, химические или энергетические факторы внутренней среды организма или действующие на организм из внешней среды. После действия раздражителя изменяются свойства мембраны (электрический потенциал, проницаемость, активность переносчиков, свойства ионных каналов), метаболизм и другие внутриклеточные процессы. Раздражение клеток соединительной ткани может сопровождаться трансформацией, пролиферацией, размножением, хемотаксисом и фагоцитозом.

2.Возбудимостью – способностью возбудимой ткани осуществить специфический ответ на действие раздражителя. Заключается в изменении уровня потенциала мембраны (наиболее часто деполяризация и генерация потенциала действия) и в специфических функциональных проявлениях, свойственных данной ткани - сокращение мышцы, проведение возбуждения по нерву, выделение секрета железистой клеткой. Возбудимость оценивается порогом - минимальным по силе раздражителем, вызывающим видимую ответную реакцию. Более сильные по величине раздражители - надпороговые, более слабые - подпороговые.

3. Проводимостью - способностью локальное изменение свойств мембраны, возникшее в области действия раздражителя, распространить по протяжённости мембраны, вплоть до охвата возбуждением всей мембраны клетки.

4. Лабильностью - способностью ткани ответить на определенное количество стимулов в единицу времени. Является мерой функционального диапазона ткани, мерой функциональной подвижности, позволяет количественно измерить и сравнить функциональные возможности тканей и их изменение при каких-то воздействиях. Например, лабильность нейрона выше лабильности мышцы, лабильность утомлённой мышцы ниже ее лабильности до выполнения работы.

Биоэлектрические явления в тканях.

Исследования электрических явлений в биологических системах начаты итальянским физиком Гальвани в 18 веке, который на нервно-мышечном препарате лапки лягушки продемонстрировал факт существования "животного" электричества. Основополагающие данные получены Ходжкиным, Хаксли и Катцем в 40-50 годы текущего столетия благодаря применению внутриклеточного микроэлектрода.

Общее представление о структуре и функции ионных каналов.

Потенциалзависимые и потенциалнезависимые (химически

Управляемые) каналы

Ионные каналы - особые образования в мембране клетки, представляющие собой олигомерные (состоящие из нескольких субъединиц) белки. Центральным образованием канала является молекула белка, которая пронизывает мембрану таким образом, что в ее гидрофильном центре формируется канал-пора, через которую в клетку способны проникать соединения, диаметр которых не превышает диаметра поры (обычно- это ионы). В ионном канале выделяют несколько участков:

1) активационные и инактивационные ворота - особые участки белка, которые, изменяя свою конфигурацию, переводят канал из открытого состояния в закрытое;

2) ионный фильтр - место связывания с ионами, которые пропускает данный канал, при этом канал характеризуется селективностью (способность пропускать только один вид ионов);

3) рецепторы - участки белка, которыми канал связывается с различными регуляторными молекулами;

4) участок модификации - особая часть белка, которая чаще всего подвергается реакции фосфорилирования-дефосфорилирования, что изменяет пропускную способность канала.

Вокруг главной субъединицы канала располагается система из нескольких субъединиц, которые формируют участки для взаимодействия с мембранными регуляторными белками, различными медиаторами, а также фармакологически активными веществами.

Классификация ионных каналов по их функциям:

1) по количеству ионов, для которых канал проницаем, каналы делят на селективные (проницаемы только для одного вида ионов) и неселективные (проницаемы для нескольких видов ионов);

2) по характеру ионов, которые они пропускают на Na + , Ca ++ , Cl - , K + -каналы;

3) по способу регуляции делятся на потенциалзависимые и потенциалнезависимые. Потенциалзависимые каналы реагируют на изменение потенциала мембраны клетки, и при достижении потенциалом определенной величины, канал переходит в активное состояние, начиная пропускать ионы по их градиенту концентрации. Так, натриевые и быстрые кальциевые каналы являются потенциалзависимыми, их активация происходит при снижении мембранного потенциала до 50-60 мВ, при этом ток ионов Na + и Ca ++ в клетку вызывает падение потенциала и генерацию ПД. Калиевые потенциалзависимые каналы активируются при развитии ПД и, обеспечивая ток ионов К + из клетки, вызывают реполяризацию мембраны.

Потенциалнезависимые каналы (хемоуправляемые) реагируют не на изменение мембранного потенциала, а на взаимодействие рецепторов, с которыми они взаимосвязаны, и их лигандов. Так, Cl - -каналы связаны с ГАМК-рецепторами и при взаимодействии этих рецепторов с g-аминомасляной кислотой они активируются и обеспечивают ток ионов хлора в клетку, вызывая ее гиперполяризацию и снижение возбудимости.

4. Потенциал покоя и действия. 5. Мембранно-ионная теория происхождения потенциала покоя и действия. 6. Местное и распространяющееся возбуждение.

Установлено, что мембрана любой живой клетки поляризована, внутренняя поверхность элетроотрицательна по отношению к наружной. Мембранный потенциал равен - (минус) 70 - (90) мв. При возбуждении происходит снижение величины исходного потенциала покоя с перезарядкой мембраны. Формирование и сохранение потенциала покоя обусловлено непрерывным движением ионов по ионным каналам мембраны, постоянно существующей разностью концентраций катионов по обе стороны мембраны, непрерывной работой натрий-калиевого насоса. За счет постоянного удаления из клетки иона натрия и активного переноса в клетку иона калия сохраняется разность концентраций ионов и поляризация мембраны. Концентрация иона калия в клетке превышает внеклеточную концентрацию в 30 - 40 раз, внеклеточная концентрация натрия примерно на порядок выше внутриклеточной. Электроотрицательность внутренней поверхности мембраны обусловлена наличием в клетке избытка анионов органических соединений, абсолютная величина потенциала покоя (мембранный потенциал, трансмембранный потенциал, равновесный калиевый потенциал) обусловлена главным образом соотношением внутри- и внеклеточной концентраций ионов калия и удовлетворительно описывается уравнением Нернста :

Современная теория учитывает так же:

1) разницу концентраций ионов натрия, хлора, кальция;

2) проницаемость (Р) мембраны для каждого иона в текущий момент времени.

Наличие потенциала покоя позволяет клетке практически мгновенно после действия раздражителя перейти из состояния функционального покоя в состояние возбуждения.

Возникновение потенциала действия (деполяризация)

Потенциал действия (ПД) развивается при наличии исходной поляризации мембраны (потенциала покоя) благодаря изменению проницаемости ионных каналов (натриевых и калиевых). После действия раздражителя потенциал покоя уменьшается, активация каналов повышает их проницаемость для ионов натрия , который входит в клетку и обеспечивает процесс деполяризации. Поступление в клетку иона натрия уменьшает электроотрицательность внутренней поверхности мембраны, что способствует активации новых ионных натриевых каналов и дальнейшему поступлению в клетку иона натрия. Действуют силы:

а) электростатическое притяжение внутриклеточных анионных группировок;

б) концентрационный градиент ионов натрия, направленный внутрь клетки.

Пик потенциала действия обусловлен равновесием поступления в клетку ионов натрия и равным их удалением под влиянием сил отталкивания одноимённо заряженных ионов.

Реполяризация

После инактивации (закрытия) натриевых каналов поступление в клетку ионов натрия становится минимальным. Выход из клетки ионов калия восстанавливает электроотрицательность внутренней поверхности мембраны. В последующем натрий/калиевый насос мембраны удаляет из клетки поступивший при деполяризации натрий и восстанавливает исходную концентрацию калия, который вышел из клетки при реполяризации.

Пассивные и активные сдвиги потенциала

Изменения мембранного потенциала мембран нервных и мышечных клеток, возникающие при прохождении электрического тока через мембрану, условно разделяют на пассивные (электротонические) и активные. Электротонические изменения потенциала зависят от электрической емкости и электрического сопротивления самой мембраны. Активные ответы мембраны - локальные ответы и потенциалы действия - обусловлены молекулярными перестройками мембраны, которые развиваются после действия электрического стимула и приводят к изменениям проницаемости каналов для ионов натрия.

Электротон (электротоническое изменение потенциала, пассивные сдвиги потенциала) связанс воздействиями на мембраны раздражителей, которые изменяют потенциал покоя, но не влияют при этом на ионную проницаемость каналов. Электротонические потенциалы способны изменять величину порогового потенциала и соответственно повышают или уменьшают возбудимость мембраны. После прекращения действия раздражителя мембранный потенциал возвращается к исходному состоянию. Изменения потенциала покоя под влиянием постоянного тока называются электротоном [анэлектротон в области анода; катэлектротон - в области катода]. Пассивные, электротонические изменения потенциала мембраны, вызываемые деполяризующим током, при приближении его силы к пороговой порождают активную подпороговую электрическую реакцию - локальный ответ. Активный локальный ответ суммируется с электротоническим потенциалом и хорошо выявляется при стимуляции нервного волокна сериями коротких толчков тока. Локальный ответ имеет более высокую амплитуду по сравнению с электротоническим потенциалом. По свойствам локальный ответ отличается от электротонического потенциала. В то время как амплитуда электротонического потенциала прямо пропорциональна силе тока, локальный ответ нелинейно зависит от силы стимула и возрастает по S-образной кривой, продолжает нарастать некоторое время после окончания вызвавшего его стимула. Возбудимость волокна при локальном ответе возрастает. По ряду свойств локальный ответ приближается к потенциалу действия. Способен к самостоятельному развитию: сначала к нарастанию, а затем к снижению после окончания вызвавшего его стимула. Однако от потенциала действия локальный ответ отличается тем, что:

1) не имеет четкого порога возникновения,

2) не сопровождается абсолютной рефрактерностью, возбудимость во время локального ответа обычно повышена,

3) способен к суммации при нанесении второго подпорогового стимула на фоне ответа от предыдущего раздражения,

4) не подчиняется правилу "все или ничего".

По сравнению с электротоническим потенциалом активные сдвиги потенциала (локальный ответ и потенциал действия) характеризуются увеличением проницаемости ионных каналов мембраны, имеют более высокую амплитуду. При локальном (местном) ответе амплитуда пропорциональна силе стимула, абсолютная величина отклонения его от потенциала покоя равна 10 - 15 мв. Разница между мембранным потенциалом покоя и критическим уровнем деполяризации (КУД) называется пороговым потенциалом (порогом деполяризации) . Изменение порогового потенциала (разница между потенциалом покоя - 70 мв и критическим уровнем деполяризации, равном примерно - 50 мв) более, чем на 50 - 75 % его величины сопровождается возникновением потенциала действия. Критический уровень деполяризации - это та величина деполяризации мембраны, при достижении которой развивается потенциал действия в результате активации натриевых ионных каналов. Количественно измеряется абсолютной величиной деполяризации (в мв), при которой локальный ответ переходит в потенциал действия (например -50 мв при потенциале покоя, равном -70 мв). Это величина, на которую нужно изменить потенциал покоя для возникновения потенциала действия. Величиной порогового потенциала можно характеризовать возбудимость клетки. При длительном действии деполяризующего постоянного тока происходит инактивация натриевых каналов и активации калиевых каналов, критический уровень деполяризации повышается. Разница между потенциалом покоя и КУД возрастает, увеличивается порог, следовательно, возбудимость уменьшается. Микроэлектродные исследования показывают, что при длительном действии раздражающего тока, наряду с увеличением КУД, уменьшается крутизна нарастания и амплитуда потенциала действия. Такое снижение возбудимости нервного волокна при длительной и сильной деполяризации получило название катодической депрессии (Вериго - по фамилии исследователя, описавшего это явление).

Возбудимость мембраны изменяется в зависимости от фазы потенциала действия. Измеряется возбудимость способностью ответить на тестирующие стимулы различной силы. При локальном ответе возбудимость возрастает (мембрана деполяризуется, пороговый потенциал уменьшается, приближаясь к величине критического уровня деполяризации (КУД)). Поэтому требуется меньшая сила стимула для получения потенциала действия. Во время пика потенциала действия мембрана полностью утрачивает возбудимость- абсолютный рефрактерный период. Причина его- полная инактивация натриевых каналов и повышение калиевой проводимости. Реполяризация мембраны приводит к реактивации натриевых каналов и снижению калиевой проводимости. Это период относительной рефрактерности , во время этой фазы возбудимость возрастает. При наличии следовой деполяризации (отрицательный следовой потенциал) возбудимость повышена (супернормальный период). Следовая гиперполяризация (положительный следовой потенциал) сопровождается пониженной возбудимостью - субнормальный период.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта