Главная » Галлюциногенные » Биологический круговорот веществ в природе. Круговорот биологический

Биологический круговорот веществ в природе. Круговорот биологический

Является выдающийся русский ученый академик В.И. Вернадский.

Биосфера — сложная наружная оболочка Земли, в которой содержится вся совокупность живых организмов и та часть вещества планеты, которая находится в процессе непрерывного обмена с этими организмами. Это одна из важнейших геосфер Земли, являющаяся основным компонентом природной среды, окружающей человека.

Земля состоит из концентрических оболочек (геосфер) как внутренних, так и внешних. К внутренним относятся ядро и мантия, а к внешним: литосфера - каменная оболочка Земли, включая земную кору (рис. 1) толщиной от 6 км (под океаном) до 80 км (горные системы); гидросфера - водная оболочка Земли; атмосфера — газовая оболочка Земли, состоящая из смеси различных газов, водяных паров и пыли.

На высоте от 10 до 50 км расположен слой озона, с максимальной его концентрацией на высоте 20-25 км, защищающий Землю от чрезмерного ультрафиолетового излучения, гибельного для организма. Сюда же (к внешним геосферам) относится и биосфера.

Биосфера - внешняя оболочка Земли, в которую входят часть атмосферы до высоты 25-30 км (до озонового слоя), практически вся гидросфера и верхняя часть литосферы примерно до глубины 3 км

Рис. 1. Схема строения земной коры

(рис. 2). Особенность этих частей состоит в том, что они населены живыми организмами, составляющими живое вещество планеты. Взаимодействие абиотической части биосферы — воздуха, воды, горных пород и органического вещества - биоты обусловило формирование почв и осадочных пород.

Рис. 2. Структура биосферы и соотношение поверхностей, занятых основными структурными единицами

Круговорот веществ в биосфере и экосистемах

Все доступные для живых организмов химические соединения в биосфере ограничены. Исчерпаемость пригодных для усвоения химических веществ часто тормозит развитие тех или иных групп организмов в локальных участках суши или океана. По выражению академика В.Р. Вильямса, единственный способ придать конечному свойства бесконечного состоит в том, чтобы заставить его вращаться по замкнутой кривой. Следовательно, устойчивость биосферы поддерживается благодаря круговороту веществ и потокам энергии. Имеются два основных круговорота веществ: большой — геологический и малый — биогеохимический.

Большой геологический круговорот (рис. 3). Кристаллические горные породы (магматические) под воздействием физических, химических и биологических факторов преобразуются в осадочные породы. Песок и глина — типичные осадки, продукты преобразования глубинных пород. Однако формирование осадков происходит не только за счет разрушения уже существующих пород, но также и путем синтеза биогенных минералов — скелетов микроорганизмов — из природных ресурсов — вод океана, морей и озер. Рыхлые водянистые осадки по мере их изоляции на дне водоемов новыми порциями осадочного материала, погружения на глубину, попадания в новые термодинамические условия (более высокие температуры и давления) теряют воду, отвердевают, преобразуясь при этом в осадочные горные породы.

В дальнейшем эти породы погружаются в еше более глубокие горизонты, где и протекают процессы их глубинного преобразования к новым температурным и барическим условиям, — происходят процессы метаморфизма.

Под воздействием потоков эндогенной энергии глубинные породы переплавляются, образуя магму — источник новых магматических пород. После поднятия этих пород на поверхность Земли, под действием процессов выветривания и переноса снова происходит их трансформация в новые осадочные породы.

Таким образом, большой круговорот обусловлен взаимодействием солнечной (экзогенной) энергии с глубинной (эндогенной) энергией Земли. Он перераспределяет вещества между биосферой и более глубокими горизонтами нашей планеты.

Рис. 3. Большой (геологический) круговорот веществ (тонкие стрелки) и изменение разнообразия в земной коре (сплошные широкие стрелки — рост, прерывистые — уменьшение разнообразия)

Большим круговоротом называется и круговорот воды между гидросферой, атмосферой и литосферой, который движется энергией Солнца. Вода испаряется с поверхности водоемов и суши и затем вновь поступает на Землю в виде осадков. Над океаном испарение превышает осадки, над сушей наоборот. Эти различия компенсируют речные стоки. В глобальном круговороте воды немаловажную роль играет растительность суши. Транспирация растений на отдельных участках земной поверхности может составить до 80-90% выпадающих здесь осадков, а в среднем по всем климатическим поясам — около 30%. В отличие от большого малый круговорот веществ происходит лишь в пределах биосферы. Взаимосвязь большого и малого круговорота воды показана на рис. 4.

Круговороты планетарного масштаба создаются из бесчисленных локальных циклических перемещений атомов, движимых жизнедеятельностью организмов в отдельных экосистемах, и тех перемещений, которые вызваны действием ландшафтных и геологических причин (поверхностный и подземный сток, ветровая эрозия, движение морского дна, вулканизм, горообразование и т.п.).

Рис. 4. Взаимосвязь большого геологического круговорота (БГК) воды с малым биогеохимическим круговоротом (МБК) воды

В отличие от энергии, которая однажды использована организмом, превращается в тепло и теряется, вещества в биосфере циркулируют, создавая биогеохимические круговороты. Из девяноста с лишним элементов, встречающихся в природе, живым организмам нужно около сорока. Наиболее важные для них требуются в больших количествах — углерод, водород, кислород, азот. Круговороты элементов и веществ осуществляются за счет саморегулирующих процессов, в которых участвуют все составные части . Эти процессы являются безотходными. Существует закон глобального замыкания биогеохимического круговорота в биосфере , действующий на всех этапах ее развития. В процессе эволюции биосферы увеличивается роль биологического компонента в замыкании биогеохимичес
кого круговорота. Еще большее влияние на биогеохимический круговорот оказывает Человек. Но его роль проявляется в противоположном направлении (круговороты становятся незамкнутыми). Основу биогеохимического круговорота вешеств составляют энергия Солнца и хлорофилл зеленых растений. Другие наиболее важные круговороты — воды, углерода, азота, фосфора и серы — связаны с биогеохимическим и способствуют ему.

Круговорот воды в биосфере

Растения используют водород воды при фотосинтезе в построении органических соединений, выделяя молекулярный кислород. В процессах дыхания всех живых существ, при окислении органических соединений вода образуется вновь. В истории жизни вся свободная вода гидросферы многократно прошла циклы разложения и новообразования в живом веществе планеты. В круговорот воды на Земле ежегодно вовлекается около 500 000 км 3 воды. Круговорот воды и ее запасы показаны на рис. 5 (в относительных величинах).

Круговорот кислорода в биосфере

Своей уникальной атмосферой с высоким содержанием свободного кислорода Земля обязана процессу фотосинтеза. С круговоротом кислорода тесно связано образование озона в высоких слоях атмосферы. Кислород освобождается из молекул воды и является по сути побочным продуктом фотосинтетической активности растений. Абиотическим путем кислород возникает в верхних слоях атмосферы за счет фотодиссоциации паров воды, но этот источник составляет лишь тысячные доли процента от поставляемых фотосинтезом. Между содержанием кислорода в атмосфере и гидросфере существует подвижное равновесие. В воде его примерно в 21 раз меньше.

Рис. 6. Схема круговорота кислорода: полужирные стрелки — основные потоки поступления и расхода кислорода

Выделившийся кислород интенсивно расходуется на процессы дыхания всех аэробных организмов и на окисление разнообразных минеральных соединений. Эти процессы происходят в атмосфере, почве, воде, илах и горных породах. Показано, что значительная часть кислорода, связанного в осадочных породах, имеет фотосинтетическое происхождение. Обменный фонд О, в атмосфере составляет не более 5% общей продукции фотосинтеза. Многие анаэробные бактерии также окисляют органические вещества в процессе анаэробного дыхания, используя для этого сульфаты или нитраты.

На полное разложение органического вещества, создаваемого растениями, требуется точно такое же количество кислорода, которое выделилось при фотосинтезе. Захоронение органики в осадочных породах, углях, торфах послужило основой поддержания обменного фонда кислорода в атмосфере. Весь имеющийся в ней кислород проходит полный цикл через живые организмы примерно за 2000 лет.

В настоящее время значительная часть кислорода атмосферы связывается в результате работы транспорта, промышленности и других форм антропогенной деятельности. Известно, что человечество тратит уже более 10 млрд т свободного кислорода из общего его количества в 430-470 млрд т, поставляемого процессами фотосинтеза. Если учесть, что в обменный фонд поступает лишь небольшая часть фотосинтетического кислорода, деятельность людей в этом отношении начинает приобретать угрожающие масштабы.

Круговорот кислорода теснейшим образом сопряжен с углеродным циклом.

Круговорот углерода в биосфере

Углерод как химический элемент является основой жизни. Он может разными способами соединяться со многими другими элементами, образуя простые и сложные органические молекулы, входящие в состав живых клеток. По распространению на планете углерод занимает одиннадцатое место (0,35% веса земной коры), но в живом веществе он в среднем составляет около 18 или 45% сухой биомассы.

В атмосфере углерод входит в состав углекислого газа С0 2 , в меньшей мере — в состав метана СН 4 . В гидросфере С0 2 растворен в воде, и общее его содержание намного превышает атмосферное. Океан служит мощным буфером регуляции СО 2 в атмосфере: при повышении в воздухе его концентрации увеличивается поглощение углекислого газа водой. Некоторая часть молекул С0 2 реагирует с водой, образуя угольную кислоту, которая затем диссоциирует на ионы НСО 3 - и СО 2- 3 " Эти ионы реагируют с катионами кальция или магния с выпадением в осадок карбонатов. Подобные реакции лежат в основе буферной системы океана, поддерживающей постоянство рН воды.

Углекислый газ атмосферы и гидросферы представляет собой обменный фонд в круговороте углерода, откуда его черпают наземные растения и водоросли. Фотосинтез лежит в основе всех биологических круговоротов на Земле. Высвобождение фиксированного углерода происходит в ходе дыхательной активности самих фотосинтезирующих организмов и всех гетеротрофов — бактерий, грибов, животных, включающихся в цепи питания за счет живого или мертвого органического вещества.

Рис. 7. Круговорот углерода

Особенно активно происходит возврат в атмосферу С0 2 из почвы, где сосредоточена деятельность многочисленных групп организмов, разлагающих остатки отмерших растений и животных и осуществляется дыхание корневых систем растений. Этот интегральный процесс обозначается как «почвенное дыхание» и вносит существенный вклад в пополнение обменного фонда С0 2 в воздухе. Параллельно с процессами минерализации органического вещества в почвах образуется гумус — богатый углеродом сложный и устойчивый молекулярный комплекс. Гумус почв является одним из важных резервуаров углерода на суше.

В условиях, где деятельность деструкторов тормозят факторы внешней среды (например, при возникновении анаэробного режима в почвах и на дне водоемов), органическое вещество, накопленное растительностью, не разлагается, превращаясь со временем в такие породы, как каменный или бурый уголь, торф, сапропели, горючие сланцы и другие, богатые накопленной солнечной энергией. Они пополняют собой резервный фонд углерода, надолго выключаясь из биологического круговорота. Углерод временно депонируется также в живой биомассе, в мертвом опаде, в растворенном органическом веществе океана и т.п. Однако основным резервным фондом углерода на пишете являются не живые организмы и не горючие ископаемые, а осадочные породы — известняки и доломиты. Их образование также связано с деятельностью живого вещества. Углерод этих карбонатов надолго захоронен в недрах Земли и поступает в круговорот лишь в ходе эрозии при обнажении пород в тектонических циклах.

В биогеохимическом круговороте участвуют лишь доли процента углерода от общего его количества на Земле. Углерод атмосферы и гидросферы многократно проходит через живые организмы. Растения суши способны исчерпать его запасы в воздухе за 4-5 лет, запасы в почвенном гумусе — за 300-400 лет. Основной возврат углерода в обменный фонд происходит за счет деятельности живых организмов, и лишь небольшая его часть (тысячные доли процента) компенсируется выделением из недр Земли в составе вулканических газов.

В настоящее время мощным фактором перевода углерода из резервного в обменный фонд биосферы становится добыча и сжигание огромных запасов горючих ископаемых.

Круговорот азота в биосфере

В атмосфере и живом веществе содержится менее 2% всего азота на Земле, но именно он поддерживает жизнь на планете. Азот входит в состав важнейших органических молекул — ДНК, белков, липопротеидов, АТФ, хлорофилла и др. В растительных тканях его соотношение с углеродом составляет в среднем 1: 30, а в морских водорослях I: 6. Биологический цикл азота поэтому также тесно связан с углеродным.

Молекулярный азот атмосферы недоступен растениям, которые могут усваивать этот элемент только в виде ионов аммония, нитратов или из почвенных или водных растворов. Поэтому недостаток азота часто является фактором, лимитирующим первичную продукцию — работу организмов, связанную с созданием органических веществ из неорганических. Тем не менее атмосферный азот широко вовлекается в биологический круговорот благодаря деятельности особых бактерий (азотфиксаторов).

В круговороте азота большое участие также принимают аммонифицирующие микроорганизмы. Они разлагают белки и другие содержащие азот органические вещества до аммиака. В аммонийной форме азот частью вновь поглощается корнями растений, а частью перехватывается нитрифицирующими микроорганизмами, что противоположно функциям группы микроорганизмов — денитрификаторов.

Рис. 8. Круговорот азота

В анаэробных условиях в почвах или водах они используют кислород нитратов для окисления органических веществ, получая энергию для своей жизнедеятельности. Азот при этом восстанавливается до молекулярного. Азотфиксация и денитрификация в природе приблизительно уравновешены. Цикл азота, таким образом, зависит преимущественно от деятельности бактерий, тогда как растения встраиваются в него, используя промежуточные продукты этого цикла и намного увеличивая масштабы циркуляции азота в биосфере за счет продуцирования биомассы.

Роль бактерий в круговороте азота настолько велика, что если уничтожить только 20 их видов, жизнь на нашей планете прекратится.

Небиологическая фиксация азота и поступление в почвы его окислов и аммиака происходит также с дождевыми осадками при ионизации атмосферы и грозовых разрядах. Современная промышленность удобрений фиксирует азот атмосферы в размерах, превышающих природную фиксацию азота, в целях увеличения продукции сельскохозяйственных растений.

В настоящее время деятельность человека все сильнее влияет на круговорот азота, в основном в сторону превышения перевода его в связанные формы над процессами возврата в молекулярное состояние.

Круговорот фосфора в биосфере

Этот элемент, необходимый для синтеза многих органических веществ, включая АТФ, ДНК, РНК, усваивается растениями только в виде ионов ортофосфорной кислоты (Р0 3 4 +). Он относится к элементам, лимитирующим первичную продукцию и на суше, и особенно в океане, поскольку обменный фонд фосфора в почвах и водах невелик. Круговорот этого элемента в масштабах биосферы незамкнут.

На суше растения черпают из почвы фосфаты, освобожденные редуцентами из разлагающихся органических остатков. Однако в щелочной или кислой почве растворимость фосфорных соединений резко падает. Основной резервный фонд фосфатов содержится в горных породах, созданных на дне океана в геологическом прошлом. В ходе выщелачивания пород часть этих запасов переходит в почву и в виде взвесей и растворов вымывается в водоемы. В гидросфере фосфаты используются фитопланктоном, переходя по цепям питания в другие гидробионты. Однако в океане большая часть фосфорных соединений захоранивается с остатками животных и растений на дне с последующим переходом с осадочными породами в большой геологический круговорот. На глубине растворенные фосфаты связываются с кальцием, образуя фосфориты и апатиты. В биосфере, по сути, происходит однонаправленный поток фосфора из горных пород суши в глубины океана, следовательно, обменный фонд его в гидросфере очень ограничен.

Рис. 9. Круговорот фосфора

Наземные залежи фосфоритов и апатитов используются при производстве удобрений. Попадание фосфора в пресные водоемы является одной из главных причин их «цветения».

Круговорот серы в биосфере

Круговорот серы, необходимой для построения ряда аминокислот, отвечает за трехмерную структуру белков, поддерживается в биосфере широким спектром бактерий. В отдельных звеньях этого цикла участвуют аэробные микроорганизмы, окисляющие серу органических остатков до сульфатов, а также анаэробные редукторы сульфата, восстанавливающие сульфаты до сероводорода. Кроме перечисленных группы серобактерий окисляют сероводород до элементарной серы и далее до сульфатов. Растения усваивают из почвы и воды только ионы SO 2- 4 .

Кольцо в центре иллюстрирует процесс окисления (О) и восстановления (R), благодаря которым происходит обмен серы между фондом доступного сульфата и фондом сульфидов железа, находящимся глубоко в почве и осадках.

Рис. 10. Круговорот серы. Кольцо в центре иллюстрирует процесс окисления (0) и восстановления (R), благодаря которым происходит обмен серы между фондом доступного сульфата и фондом сульфидов железа, находящимся глубоко в почве и осадках

Основное накопление серы происходит в океане, куда ионы сульфатов непрерывно поступают с суши с речным стоком. При выделении из вод сероводорода сера частично возвращается в атмосферу, где окисляется до диоксида, превращаясь в дождевой воде в серную кислоту. Промышленное использование большого количества сульфатов и элементарной серы и сжигание горючих ископаемых поставляют в атмосферу большие объемы диоксида серы. Это вредит растительности, животным, людям и служит источником кислотных дождей, усугубляющих отрицательные эффекты вмешательства человека в круговорот серы.

Скорость круговорота веществ

Все круговороты веществ происходят с различной скоростью (рис. 11)

Таким образом, круговороты всех биогенных элементов на планете поддерживаются сложным взаимодействием разных частей . Они формируются деятельностью разных по функциям групп организмов, системой стока и испарения, связывающих океан и сушу, процессами циркуляции вод и воздушных масс, действием сил гравитации, тектоникой литосферных плит и другими масштабными геологическими и геофизическими процессами.

Биосфера действует как единая сложная система, в которой происходят различные круговороты веществ. Главным двигателем этихкруговоротов является живое вещество планеты, все живые организмы, обеспечивающие процессы синтеза, трансформации и разложения органического вещества.

Рис. 11. Темпы циркуляции веществ (П. Клауд, А. Джибор, 1972)

В основе экологического взгляда на мир лежит представление о том, что каждое живое существо окружено множеством влияющих на него различных факторов, образующих в комплексе его место обитания — биотоп. Следовательно, биотоп — участок территории, однородный по условиям жизни для определенных видов растений или животных (склон оврага, городской лесопарк, небольшое озеро или часть большого, но с однородными условиями — прибрежная часть, глубоководная часть).

Организмы, характерные для определенного биотопа, составляют жизненное сообщество, или биоценоз (животные, растения и микроорганизмы озера, луга, береговой полосы).

Жизненное сообщество (биоценоз) образует со своим биотопом единое целое, которое называется экологической системой (экосистемой). Примером естественных экосистем могут служить муравейник, озеро, пруд, луг, лес, город, ферма. Классическим примером искусственной экосистемы является космический корабль. Как видно, здесь нет строгой пространственной структуры. Близким к понятию экосистемы является понятие биогеоценоза.

Основными компонентами экосистем являются:

  • неживая (абиотическая) среда. Это вода, минеральные вещества, газы, а также органические вещества и гумус;
  • биотические компоненты. К ним относятся: продуценты или производители (зеленые растения), консументы, или потребители (живые существа, питающиеся продуцентами), и редуценты, или разлагатели (микроорганизмы).

Природа действует в высшей степени экономно. Так, созданная организмами биомасса (вещество тел организмов) и содержащаяся в них энергия передаются другим членам экосистемы: животные поедают растения, этих животных поедают другие животные. Этот процесс называют пищевой, или трофической, цепью. В природе пищевые цепи зачастую перекрещиваются, образуя пищевую сеть.

Примеры пищевых цепей: растение — растительноядное животное — хищник; злак — полевая мышь — лиса и др. и пищевая сеть показаны на рис. 12.

Таким образом, состояние равновесия в биосфере основано на взаимодействии биотических и абиотических факторов среды, которое поддерживается благодаря непрерывному обмену веществом и энергией между всеми компонентами экосистем.

В замкнутых круговоротах естественных экосистем наряду с другими обязательно участие двух факторов: наличие редуцентов и постоянное поступление солнечной энергии. В городских и искусственных экосистемах мало или совсем нет редуцентов, поэтому жидкие, твердые и газообразные отходы накапливаются, загрязняя окружающую среду.

Рис. 12. Пищевая сеть и направление потока вещества

В наши дни растения и животные преобразуют природную среду. Примером тому могут служить коралловые рифы в океане, отложения торфа на болотах, распространение лишайников, расселение водорослей, разрушающих горы, и микроорганизмов. В биологическом круговороте участвуют практически все химические элементы периодической системы Д. И. Менделеева, но среди них выделяются основные, жизненно необходимые.

Углерод. Источники углерода в природе столь же многочисленны, сколь и разнообразны. Между тем только углекислота, находящаяся либо в газообразном состоянии в атмосфере, либо в растворенном состоянии в воде, представляет собой тот источник углерода, который служит основой для переработки его в органическое вещество живых существ. Захваченная растениями углекислота в процессе фотосинтеза превращается в сахар, а другими процессами биосинтеза преобразуется в протеиды, липиды и т. д. Эти различные вещества служат углеводным питанием животным и не зеленым растениям. С другой стороны, все организмы дышат и выбрасывают в атмосферу углерод в форме углекислоты. Когда же наступает смерть, то сапрофаги разлагают и минерализуют трупы, образуя цепи питания, в конце которых углерод нередко вновь поступает в круговорот в форме углекислоты (так называемое «почвенное дыхание»). Накапливающиеся мертвые растительные и животные остатки замедляют круговорот углерода: животные-сапрофаги и сапрофитические микроорганизмы, обитающие в почве, превращают накопившиеся на ее поверхности остатки в гумус. Скорость воздействия организмов на гумус далеко не одинакова, а цепи грибов и бактерий, приводящие к окончательной минерализации углерода, бывают различной длины. Как правило, гумус разлагается быстро.
Иногда цепь может быть короткой и неполной. В этом случае цепь консументов лишается возможности действовать из-за недостатка воздуха или слишком высокой кислотности, в результате чего органические остатки накапливаются в форме торфа и образуют торфяные болота. В некоторых торфяных болотах с пышным покровом из сфагновых мхов слой торфа достигает 20 м и более. Здесь круговорот и приостанавливается. Скопления ископаемых органических соединений в виде и нефти свидетельствуют о том, что круговорот замедлился в масштабах геологического времени.

В воде также происходит замедление круговорота углерода, поскольку углекислота здесь накапливается в виде мела, известняка, доломита или кораллов. Часто эти массы углерода остаются вне круговорота в течение целых геологических периодов, пока они не поднимутся над уровнем моря. С этого момента в результате растворения известняка и или под воздействием лишайников, а также корней цветковых растений начинается включение углерода и кальция в круговорот.

АЗОТ. Круговорот азота довольно сложен. содержит 78% азота, однако, для того чтобы он мог быть использован подавляющим большинством живых организмов, он должен быть зафиксирован в виде определенных химических соединений. Фиксация азота происходит в процессе вулканической деятельности, при грозовых разрядах в атмосфере, при сгорании метеоритов. Однако несравненно большее значение в процессе фиксации азота имеют микроорганизмы как свободно живущие, так и обитающие на корнях, а иногда и на листьях некоторых растений. Из свободно живущих бактерий азот фиксируют аэробные организмы (т. е. обитающие при доступе кислорода), а также анаэробные (т. е. обитающие без доступа кислорода). Количество азота, фиксируемого такими свободно живущими бактериями, составляет от 2 — 3 кг до 5 - 6 кг на 1 га в год. Определенную роль в фиксации азота играют, видимо, обитающие в почве сине-зеленые водоросли.

Поступая в почву с продуктами обмена веществ и остатками растений и животных, органические вещества разлагаются до минеральных, при этом бактерии переводят азот органических веществ в соли аммония.

Способность азота в широких пределах менять валентность определяет его специфическую роль в создании разнообразных органических соединений.

Большой на поверхности земного шара хорошо известен. Вызываемое солнечной энергией испарение с водных пространств создает атмосферную влагу. Эта влага конденсируется в виде облаков, переносимых ветром. При охлаждении облаков выпадают осадки в виде дождя и снега. Осадки поглощаются почвой или стекают по ее поверхности. Вода возвращается в моря и океаны. Количество воды, испаряемой растениями, обычно велико. Если влаги и воды для растений много, испарение увеличивается. Одна береза испаряет за день 75 л воды, бук- 100 л, липа -200 л, а 1 га леса - от 20 до 50 тыс. л. Березняк, масса листвы которого на 1 га составляет лишь 4940 кг, испаряет 47 тыс. л воды в день, тогда как ельник, масса хвои которого на 1 га равна 31 тыс. кг. — только 43 тыс. л волы в лень. Пшеница на 1 га использует за период развития 3750 т воды, что соответствует 375 мм осадков.

Кислород в количественном отношении - главная составляющая живой материи. Если учитывать воду в тканях, то, например, тело человека содержит 62,8% кислорода и 19,4% углерода. Если рассматривать в целом, кислород по сравнению с углеродом и водородом является ее основным элементом.

Круговорот кислорода усложняется тем, что этот элемент может образовывать многочисленные химические соединения. В результате возникает множество промежуточных циклов между и атмосферой или между и двумя этими средами.

Кислород, начиная с определенной концентрации, очень токсичен для клеток и тканей даже у аэробных организмов. Французский ученый Луи Пастер (1822 — 1895) доказал, что никакой живой анаэробный организм не может выдержать концентрацию кислорода, превышающую атмосферную на 1% (эффект Пастера).

Круговорот кислорода происходит в основном между атмосферой и живыми организмами. Процесс продуцирования и выделения кислорода в виде газа во время фотосинтеза противоположен процессу его потребления при дыхании. При этом происходит разрушение органических веществ и взаимодействие кислорода с водородом. В некотором отношении круговорот кислорода напоминает обратный круговорот углекислого газа: движение одного происходит в направлении, противоположном движению другого.

Сера. Преобладающая часть круговорота этого элемента имеет осадочную природу и происходит в почве и воде. Основной источник серы, доступный живым существам, - это всевозможные сульфаты. Хорошая растворимость в воде многих сульфатов облегчает доступ неорганической серы в экосистемы. Поглощая сульфаты, растения их восстанавливают и вырабатывают серосодержащие аминокислоты.

Различные органические отбросы биоценоза разлагаются бактериями, которые, в конце концов, вырабатывают сероводород из сульфопротеинов, содержащихся в почве. Некоторые бактерии тоже могут вырабатывать сероводород из сульфатов, восстанавливаемых ими в анаэробных условиях. Эти бактерии, утилизируя сульфаты, получают необходимую для их обмена веществ энергию.

С другой стороны, существуют бактерии, способные опять окислить сероводород до сульфатов, что вновь увеличивает запас серы, доступной продуцентам. Подобные бактерии называются хемосинтезирующими, так как они могут вырабатывать клеточную энергию без участия света, только за счет окисления простых химических веществ. Итак, в биосфере осадочные породы содержат основные запасы серы, которая встречается главным образом в виде пирита, а также и сульфатов, например гипс.

Фосфор. Круговорот фосфора относительно прост и весьма неполон. Фосфор - один из основных составляющих элементов живого вещества, в котором он содержится довольно в большом количестве. Запасы фосфора, доступные живым существам, полностью сосредоточены в литосфере. Главные источники неорганического фосфора - изверженные породы (например, апатиты) или осадочные породы (например, фосфориты). Минеральный фосфор - редкий элемент в биосфере, в земной коре его не больше 1%, что является основным фактором, лимитирующим продуктивность многочисленных экосистем. Неорганический фосфор из пород земной коры вовлекается в циркуляцию путем выщелачивания и растворения в континентальных водах. Он попадает в экосистемы суши, поглощается растениями, которые при его участии синтезируют различные органические соединения, и таким образом включается в трофические связи. Затем органические фосфаты вместе с трупами, отходами и выделениями живых существ возвращаются в землю, где вновь подвергаются воздействию микроорганизмов и превращаются в минеральные ортофосфаты, готовые к употреблению зелеными растениями и другими автотрофами (от греч. autos — сам и trophe — пища, питание).

В водные экосистемы фосфор приносится текучими водами. Реки непрерывно обогащают океаны фосфатами, что способствует развитию фитопланктона и живых организмов, расположенных на различных уровнях пищевых цепей пресноводных или морских водоемов. История любого химического элемента в ландшафте складывается из бесчисленного множества круговоротов, различных по масштабу и продолжительности. Противоположные процессы - биогенная аккумуляция и минерализация - образуют единый биологический круговорот атомов.

Тундровые ландшафты образуются в условиях холодного с коротким летним периодом и потому малопродуктивны. Низкие и почвы — первопричина многих особенностей тундры. С дефицитом тепла связаны и «волны жизни»: в годы с более теплым летом возрастает продукция живого вещества. Некоторые растения цветут в тундре только в благоприятные годы (например, иван-чай в арктической тундре). Растения в тундре растут медленно. Лишайники за год вырастают на 1 - 10 мм; можжевельник на с диаметром ствола 83 мм может иметь до 544 годичных колец. Сказывается не только влияние низких температур, но и отсутствие достаточного количества питательных элементов.

Во многих тундрах большую роль играют мхи и лишайники. Есть ландшафты, в которых они преобладают.

В тундре биомасса растений равна 170,3 u/га, из них 72% приходится на подземную часть. Ежегодный прирост биомассы составляет 23,5 ц/га, а ежегодный опад - 21,9 ц/га. Таким образом, истинный прирост, равный разности между приростом и опадом, очень мал - 1,6 ц/га (в северной тайге - 10 ц/га, в южной тайге - 30 ц/га, во влажных тропиках — 75 ц/га).

Из-за низкой температуры разложение остатков организмов в тундре протекает медленно, многие группы микроорганизмов не функционируют или же работают очень слабо (бактерии, разлагающие клетчатку, и др.). Это ведет к накоплению органических веществ на поверхности и в почве.

Широколиственные леса в России распространены в европейской части, на , . Это все регионы влажного умеренно-теплого климата. Биомасса здесь не намного меньше, чем во влажных тропиках (3000 5000 ц/га), но ежегодная продукция и зеленая ассимилирующая масса меньше в несколько раз. Продукция колеблется от 80 до 150 ц/га (во влажных тропиках — 300 - 500 ц/га), зеленая ассимилирующая масса в дубравах составляет 1% биомассы и достигает 40 ц/га (8% и 400 ц/га во влажных тропиках).

Широколиственные деревья сравнительно богаты золой, особенно листья (до 5%). В золе листьев много Са - до 20% или 0,6 - 3,8% на сухое вещество, меньше К (0,15 - 2,0%) и Si (0,4 - 2,8%), еще меньше Mg, А1, Р, а также Fe, Mn, Na, С1.

В тайге биомасса не намного уступает влажным тропикам и широколиственным лесам. В южной тайге биомасса превышает 3000 ц/га и только в северной тайге понижается до 500 - 1500 ц/га. Зоомасса в тайге ничтожна (в южной тайге - 0,01% биомассы).

Более 60% биомассы представлено древесиной, состоящей из клетчатки (около 50%), лигнина (20 - 30%), гемицеллюлозы (более 10%).

Ежегодная продукция в южной тайге почти такая же, как в широколиственных лесах (85 ц/га против 90 ц/га в дубравах), в северной тайге - намного меньше (40 - 60 ц/га). Растительный опад в южной тайге меньше, чем в дубравах, и равен 55 ц/га (в дубравах 65 ц/га); в северной тайге еще меньше - 35 ц/га.

Влажные тропики занимают большие площади в экваториальной , Южной и Юго- , Центральной и . Еще шире они были распространены в прошлые геологические эпохи (с конца девона). Изобилие тепла сочетается здесь с изобилием осадков, тепло и влага не лимитируют единого биологического круговорота атомов. атомов происходит с одинаковой интенсивностью в течение всего года, периодичность миграции выражена слабо.
Обилие тепла и влаги определяет большую ежегодную продукцию живого вещества во влажных тропиках. Величина продукции здесь в 2 - 3 раза больше, чем в широколиственных лесах и тайге, и достигает 300 - 500 ц/га. По соотношениям биомассы и продукции, надземной и подземной, зеленой и незеленой биомассы и многим другим показателям влажные тропики также существенно не отличаются от других влажных лесных ландшафтов. Однако по количеству калия в биомассе влажные тропики отличаются от и широколиственных лесов. Биомасса животных во влажных тропиках составляет около 1% биомассы (45 ц/га). Это главным образом термиты, муравьи и другие низшие животные. По этому показателю влажные тропики резко отличаются от тайги, в которой накапливается лишь 3,6 ц/га зоомассы (0,01% биомассы). Разложение большой массы органических веществ насыщает воды углекислым газом и органическими кислотами. Основными элементами, попадающими в воду при биологическом круговороте, являются Si и Са, К. Mg, Al, Fe, Mn, S. В листьях тропических деревьев высоко содержание Si. При биологическом круговороте дождевыми водами из листьев вымывается большое количество N, Р, К, Са, Mg, Na, CI, S и других элементов.

Степи и пустыни близки по многим свойствам. Биомасса в степях на порядок меньше, чем в лесных ландшафтах, - от 100 до 350 ц/га. Большая ее часть в отличие от лесов сосредоточена в корнях (70 - 90%). Биомасса животных в степях около 6%. Ежегодная продукция составляет 13 - 50 ц/га, т. е. 30 - 50% биомассы.

Ежегодно в биологический круговорот атомов в степях вовлекаются сотни килограммов растворимых в воде веществ (на 1 га), т. е. значительно больше, чем в тайге (луговые степи - 700 кг/га; южная тайга - 155 кг/га). В луговых степях с опадом ежегодно возвращаются 700 кг/га растворимых в воде веществ, в сухих - 150 кг/га (в ельниках южной тайги — 120 кг/га). В опаде большую роль играют основания, полностью нейтрализующие органические кислоты.

В отличие от лесных ландшафтов в почвах степей накапливается в 20 - 30 раз больше органического вещества, чем в биомассе (в луговых степях - до 8000 ц/га гумуса; в сухих степях - 1000 - 1500 ц/га). Для степей и пустынь наиболее характерны Са, Na и Mg, которые накапливаются при засолении в водах, почвах и продуктах выветривания.

По минеральному составу все степные травы делят на три группы: злаки с высоким содержанием Si и невысоким содержанием N; бобовые со значительным накоплением К, Са и N; разнотравье, занимающее промежуточное положение.

Круговорот элементов в неживой природе

Круговорот веществ в большом геологическом круговороте.

Большой геологический круговорот

Большой геологический круговорот минеральных веществ и воды протекает под действием огромного количества абиотических факторов.

Согласно теории литосферных плит, внешняя оболочка Земли состоит из нескольких очень больших блоков (плит). Эта теория предполагает существование горизонтальных перемещений мощных литосферных плит, толщиной 100 – 150 км.

При этом в пределах срединно-океанических хребтов, так называемой зоны рифтов. Происходят разрыв и раздвигание литосферных плит с образованием молодой океанической коры

Это явление называется спредингом океанического дна. Т.о., из глубин мантии поднимается поток минеральных веществ, образующий молодые кристаллические породы.

В противовес этому процессу в зоне глубоководных океанических желобов постоянно происходит надвигание одной части континентальной коры на другую, что сопровождается погружением периферийной части плиты в мантию, т.е., часть твёрдого вещества земной коры переходит в состав мантии Земли. Процесс, происходящий в океанических глубоководных желобах, назван субдукцией океанической коры.

Круговорот воды на планете действует непрерывно и повсеместно. Движущие силы круговорота воды – тепловая энергия и сила тяжести. Под влиянием тепла происходят испарение, конденсация водяных паров и другие процессы, на что расходуется около 50% энергии, поступающей от солнца. Под влиянием силы тяжести – падение капель дождя, течение рек, движение почвенных и подземных вод. Часто эти причины действуют совместно, например, на атмосферную циркуляцию воды действуют как тепловые процессы, так и сила тяжести.

Осуществляется двумя путями: водной и воздушной миграцией. К воздушным мигрантам относят: кислород, водород, азот, йод.

К водным мигрантам относят те вещества, которые мигрируют преимущественно в почвах, поверхностных и подземных водах в основном в виде молекул и ионов: натрий, магний, алюминий, кремний, фосфор, сера, хлор, калий, марганец, железо, кобальт, никель, стронций, свинец и др. Воздушные мигранты входят также в состав солей, которые мигрируют в воде. Однако воздушная миграция для них более типична.

Масса живого вещества биосферы сравнительно мала. Если её распределить по земной поверхности, то получиться слой всего в 1,5 см. В таблице 4.1 сопоставлены некоторые количественные характеристики биосферы и других геосфер Земли. Биосфера, составляя менее 10-6 массы других оболочек планеты, обладает несравненно большим разнообразием и обновляет свой состав в миллион раз быстрее.



Таблица 4.1

Сравнение биосферы с другими геосферами Земли

*Живое вещество в расчёте на живой вес

4.4.1. Функции биосферы

Благодаря биоте биосферы осуществляется преобладающая часть химических превращений на планете. Отсюда суждение В.И. Вернадского об огромной преобразующей геологической роли живого вещества. На протяжении органической эволюции живые организмы тысячекратно (для разных круговоротов от 103 до 105 раз) пропустили через себя, через свои органы, ткани, клетки, кровь всю атмосферу, весь объём Мирового океана, большую часть массы почв, огромную массу минеральных веществ. И не только пропустили, но и в соответствии со своими потребностями видоизменили земную среду.

Благодаря способности трансформировать солнечную энергию в энергию химических связей растения и другие организмы выполняют ряд фундаментальных биогеохимических функций планетарного масштаба.

Газовая функция. Живые существа постоянно обмениваются кислородом и углекислым газом с окружающей средой в процессах фотосинтеза и дыхания. Растения сыграли решающую роль в смене восстановительной среды на окислительную в геохимической эволюции планеты и в формировании газового состава современной атмосферы. Растения строго контролируют концентрации О2 и СО2, оптимальные для совокупности всех современных живых организмов.

Концентрационная функция. Пропуская через своё тело большие объёмы воздуха и природных растворов, живые организмы осуществляют биогенную миграцию (движение химических веществ) и концентрирование химических элементов и их соединений. Это относится к биосинтезу органики, образование коралловых островов, строительство раковин и скелетов, появление толщ осадочных известняков, месторождений некоторых металлических руд, скопление железно–марганцевых конкреций, на дне океана т. д. Ранние этапы биологической эволюции проходили в водной среде. Организмы научились извлекать из разбавленного водного раствора необходимые для них вещества, многократно увеличивая их концентрацию в своём теле.

Окислительно – восстановительная функция живого вещества тесно связана с биогенной миграцией элементов и концентрированием веществ. Многие вещества в природе устойчивы и не подвергаются окислению при обычных условиях, например, молекулярный азот – один из важнейших биогенных элементов. Но живые клетки располагают настолько мощными катализаторами – ферментами, что способны осуществлять многие окислительно-восстановительные реакции в миллионы раз быстрее, чем это может проходить в абиотической среде.

Информационная функция живого вещества биосферы. Именно с появлением первых примитивных живых существ на планете появилась и активная («живая») информация, отличающаяся от той «мёртвой» информации, которая является простым отражением структуры. Организмы оказались способными к получению информации путём соединения потока энергии с активной молекулярной структурой, играющей роль программы. Способность воспринимать, хранить и перерабатывать молекулярную информацию совершила опережающую эволюцию в природе и стала важнейшим экологическим системообразующим фактором. Суммарный запас генетической информации биоты оценивается в 1015 бит. Общая мощность потока молекулярной информации, связанной с обменом веществ и энергии во всех клетках глобальной биоты достигает 1036 бит/с (Горшков и др., 1996).

4.4.2. Составляющие биологического круговорота.

Биологический круговорот осуществляется между всеми составляющими биосферы (т. е. между почвой, воздухом, водой, животными, микроорганизмами и т.д.). Он происходит при обязательном участии живых организмов.

Достигающее биосферы солнечное излучение несёт в себе энергию около 2,5*1024 Дж в год. Только 0,3% её непосредственно преобразуется в процессе фотосинтеза в энергию химических связей органических веществ, т.е. вовлекается в биологический круговорот. А 0,1 – 0,2 % солнечной энергии, падающей на Землю, оказывается заключённой в чистой первичной продукции. Дальнейшая судьба этой энергии связана с передачей органического вещества пищи по каскадам трофических цепей.

Биологический круговорот условно можно разделить на взаимосвязанные составляющие: круговорот веществ и энергетический круговорот.

4.4.3. Энергетический круговорот. Трансформация энергии в биосфере

Экосистему можно описать как совокупность живых организмов, обменивающихся непрерывно энергией, веществом, информацией. Энергию можно определить как способность производить работу. Свойства энергии, в том числе и движение энергии в экосистемах, описываются законами термодинамики.

Первый закон термодинамики или закон сохранения энергии утверждает, что энергия не исчезает и не создаётся заново, она лишь переходит из одной формы в другую.

Второй закон термодинамики утверждает, что в замкнутой системе энтропия может только возрастать. Применительно к энергии в экосистемах удобна следующая формулировка: процессы, связанные с превращением энергии, могут происходить самопроизвольно только при условии, что энергия переходит из концентрированной формы в рассеянную, то есть деградирует. Мера количества энергии, которая становится недоступной для использования, или иначе мера изменения упорядоченности, которая происходит при деградации энергии, есть энтропия. Чем выше упорядоченность системы, тем меньше её энтропия.

Говоря другими словами, живое вещество получает и трансформирует энергию космоса, солнца в энергию земных процессов (химическую, механическую, тепловую, электрическую). Вовлекает эту энергию и неорганическую материю в непрерывный круговорот веществ в биосфере. Поток энергии в биосфере имеет одно направление – от Солнца через растения (автотрофы) к животным (гетеротрофы). Природные нетронутые экосистемы в устойчивом состоянии с постоянными важнейшими экологическими показателями (гомеостаз), являются наиболее упорядоченными системами, и характеризуются наименьшей энтропией.

4.4.4. Круговорот веществ в живой природе

Образование живого вещества и его разложение – две стороны единого процесса, который называется биологическим круговоротом химических элементов. Жизнь – круговорот химических элементов между организмами и средой.

Причина круговорота – ограниченность элементов, из которых строятся тела организмов. Каждый организм извлекает из окружающей среды необходимые для жизнедеятельности вещества и возвращает неиспользованные. При этом:

одни организмы потребляют минеральные вещества непосредственно из окружающей среды;

другие используют продукты, переработанные и выделенные первыми;

третьи – вторыми и т.д., пока вещества не возвратятся в окружающую среду в первоначальном состоянии.

В биосфере очевидна необходимость сосуществования различных организмов, способных использовать продукты жизнедеятельности друг друга. Мы видим практически безотходное биологическое производство.

Круговорот веществ в живых организмах условно можно свести к четырём процессам:

1.Фотосинтез. В результате фотосинтеза растения усваивают и аккумулируют солнечную энергию и синтезируют из неорганических веществ органические вещества - первичную биологическую продукцию - и кислород. Первичная биологическая продукция отличается большим разнообразием – содержит углеводы (глюкозу), крахмал, клетчатку, белки, жиры.

Схема фотосинтеза простейшего углевода (глюкозы) имеет следующую схему:

Этот процесс протекает только днём и сопровождается увеличением массы растений.

На Земле ежегодно в результате фотосинтеза образуется около 100 млрд. т. органического вещества, усваивается около 200 млрд. т. углекислого газа, выделяется примерно 145 млрд. т кислорода.

Фотосинтезу принадлежит решающая роль в обеспечении существования жизни на Земле. Его глобальное значение объясняется тем, что фотосинтез является единственным процессом, в ходе которого энергия в термодинамическом процессе согласно с минималистским принципом не рассеивается, а наоборот – накапливается.

Синтезируя необходимые для построения белков аминокислоты, растения могут существовать относительно независимо от других живых организмов. В этом проявляется автотрофность растений (самостоятельность в питании). В то же время зелёная масса растений и кислород, образующийся в процессе фотосинтеза, являются основой для поддержания жизни следующей группы живых организмов – животных, микроорганизмов. В этом проявляется гетеротрофность этой группы организмов.

2. Дыхание. Процесс обратный фотосинтезу. Происходит во всех живых клетках. При дыхании органическое вещество окисляется кислородом, в результате образуется углекислый газ, вода и выделяется энергия.

3. Пищевые (трофические) связи между автотрофными и гетеротрофными организмами. В данном случае происходит перенос энергии и вещества по звеньям пищевой цепи, которые более подробно были нами рассмотрены ранее.

4. Процесс транспирации. Один из самых важных процессов в биологическом круговороте.

Схематично его можно описать следующим образом. Растения поглощают почвенную влагу корнями. При этом в них поступают растворённые в воде минеральные вещества, которые усваиваются, а влага более или менее интенсивно испаряется в зависимости от условий среды.

4.4.5. Биогеохимические циклы

Геологический и биологический круговороты связаны – они существуют как единый процесс, рождая циркуляцию веществ, так называемые биогеохимические циклы (БГХЦ). Этот круговорот элементов обусловлен синтезом и распадом органических веществ в экосистеме (рис.4.1) В БГХЦ задействованы не все элементы биосферы, а только биогенные. Из них состоят живые организмы, эти элементы вступают в многочисленные реакции и участвуют в процессах, протекающих в живых организмах. В процентном соотношении совокупная масса живого вещества биосферы состоит из следующих основных биогенных элементов: кислорода – 70%, углерода – 18%, водорода – 10,5%, кальция – 0,5%, калия – 0,3%, азот – 0,3%, (кислород, водород, азот, углерод присутствуют во всех ландшафтах и являются основой живых организмов – 98%).

Сущность биогенной миграции химических элементов.

Таким образом, в биосфере имеют место биогенный круговорот веществ (т.е. круговорот, вызванный жизнедеятельностью организмов) и однонаправленный поток энергии. Биогенная миграция химических элементов определяется в основном двумя противоположными процессами:

1. Образование живого вещества из элементов окружающей среды за счет солнечной энергии.

2. Разрушение органических веществ, сопровождающееся выделением энергии. При этом элементы минеральных веществ многократно попадают в живые организмы, входя тем самым в состав сложных органических соединений, форм, а затем при разрушении последних снова приобретают минеральную форму.

Существуют элементы, входящие в состав живых организмов, но не относящиеся к биогенным. Такие элементы классифицируются по их весовой доле в организмах:

Макроэлементы – составляющие не менее 10-2% массы;

Микроэлементы – составляющие от 9*10-3 до 1*10-3% массы;

Ультрамикроэлементы – менее 9*10-6% массы;

Чтобы определить место биогенных элементов среди других химических элементов биосферы, рассмотрим принятую в экологии классификацию. По проявляемой активности в процессах, протекающих в биосфере, все химические элементы делят на 6 групп:

Благородные газы – гелий, неон, аргон, криптон, ксенон. Инертные газы в состав живых организмов не входят.

Благородные металлы – рутений, радий, палладий, осмий, иридий, платина, золото. Эти металлы почти не создают соединений в земной коре.

Циклические или биогенные элементы (их ещё называют миграционными). На эту группу биогенных элементов в земной коре приходится 99,7% всей массы, а на остальные 5 групп – 0,3%. Таким образом, основная масса элементов – это мигранты, которые осуществляют кругооборот в географической оболочке, а часть инертных элементов очень мала.

Рассеянные элементы, характеризующиеся преобладанием свободных атомов. Вступают в химические реакции, но их соединения редко встречаются в земной коре. Разделяются на две подгруппы. Первая – рубидий, цезий, ниобий, тантал – создают соединения в глубинах земной коры, а на поверхности их минералы разрушаются. Вторая – йод, бром – вступают в реакции лишь на поверхности.

Радиоактивные элементы – полоний, радон, радий, уран, нептуний, плутоний.

Редкоземельные элементы – иттрий, самарий, европий, тулий т.д.

Круглогодично биохимические циклы приводят в движение около 480 млрд. т. вещества.

В.И. Вернадский сформулировал три биогеохимических принципа, которые объясняют сущность биогенной миграции химических элементов:

Биогенная миграция химических элементов в биосфере всегда стремится к максимальному своему проявлению.

Эволюция видов в ходе геологического времени, приводящая к созданию устойчивых форм жизни, идёт в направлении, усиливающем биогенную миграцию атомов.

Живое вещество находится в непрерывном химическом обмене с окружающей его средой, что является фактором, воссоздающим и поддерживающим биосферу.

Рассмотрим, как движутся в биосфере некоторые из этих элементов.

Круговорот углерода. Главным участником биотического круговорота является углерод как основа органических веществ. Преимущественно круговорот углерода происходит между живым веществом и углекислым газом атмосферы в процессе фотосинтеза. С пищей его получают травоядные, от травоядных – хищники. При дыхании, гниении углекислый газ частично возвращается в атмосферу, возврат происходит при сжигании органических полезных ископаемых.

При отсутствии возврата углерода в атмосферу, он был бы израсходован зелёными растениями за 7-8 лет. Скорость биологического оборота углерода через фотосинтез – 300 лет. Мировой океан играет большую роль в регулировании содержания СО2 в атмосфере. Если в атмосфере повышается содержание СО2, часть его растворяется в воде, вступая в реакцию с карбонатом кальция.

Круговорот кислорода.

Кислород обладает высокой химической активностью, вступает в соединения практически со всеми элементами земной коры. Встречается в основном в виде соединений. Каждый четвёртый атом живого вещества – атом кислорода. Почти весь молекулярный кислород в атмосфере возник и поддерживается на постоянном уровне благодаря деятельности зелёных растений. Кислород атмосферы, связываясь при дыхании и освобождаясь при фотосинтезе, проходит через все живые организмы за 200 лет.

Круговорот азота. Азот является составной частью всех белков. Общее отношение связанного азота, как элемента, составляющего органическое вещество, к азоту в природе равно 1:100000. Энергия химической связи в молекуле азота очень велика. Поэтому соединение азота с другими элементами – кислородом, водородом (процесс азотофиксации) – требует больших затрат энергии. Промышленная фиксация азота идёт в присутствии катализаторов при температуре -500оС и давлении –300 атм.

Как известно, атмосфера содержит более 78% молекулярного азота, но в таком состоянии он не доступен зелёным растениям. Для своего питания растения могут использовать лишь соли азотной и азотистой кислот. Каковы пути образования этих солей? Вот некоторые из них:

В биосфере фиксация азота осуществляется несколькими группами анаэробных бактерий и цианобактерий при нормальной температуре и давлении благодаря высокой эффективности биокатализа. Считается, что бактерии переводят в связанную форму приблизительно 1 млрд. т азота в год (мировой объём промышленной фиксации – около 90 млн.т).

Почвенные азотофиксирующие бактерии способны усваивать молекулярный азот из воздуха. Они обогащают почву азотистыми соединениями, поэтому их значение чрезвычайно велико.

В результате разложения азотосодержащих соединений органических веществ растительного и животного происхождения.

Под действием бактерий азот переходит в нитраты, нитриты, аммонийные соединения. В растениях соединения азота принимают участие в синтезе белковых соединений, которые в цепях питания передаются от организма к организму.

Круговорот фосфора. Ещё одним важным элементом, без которого невозможен синтез белков, является фосфор. Основные источники – изверженные породы (апатиты) и осадочные породы (фосфориты).

Неорганический фосфор вовлекается в круговорот в результате естественных процессов выщелачивания. Фосфор усваивается живыми организмами, которые при его участии синтезируют ряд органических соединений и передают на различные трофические уровни.

Закончив свой путь по трофическим цепям, органические фосфаты разлагаются микробами и превращаются в минеральные фосфаты, доступные для зелёных растений.

В процессе биологического круговорота, который обеспечивает движение вещества и энергии, нет места накоплению отходов. Продукты жизнедеятельности (т.е. отходы) каждой формы жизни являются питательной средой для других организмов.

Теоретически в биосфере всегда должен поддерживаться баланс между продуцированием биомассы и её разложением. Однако в отдельные геологические периоды сбалансированность биологического круговорота нарушалась, когда из-за определённых природных условий, катаклизмов не вся биологическая продукция усваивалась, трансформировалась. В этих случаях образовывались излишки биологической продукции, которые консервировались и откладывались в земной коре, под толщей воды, наносов, оказывались в зоне вечной мерзлоты. Так сформировались залежи каменного угля, нефти, газа, известняка. Надо отметить, что они не засоряют биосферу. В органических полезных ископаемых сконцентрировалась энергия Солнца, накопленная в процессе фотосинтеза. Сейчас, сжигая органические горючие полезные ископаемые, человек высвобождает эту энергию.

Круговороты веществ

Малые миграционные потоки химических элементов как между взаимосвязанными организмами, так и между организ­мами и окружающей их средой складываются в более крупные циклы - круговороты . Продолжительность и постоянство су­ществования жизни поддерживают именно круговороты, пото­му что без них даже в масштабах всей Земли запасы необходи­мых элементов были бы очень скоро исчерпаны.

Круговорот биологический (биотический) - явление не­прерывного, циклического, закономерного, но неравномерного во времени и пространстве перераспределения вещества, энер­гии 1 и информации в пределах экологических систем различного иерархического уровня организации - от биогеоценоза до био­сферы. Круговорот веществ в масштабах всей биосферы назы­вают большим кругом, а в пределах конкретного био­геоценоза - малым кругом биотического обмена. Часть биологического круговорота, состоящая из кругово­ротов углерода, воды, азота, фосфора, серы и других биоген­ных веществ, называют биогеохимическим круговоротом.

Некоторое количество вещества может на время выбы­вать из биологического круговорота (осаждаться на дне океа­нов, морей, выпадать в глубины земной коры и т. п.). Однако в результате протекания тектонических и геологических про­цессов (вулканической деятельности, подъема и опускания земной коры, изменения границ между сушей и водой и др.) осадочные породы вновь включаются в круговорот, назы­ваемый геологическим циклом или кругово­ротом.

Круговороты веществ от продуцентов к консументам раз­личных уровней, затем к редуцентам, а от них вновь к проду­центам замкнуты не полностью. Если бы в экосистемах су­ществовала их полная замкнутость, то не возникало бы ника­ких изменений среды жизни, не было бы почвы, известняков и прочих горных пород биогенного происхождения. Таким обра­зом, биотический круговорот можно условно изобразить в виде незамкнутого кольца. Потери вещества из-за незамкнутости круговорота мини­мальны в биосфере (самой крупной экосистеме планеты). Ин­формация в экосистемах теряется с гибелью видов и необрати­мыми генетическими перестройками.

Таким образом, каждая экосистема поддерживает свое су­ществование за счет круговорота биогенов и постоянного прито­ка солнечной энергии. Круговорот энергии в экосистемах прак­тически отсутствует, поскольку от редуцентов она (энергия) воз­вращается к консументам в мизерных количествах. Считают, что коэффициент круговорота энергии не превышает 0,24%. Энергия может накапливаться, сберегаться (т. е. преобразовы­ваться в более эффективные формы) и передаваться из одной части системы в другую, но она не может быть снова пущена в дело, как вода и минеральные вещества. Единожды пройдя от растений-продуцентов через консументы к редуцентам, энергия выносится в околоземное и космическое пространство. При дви­жении через экосистему поток энергии затрагивает в основном ее биоценоз, поэтому он подробно рассмотрен ранее.

Круговорот веществ в природе - важнейшее экологическое понятие.

На рис. представлен биологический цикл в сочетании с упрощенной схемой потока энергии. Вещества вовлечены в круговорот, а энергетический поток однонаправлен от растений, преобразующих энергию солнца в энергию химических связей, к животным, использующим эту энергию, и далее к микроорганизмам, разрушающим органические вещества.

Однонаправленный поток энергии приводит в движение круговорот веществ. Каждый химический элемент, совершая круговорот в экосистеме, попеременно переходит из органической формы в неорганическую и наоборот.

Рис. 1. Поток энергии и круговорот биогенных элементов в биосфере

Фотосинтез – создание органических веществ (глюкозы, крахмала, целлюлозы и др.) из углекислого газа и воды с участием хлорофилла под действием солнечной энергии:

6СО 2 + 12Н 2 О + hν (673 ккал) = С 6 Н 12 О 6 + 6О 2 + 6Н 2 О

Фотосинтез - процесс улавливания солнечной энергии фотосинтезирующими организмами и превращения ее в энергию биомассы.

Ежегодно растительный мир запасает свободной энергии в 10 раз выше потребляемого за год всем населением Земли количества энергии полезных ископаемых. Сами эти полезные ископае­мые (уголь, нефть и природный газ) тоже продукты фотосинтеза, происходившего миллионы лет назад.

Ежегодно при фотосинтезе усваивается 200 млрд. тонн углекислого газа и выделяется до 320 млрд. тонн кислорода. Весь углекислый газ атмосферы проходит через живое вещество за 6-7 лет.

В биосфере протекают также процессы разрушения органического вещества до простейших молекул: CO 2 , H 2 O, NH 3 . Распад органических соединений протекает в организмах животных, в растениях в процессе дыхания с образованием CO 2 и H 2 O.

Минерализация органических веществ, разложение отмершей органики до простых неорганических соединений происходит под действием микроорганизмов.

Противоположные процессы образования и разрушения органического вещества в биосфере образуют единый биологический кру­говорот атомов. В процессе минерализации органических соединений освобождается энергия, которая была поглощена при фотосинтезе. Она освобождается в виде тепла, а также в виде химической энергии.

Биологический круговорот представляет собой совокупность процессов поступления химических элементов в живые организмы, биосинтеза новых сложных соединений и возвращения элементов в почву, атмосферу и гидросферу.

Интенсивность биологического круговорота (БИК) определяется температурой окружающей среды и количеством воды. Биологический круговорот интенсивнее протекает во влажных тропических лесах, чем в тундре.

Наиболее важным результатом биологического круговорота веществ является образование на суше гумусового горизонта почв.

Биологический круговорот характеризуется следующими показателями.

Биомасса - масса живого вещества, накопленная к данному моменту времени (фито-, зоо-, микробиомасса).

Биомасса растений (фитомасса) - масса живых и отмерших растительных организмов.

Опад - количество органического вещества растений, отмерших на единице площади за единицу времени.

Прирост - биомасса, накопленная на единице площади за единицу времени.

Химический состав растений зависит от двух главных факторов:

1) экологического, - обстановки произрас­тания растений, - уровни содержания элементов в окружающей среде, формы нахождения, в том числе подвижные, доступные для растений;

2) генетического, в связи с особенностями происхождения вида растений.

В условиях загрязнения среды концентрация элементов в растениях определяется первым фактором. В фоновых (ненарушенных) ландшафтах важны оба фактора.

В зависимости от реакции на химический фактор среды (на содер­жание химических элементов) можно выделить 2 группы растений:

1) адаптированные к изменениям концентрации химических элементов;

2) не адаптированные к изменениям концентрации химических элементов.

Изменение концентраций химических элементов в среде у не адаптированных растений вызывает физиологические на­рушения, приводящие к заболеваниям; развитие растений угнетается, вид вымирает.

Некоторые виды растений оказываются хорошо приспособленными к перенесению высоких концентраций элементов. Это дикорастущие растения, длительно произрастающие в данной местности, которые в результате естественного отбора приобретают устойчивость к неблагоприятным условиям обитания.

Растения, концентрирующие химические элементы, называются концентраторами. Например: подсолнечник, картофель концентрируют калий, чай – алюминий, мхи – железо. Золото накапливают полынь, хвощ полевой, кукуруза, дуб.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта