Главная » Галлюциногенные » Что значит биохимия. Некоторые перспективы развития биохимии

Что значит биохимия. Некоторые перспективы развития биохимии

Биохимия – это целая наука которая изучает, во-первых, химический состав клеток и организмов, а во-вторых, химические процессы, которые лежат в основе их жизнедеятельности. Термин был введён в научную среду в 1903 году химиком из Германии по имени Карл Нойберг.

Однако сами процессы биохимии были известны ещё с давних времён. И на основе этих процессов люди пекли хлеб и варили сыр, делали вино и выделывали кожи животных, лечили болезни при помощи трав, а потом и лекарственных средств. И в основе всего этого лежат именно биохимические процессы.

Так, например, не зная ничего о самой науке, арабский учёный и врач Авиценна, который жил в 10 веке, описал многие лекарственные вещества и их влияние на организм. А Леонардо да Винчи сделал вывод – живой организм способен жить только в той атмосфере, в которой способно гореть пламя.

Как и любая другая наука, биохимия применяет свои собственные методы исследования и изучения. И самые важные из них – это хроматография, центрифугирование и электрофорез.

Биохимия сегодня- это наука, которая сделала большой скачок в своём развитии. Так, например, стало известно, что из всех химических элементов на земле в теле человека присутствует чуть больше четверти. И большинство редких элементов, кроме йода и селена, совершенно не нужны человеку для того, чтобы поддерживать жизнь. А вот такие два распространённых элемента, как алюминий и титан в организме человека пока найдены не были. Да и найти их просто невозможно – для жизни они не нужны. И среди всех них только 6 – это те, что необходимы человеку ежедневно и именно из них состоит наш организм на 99%. Это углерод, водород, азот, кислород, кальций и фосфор.

Биохимия – это наука, которая изучает такие важные составляющие продуктов, как белки, жиры, углеводы и нуклеиновые кислоты. Сегодня об этих веществах мы знаем практически всё.

Некоторые путают две науки – биохимию и органическую химию. Но биохимия – это наука, которая изучает биологические процессы, которые протекают только в живом организме. А вот органическая химия – это наука, которая изучает те или иные соединения углерода, а это и спирты, и эфиры, и альдегиды и многие-многие другие соединения.

Биохимия – это ещё и наука, в состав которой входит цитология, то есть изучение живой клетки, её строение, функционирование, размножение, старение и смерть. Нередко этот раздел биохимии называют молекулярной биологией.

Однако молекулярная биология, как правило, работает с нуклеиновыми кислотами, а вот биохимикам больше интересны белки и ферменты, которые запускают те или иные биохимические реакции.

Сегодня биохимия всё чаще и чаще применяет разработки генной инженерии и биотехнологий. Однако сами по себе – это тоже разные науки, которые изучают каждый своё. Например, биотехнология изучает методы клонирования клеток, а генная инженерия пытается найти способы того, как заменить больной ген в организме человека на здоровый и тем самым избежать развития многих наследственных заболеваний.

И все эти науки тесно связаны между собой, что помогает им развиваться и работать на благо человечества.

Биохимия - это наука, занимающаяся изучением различных молекул, химических реакций и процессов, протекающих в живых клетках и организмах. Основательное знание биохимии совершенно необходимо для успешного развития двух главных направлений биомедицинских наук: 1) решение проблем сохранения здоровья человека; 2) выяснение причин различных болезней и изыскание путей их эффективного лечения.

БИОХИМИЯ И ЗДОРОВЬЕ

Всемирная организация здравоохранения (ВОЗ) определяет здоровье как состояние «полного физического, духовного и социального благополучия, которое не сводится к простому отсутствию болезней и недомоганий». Со строго биохимической точки зрения организм можно считать здоровым, если многие тысячи реакций, протекающих внутри клеток и во внеклеточной среде, идут в таких условиях и с такими скоростями, которые обеспечивают максимальную жизнеспособность организма и поддерживают физиологически нормальное (не патологическое) состояние.

БИОХИМИЯ, ПИТАНИЕ, ПРОФИЛАКТИКА И ЛЕЧЕНИЕ

Одной из главных предпосылок сохранения здоровья является оптимальная диета, содержащая ряд химических веществ; главными из них являются витамины, некоторые аминокислоты, некоторые жирные кислоты, различные минеральные вещества и вода. Все эти вещества представляют тот или иной интерес как для биохимии, так и для науки о рациональном питании. Следовательно, между этими двумя науками существует тесная связь. Кроме того, можно полагать, что на фоне усилий, прилагаемых к тому, чтобы сдержать рост цен на медицинское обслуживание, все большее внимание будет уделяться сохранению здоровья и предупреждению болезней, т.е. профилактической медицине. Так, например, для предупреждения атеросклероза и рака со временем, вероятно, все большее значение будет придаваться рациональному питанию. В то же время концепция рационального питания должна основываться на знании биохимии.

БИОХИМИЯ И БОЛЕЗНИ

Все болезни представляют собой проявление каких-то изменений в свойствах молекул и нарушений хода химических реакций и процессов. Основные факторы, приводящие к развитию болезней у животных и человека, приведены в табл. 1.1. Все они оказывают влияние на одну или несколько ключевых химических реакций или на структуру и свойства функционально важных молекул.

Вклад биохимических исследований в диагностику и лечение заболеваний сводится к следующему.

Таблица 1.1. Основные факторы, приводящие к развитию болезней. Все они оказывают влияние на различные биохимические процессы, протекающие в клетке или целом организме

1. Физические факторы: механическая травма, экстремальная температура, резкие изменения атмосферного давления, радиация, электрический шок

2. Химические агенты и лекарственные препараты: некоторые токсические соединения, терапевтические препараты и т.д.

4. Кислородное голодание: потеря крови, нарушение кислородпереносящей функции, отравление окислительных ферментов

5. Генетические факторы: врожденные, молекулярные

6. Иммунологические реакции: анафилаксия, аутоиммунные заболевания

7. Нарушения пищевого баланса: недостаточное питание, избыточное питание

Благодаря этим исследованиям можно 1) выявить причину болезни; 2) предложить рациональный и эффективный путь лечения; 3) разработать методики для массового обследования населения с целью ранней диагностики; 4) следить за ходом болезни; 5) контролировать эффективность лечения. В Приложении описаны наиболее важные биохимические анализы, используемые для диагностики различных заболеваний. К этому Приложению будет полезно обращаться всякий раз, когда будет идти речь о биохимической диагностике различных болезней (например, инфаркта миокарда, острого панкреатита и др.).

Возможности биохимии в отношении предупреждения и лечения болезней кратко проиллюстрированы на трех примерах; позднее в этой же главе мы рассмотрим еще несколько примеров.

1. Хорошо известно, что для поддержания своего здоровья человек должен получать определенные сложные органические соединения - витамины. В организме витамины превращаются в более сложные молекулы (коферменты), которые играют ключевую роль во многих протекающих в клетках реакциях. Недостаток в диете какого-либо из витаминов может привести к развитию различных заболеваний, например цинги при недостатке витамина С или рахита при недостатке витамина D. Выяснение ключевой роли витаминов или их биологически активных производных стало одной из главных задач, которые решали биохимики и диетологи с начала нынешнего столетия.

2. Патологическое состояние, известное под названием фенилкетонурия (ФКУ), в отсутствие лечения может привести к тяжелой форме умственной отсталости. Биохимическая природа ФКУ известна уже около 30 лет: заболевание обусловлено недостатком или полным отсутствием активности фермента, который катализирует превращение аминокислоты фенилаланина в другую аминокислоту, тирозин. Недостаточная активность этого фермента приводит к тому, что в тканях накапливается избыток фенилаланина и некоторых его метаболитов, в частности кетонов, что неблагоприятно сказывается на развитии центральной нервной системы. После того как были выяснены биохимические основы ФКУ, удалось найти рациональный способ лечения: больным детям назначают диету с пониженным содержанием фенилаланина. Массовое обследование новорожденных на ФКУ позволяет в случае надобности начать лечение незамедлительно.

3. Кистозный фиброз - наследуемая болезнь экзокринных, и в частности потовых, желез. Причина болезни неизвестна. Кистозный фиброз является одной из наиболее распространенных генетических болезней в Северной Америке. Он характеризуется аномально вязкими секретами, которые закупоривают секреторные протоки поджелудочной железы и бронхиолы. Страдающие этой болезнью чаще всего погибают в раннем возрасте от легочной инфекции. Поскольку молекулярная основа болезни неизвестна, возможно только симптоматическое лечение. Впрочем, можно надеяться, что в недалеком будущем с помощью технологии рекомбинантных ДНК удастся выяснить молекулярную природу заболевания, что позволит найти более эффективный способ лечения.

ФОРМАЛЬНОЕ ОПРЕДЕЛЕНИЕ БИОХИМИИ

Биохимия, как следует из названия (от греческого bios-жизнь), - это химия жизни, или, более строго, наука о химических основах процессов жизнедеятельности.

Структурной единицей живых систем является клетка, поэтому можно дать и другое определение: биохимия как наука изучает химические компоненты живых клеток, а также реакции и процессы, в которых они участвуют. Согласно этому определению, биохимия охватывает широкие области клеточной биологии и всю молекулярную биологию.

ЗАДАЧИ БИОХИМИИ

Главная задача биохимии состоит в том, чтобы достичь полного понимания на молекулярном уровне природы всех химических процессов, связанных с жизнедеятельностью клеток.

Для решения этой задачи необходимо выделить из клеток многочисленные соединения, которые там находятся, определить их структуру и установить их функции. В качестве примера можно указать на многочисленные исследования, направленные на выяснение молекулярных основ мышечного сокращения и ряда сходных процессов. В результате были выделены в очищенном виде многие соединения различной степени сложности и проведены детальные структурно-функциональные исследования. В итоге удалось выяснить ряд аспектов молекулярных основ мышечного сокращения.

Еще одна задача биохимии заключается в выяснении вопроса о происхождении жизни. Наши представления об этом захватывающем процессе далеки от исчерпывающих.

ОБЛАСТИ ИССЛЕДОВАНИЯ

Сфера биохимии столь же широка, как и сама жизнь. Всюду, где существует жизнь, протекают различные химические процессы. Биохимия занимается изучением химических реакций, протекающих в микроорганизмах, растениях, насекомых, рыбах, птицах, низших и высших млекопитающих, и в частности в организме человека. Для студентов, изучающих биомедицинские науки, особый интерес представляют

два последних раздела. Однако было бы недальновидно совсем не иметь представления о биохимических особенностях некоторых других форм жизни: нередко эти особенности существенны для понимания разного рода ситуаций, имеющих прямое отношение к человеку.

БИОХИМИЯ И МЕДИЦИНА

Между биохимией и медициной имеется широкая двусторонняя связь. Благодаря биохимическим исследованиям удалось ответить на многие вопросы, связанные с развитием заболеваний, а изучение причин и хода развития некоторых заболеваний привело к созданию новых областей биохимии.

Биохимические исследования, направленные на выявление причин заболеваний

В дополнение к указанным выше мы приведем еще четыре примера, иллюстрирующих широту диапазона возможных применений биохимии. 1. Анализ механизма действия токсина, продуцируемого возбудителем холеры, позволил выяснить важные моменты в отношении клинических симптомов болезни (диарея, обезвоживание). 2. У многих африканских растений содержание одной или нескольких незаменимых аминокислот весьма незначительно. Выявление этого факта позволило понять, почему те люди, для которых именно эти растения являются основным источником белка, страдают от белковой недостаточности. 3. Обнаружено, что у комаров - переносчиков возбудителей малярии - могут формироваться биохимические системы, наделяющие их невосприимчивостью к инсектицидам; это важно учитывать при разработке мер по борьбе с малярией. 4. Гренландские эскимосы в больших количествах потребляют рыбий жир, богатый некоторыми полиненасыщенными жирными кислотами; в то же время известно, что для них характерно пониженное содержание холестерола в крови, и поэтому у них гораздо реже развивается атеросклероз. Эти наблюдения навели на мысль о возможности применения полиненасыщенных жирных кислот для снижения содержания холестерола в плазме крови.

Изучение болезней способствует развитию биохимии

Наблюдения английского врача сэра Арчибальда Гаррода еще в начале 1900-х гг. за небольшой группой пациентов, страдавших врожденными нарушениями метаболизма, стимулировали исследование биохимических путей, нарушение которых происходит при такого рода состояниях. Попытки понять природу генетического заболевания под названием семейная гиперхолестеролемия, приводящего к развитию тяжелого атеросклероза в раннем возрасте, способствовали быстрому накоплению сведений о клеточных рецепторах и о механизмах поглощения холестерола клетками. Интенсивное изучение онкогенов в раковых клетках привлекло внимание к молекулярным механизмам контроля роста клеток.

Изучение низших организмов и вирусов

Ценная информация, которая оказалась весьма полезной для проведения биохимических исследований в клинике, была получена при изучении некоторых низших организмов и вирусов. Например, современные теории регуляции активности генов и ферментов сформировались на базе пионерских исследований, выполненных на плесневых грибах и на бактериях. Технология рекомбинантных ДНК зародилась в ходе исследований, проведенных на бактериях и бактериальных вирусах. Главным достоинством бактерий и вирусов как объектов биохимических исследований является высокая скорость их размножения; это существенно облегчает проведение генетического анализа и генетических манипуляций. Сведения, полученные при изучении вирусных генов, ответственных за развитие некоторых форм рака у животных (вирусных онкогенов), позволили лучше понять механизм трансформации нормальных клеток человека в раковые.

БИОХИМИЯ И ДРУГИЕ БИОЛОГИЧЕСКИЕ НАУКИ

Биохимия нуклеиновых кислот лежит в самой основе генетики; в свою очередь использование генетических подходов оказалось плодотворным для многих областей биохимии. Физиология, наука о функционировании организма, очень сильно перекрывается с биохимией. В иммунологии находит применение большое число биохимических методов, и в свою очередь многие иммунологические подходы широко используются биохимиками. Фармакология и фармация базируются на биохимии и физиологии; метаболизм большинства лекарств осуществляется в результате соответствующих ферментативных реакций. Яды влияют на биохимические реакции или процессы; эти вопросы составляют предмет токсикологии. Как мы уже говорили, в основе разных видов патологии лежит нарушение ряда химических процессов. Это обусловливает все более широкое использование биохимических подходов для изучения различных видов патологии (например, воспалительные процессы, повреждения клеток и рак). Многие из тех, кто занимается зоологией и ботаникой, широко используют в своей работе биохимические подходы. Эти взаимосвязи не удивительны, поскольку, как мы знаем, жизнь во всех своих проявлениях зависит от разнообразных биохимических реакций и процессов. Барьеры, существовавшие ранее между биологическими науками, фактически разрушены, и биохимия все в большей степени становится их общим языком.

Этот вид лабораторной диагностики знаком практически каждому, врачи его назначают в первую очередь – как быстрый и информативный метод оценки состояния здоровья. Однако редкий пациент, получая результаты на руки, сможет расшифровать длинный список названий и цифр. И, хотя доскональной оценки всех этих характеристик от нас никто не требует, для этого есть врачи, общее представление о показателях, измеряемых в ходе биохимического анализа крови, все же стоит иметь.

Биохимический анализ крови: зачем и когда он проводится?

Большинство патологий человеческого организма сказывается на составе крови. Выявляя концентрацию тех или иных химических или структурных элементов крови, можно делать выводы о наличии и течении заболеваний. Таким образом, анализ крови «на биохимию» назначают для диагностики и контроля лечения. Важную роль биохимический анализ крови играет при наблюдении беременности. Если женщина чувствует себя нормально, он назначается в первом и третьем триместрах, а при токсикозах, угрозе выкидыша, жалобах на недомогание – чаще.

Подготовка и проведение процедуры

Сдача крови на биохимию предполагает соблюдение ряда условий – в противном случае диагностика будет некорректной.

  • Кровь на биохимический анализ сдается натощак, в утренние часы – обычно в промежутке с 8 до 11, чтобы выдержать требование не меньше 8 часов, но не больше 12–14 часов голода. Накануне и в день процедуры из напитков рекомендуется пить только воду, избегать тяжелой пищи – питаться нейтрально.
  • Необходимо уточнить у вашего врача, следует ли сделать перерыв в приеме медикаментозных препаратов и на какой период. Некоторые лекарства могут исказить данные анализа.
  • Как минимум за час до исследования необходимо прекратить курение. Прием алкоголя прекращают за сутки до исследования.
  • Рекомендуется избегать физических и эмоциональных стрессов накануне процедуры. Придя в медицинское учреждение, постарайтесь спокойно посидеть минут 10–20 перед тем, как будет взята кровь.
  • Если вам назначен курс физиотерапии, проводилось какое-либо инструментальное исследование, процедуру, вероятно, лучше отложить. Проконсультируйтесь со своим врачом.

В случаях, когда необходимо получить лабораторные показатели в динамике, повторные исследования следует проводить в том же медицинском учреждении и при сходных условиях.

Расшифровка результатов биохимического анализа крови: норма и отклонения

Готовые результаты предоставляются пациентам в виде таблицы, в которой отмечено, какие именно анализы проводились, какие показатели получены и как они соотносятся с нормой. Расшифровка результатов биохимического анализа крови может быть произведена достаточно быстро и даже онлайн, вопрос только в загруженности специалистов и в организации самого процесса. В среднем на получение расшифровки уходит 2–3 дня.

Анализ на биохимию крови может проводиться по минимальному или расширенному профилю в зависимости от клинической картины и назначения врача. Минимальный профиль в медицинских учреждениях Москвы стоит 3000–4000 рублей, расширенный – 5000–6000 рублей. Сравнивая цены, обратите внимание: забор крови из вены может оплачиваться отдельно, его стоимость – 150–250 рублей.

Биохимический анализ – исследование широкого спектра ферментов, органических и минеральных веществ. Этот анализ обмены веществ в организме человека: углеводный, минеральный, жировой и белковый. Изменения в обменах веществ показывают, существует ли -либо патология и в каком именно органе.

Данный анализ делается в том случае, если у врача есть подозрение на скрытное заболевание. Результат анализа патологию в организме на самом начальном этапе развития, и специалист может сориентироваться с выбором лекарственных средств.

С помощью этого анализа можно выявить заболевание лейкозом на ранней стадии, когда еще симптомы не начали проявляться. В таком случае можно начать принимать необходимые препараты и остановить патологический процесс заболевания.

Процесс забора и значения показателей анализа

На анализ берется кровь из вены, примерно пять-десять миллилитров. Ее помещают в специальную пробирку. Анализ проводят на голодный желудок пациента, для более полной правдивости. Если нет никакого риска для здоровья, рекомендуется не принимать перед крови лекарственные средства.

Для трактовки результатов анализа используют самые информативные показатели:
- уровень глюкозы и сахара – повышенный показатель характеризует развитие сахарного у человека, резкое его снижение представляет угрозу жизни;
- холестерин – повышенное его содержание констатирует факт наличия и риска сердечно-сосудистых заболеваний;
- – ферменты, выявляющие такие заболевания, как миокарда, поражение печени (гепатит), или наличие какой-либо травмы;
- билирубин – его высокие показатели говорят о поражении печени, массивном разрушении эритроцитов и нарушении оттока желчи;
- мочевина и – их избыток указывает на ослабление функции выделения почек и печени;
- общий белок – его показатели изменяются, когда в организме происходит тяжелое заболевание или какой-либо негативный процесс;
- амилаза – является ферментом поджелудочной железы, повышение ее уровня в крови указывает на воспаление железы – панкреатит.

Помимо вышеперечисленного, биохимический анализ крови определяет содержание в организме калия, железа, фосфора и хлора. Расшифровывать результаты анализа может только лечащий врач, который и назначит соответствующее лечение.

Жизнь и неживое? Химия и биохимия? Где между ними грань? И есть ли она? Где связь? Ключ к разгадке этих проблем долгое время был у природы за семью замками. И лишь в XX веке удалось несколько приоткрыть тайны жизни, причем многие кардинальные вопросы прояснились, когда ученые дошли до исследований на уровне молекул. Познание физико-химических основ жизненных процессов стало одной из главных задач естествознания, и именно на этом направлении, пожалуй, были получены самые интересные результаты, имеющие принципиальное теоретическое значение и сулящие громадный выход в практику.

Химия давно уже присматривается к природным веществам, участвующим в процессах жизнедеятельности.

За прошедшие два столетия химии суждено было сыграть выдающуюся роль в познании живой природы. На первом этапе химическое изучение носило описательный характер, и учеными были выделены и охарактеризованы разнообразные природные вещества, продукты жизнедеятельности микроорганизмов, растений и животных, обладавшие часто ценными свойствами (лекарственные препараты, красители и т. п.). Однако лишь сравнительно недавно на смену этой традиционной химии природных соединений пришла современная биохимия с ее стремлением не только описать, но и объяснить, и не только самое простое, но и самое сложное в живом.

Внеорганическая биохимия

Внеорганическая биохимия как наука сложилась в середине XX столетия, когда на сцену вырвались новые направления биологии, оплодотворенные достижениями других наук, и когда в естествознание пришли специалисты нового склада ума, объединенные желанием и стремлением точнее описать живой мир. И не случайно под одной крышей старомодного здания по Академическому проезду, 18 оказались два вновь организованных института, представлявших самые новые в то время направления химико-биологической науки, - Институт химии природных соединений и Институт радиационной и физико-химической биологии. Этим двум институтам суждено было начать в нашей стране бой за познание механизмов биологических процессов и детальное выяснение структур физиологически активных веществ.

К этому периоду стала ясна уникальная структура основного объекта молекулярной биологии - дезоксирибонуклеиновой кислоты (ДНК), знаменитая «двойная спираль». (Это длинная молекула, на которой, как на магнитофонной ленте или матрице, записан полный «текст» всей информации об организме.) Появилась структура первого белка - гормона инсулина, был успешно выполнен химический синтез гормона окситоцина.

А что, собственно, такое биохимия, чем она занимается?

Эта наука изучает биологически важные природные и искусственные (синтетические) структуры, химические соединения - как биополимеры, так и низкомолекулярные вещества. Точнее, закономерности связи их конкретной химической структуры с соответствующей физиологической функцией. Биоорганическую химию интересует тонкое устройство молекулы биологически важного вещества, внутренние ее связи, динамика и конкретный механизм ее изменения, роль каждого ее звена в выполнении функции.

Биохимия — ключ к пониманию белков

Биоорганической химии принадлежат, несомненно, крупные успехи в изучении белковых веществ. Еще в 1973 году было завершено выяснение полной первичной структуры фермента аспартат-аминотрансферазы, состоящего из 412 аминокислотных остатков. Это один из наиболее важных биокатализаторов живого организма и один из наиболее крупных белков с расшифрованной структурой. Позднее было определено строение и других важных белков - несколько нейротоксинов из яда среднеазиатской кобры, которые используются при изучении механизма передачи нервного возбуждения в качестве специфических блокаторов, а также растительного гемоглобина из клубеньков желтого люпина и антилейкозного белка актиноксантина.

Огромный интерес представляют родопсины. Давно известно, что родопсин - основной белок , участвующий у животных в процессах зрительной рецепции, и его выделяют из особых систем глаза. Этот уникальный белок принимает световой сигнал и обеспечивает нам способность видеть. Было обнаружено, что подобный родопсину белок встречается и у некоторых микроорганизмов, но выполняет совсем другую функцию (поскольку бактерии «не видят»). Здесь он энергетическая машина, синтезирующая богатые энергией вещества за счет света. Оба белка очень близки по структуре, но их назначение принципиально различно.

Одним из важнейших объектов изучения был фермент, участвующий в реализации генетической информации. Двигаясь по ДНК-матрице, он как бы считывает записанную в ней наследственную информацию и на этой основе синтезирует информационную рибонуклеиновую кислоту. Последняя же, в свою очередь, служит матрицей для синтеза белков. Этот фермент - огромный белок, его молекулярный вес приближается к полумиллиону (вспомним: у воды он всего лишь 18) и состоит из нескольких различных субъединиц. Выяснение его структуры суждено было помочь ответить на важнейший вопрос биологии: каков механизм «снятия» генетической информации, как идет расшифровка текста, записанного в ДНК - основном веществе наследственности.

Пептиды

Ученых привлекают не только белки, но и более короткие цепочки из аминокислот, называемые пептидами. Среди них сотни веществ громадного физиологического значения. Вазопрессин и ангиотензин участвуют в регуляции кровяного давления, гастрин управляет секрецией желудочного сока, грамицидин С и полимиксин - антибиотики, к которым относятся и так называемые вещества памяти. В короткой цепочке несколькими «буквами» аминокислотами записана огромная биологическая информация!

Сегодня мы умеем искусственно получать не только любой сложный пептид, но и простой белок, например инсулин. Значение таких работ трудно переоценить.

Был создан метод комплексного анализа пространственного строения пептидов с помощью разнообразных физических и расчетных методов. А ведь сложная объемная архитектура пептида и определяет всю специфику его биологической активности. Пространственное строение любого биологически активного вещества, или, как говорят, его конформация, - ключ к пониманию механизма его действия.

Среди представителей нового класса пептидных систем - депсипелтидов - коллектив ученых обнаружил вещества поразительной природы, способные селективно переносить ионы металлов через биологические мембраны, так называемые ионофоры. И главный среди них - валиномицин.

Открытие ионофоров составило целую эру в мембранологии, поскольку позволило направленно изменять транспорт ионов щелочных металлов - калий и натрий - через биомембраны. С транспортом этих ионов связаны и процессы нервного возбуждения, и процессы дыхания, и процессы рецепции - восприятия сигналов внешней среды. На примере валиномицина удалось показать, как биологические системы способны выбрать лишь один ион из десятков других, связать его в удобно транспортируемый комплекс и перенести через мембрану. Это удивительное свойство валиномицина заключено в его пространственной структуре, напоминающей собой ажурный браслет.

Другой тип ионофоров представляет собой антибиотик грамицидин А. Это линейная цепочка, построенная из 15 аминокислот, в пространстве образует спираль из двух молекул, причем, как было установлено, это истинная двойная спираль. Первая двойная спираль в белковых системах! И спиральная структура, встраиваясь в мембрану, образует своеобразную пору, канал, через который ионы щелочных металлов проходят сквозь мембрану. Простейшая модель ионного канала. Понятно, почему грамицидин вызвал такую бурю в мембранологии. Ученые уже получили многие синтетические аналоги грамицидина, он детально изучался на искусственных и биологических мембранах. Сколько прелести и значимости в такой, казалось бы, маленькой молекуле!

Не без помощи валиномицина и грамицидина ученые оказались втянутыми в исследование биологических мембран.

Биологические мембраны

Но в состав мембран всегда входит еще один основной компонент, который определяет их природу. Это жироподобные вещества, или липиды. Молекулы липидов невелики по размеру, но они образуют прочные гигантские ансамбли, формирующие сплошной мембранный слой. В этот слой встраиваются молекулы белков - и вот вам одна из моделей биологической мембраны.

Почему же важны биомембраны? Вообще мембраны - важнейшие регуляторные системы живого организма. Сейчас по подобию биомембран создаются важные технические средства - микроэлектроды, датчики, фильтры, топливные элементы… И дальнейшие перспективы использования мембранных принципов в технике поистине безграничны.

Прочие интересы биохимии

Видное место занимают исследования по бихимии нуклеиновых кислот. Они нацелены на расшифровку механизма химического мутагенеза, а также на познание природы связи между нуклеиновыми кислотами и белками.

Особое внимание было издавна сосредоточено на искусственном синтезе гена. Ген, или, если говорить упрощенно, функционально значимый участок ДНК, сегодня уже можно получить химическим синтезом. Это одно из важных направлений модной сейчас «генной инженерии». Работы, лежащие на стыке биоорганической химии и молекулярной биологии, требуют овладения сложнейшими приемами, дружного сотрудничества химиков и биологов.

Еще один класс биополимеров - углеводы, или полисахариды. Мы знаем типичных представителей веществ этой группы - целлюлозу, крахмал, гликоген, свекловичный сахар. Но в живом организме углеводы выполняют самые разнообразные функции. Это защита клетки от врагов (иммунитет), она важнейшая составная часть клеточных стенок, компонент рецепторных систем.

Наконец, антибиотики. В лабораториях выяснено строение таких важнейших групп антибиотиков, как стрептотрицин, оливомицин, альбофунгин, абиковхромицин, ауреоловая кислота, обладающие противоопухолевой, противовирусной и антибактериальной активностью.

Рассказать о всех поисках и достижениях биоорганической химии невозможно. С уверенностью только можно утверждать, что у биооргаников больше планов, чем сделанного.

Биохимия тесно сотрудничает с молекулярной биологией, биофизикой, изучающими жизнь на уровне молекул. Она стала химическим фундаментом этих исследований. Создание и широкое использование новых ее методов, новых научных концепций способствует дальнейшему прогрессу биологии. Последняя, в свою очередь, стимулирует развитие химических наук.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта