Главная » Галлюциногенные » Математическое моделирование физических процессов. Объект исследования и его модель

Математическое моделирование физических процессов. Объект исследования и его модель

Современный этап развития науки характеризуется усилением и углублением взаимодействия отдельных её отраслей, формированием новых форм и средств исследования, в т.ч. математизацией и компьютеризацией познавательного процесса. Распространение понятий и принципов математики в различные сферы научного познания оказывает существенное влияние, как на эффективность специальных исследований, так и на развитие самой математики.

В процессе математизации естественных, общественных, технических наук и её углубления происходит взаимодействие между методами математики и методами тех отраслей наук, которые подвергаются математизации, усиливается взаимодействие и взаимосвязь между математикой и конкретными науками, формируются новые интегративные направления в науке.

Говоря о применении математики в той или иной сфере науки, следует иметь в виду, что процесс математизации знания будет идти скорее тогда, когда объект исследования состоит из простых и однородных элементов. Если объект обладает сложной структурной, то применение математики затрудняется.

В процессе познания действительности математика играет все возрастающую роль. Сегодня нет такой области знаний, где в той или иной степени не использовались бы математические понятия и методы. Проблемы, решение которых раньше считалось невозможным, успешно решаются благодаря применению математики, тем самым расширяются возможности научного познания. Современная математика объединяет весьма различные области знания в единую систему. Этот процесс синтеза наук, осуществляемый на фоне математизации, находит свое отражение и в динамике понятийного аппарата.

Воздействие научно-технической революции на прогресс математики чаще всего происходит опосредствованными и сложным путем. Обычно запросы техники, производства и экономики выдвигают различные проблемы перед наукам, которые стоят ближе к практике. Решая свои проблемы, естественные и технические науки ставят соответствующие задачи перед математикой, стимулируя ее дальнейшее развитие.

Говоря о современном этапе математизации научного познания, следует отметить повышение эвристической и интегративной роли математики в познании, а также влияние научно-технической революции на развитие современной математики, ее понятий и методов.

В процессе взаимодействия современных наук единство абстрактного и конкретного проявляется как в синтезе математических теорий в структурах научного знания, так и в синтезе самих математических теорий.

Развитие техники, производственной деятельности людей выдвигает исследование новых, неизвестных ранее процессов и явлений природы, которое зачастую немыслимо без совместных усилий различных отраслей науки. Если отдельно области современного научного знания не способны изучить эти процессы природы в отдельности, то эту задачу можно осуществить на основе интеграции наук, изучающих различные формы движения материи. Благодаря трудам ученых, работающих в различных областях науки, комплексные проблемы находят свое объяснение. В свою очередь, это области науки обогащаются новым содержанием, выдвигаются новые научные проблемы. В таком процессе взаимосвязи и взаимовлияния научных областей обогащается и математическое знание, начинают осваиваться новые количественные отношения, закономерности.

Синтетический характер математики состоит в том, что она обладает предметной общностью, т.е. абстрагируясь от количественных свойств социальных, природных и технических объектов, изучает специфические закономерности, присущие этим областям.

Другим важнейшим качеством математики является ее эффективность, которая достигается на основе восхождения к абстракциям высокого уровня. Сущность математики определяется соотношением чистой и прикладной математики. Прикладная математика ориентирована на решение различных конкретных проблем реального мира. Тем самым, в математическом творчестве различают три этапа: во-первых, движение от реальной действительности к абстрактным структурам, во-вторых, создание абстрактных понятий и математических теорий, в-третьих, непосредственное применение математики.

Современный этап математизации науки характеризуется широким использованием метода математического моделирования. Математика разрабатывает модели и совершенствует методы их применения. Создание математических моделей – первый шаг в математико-исследовательском направлении. В последующем модель изучается посредством особых математических методов.

Математика имеет множество конкретных методов. Универсальность математики связана с двумя моментами. Во-первых, единством языка математических моделей, вытекающих их качественно различных задач (единство языка составляет внешнее единство математики), во-вторых, наличием общих понятий, принципов и методов, применяемых к бесчисленным конкретным математическим моделям.

В XVII-XIX веках благодаря применению математических понятий в физике были получены первые результаты в области гидродинамики, разработаны теории, связанные с распространением теплоты, явлениями магнетизма, электростатики и электродинамики. А. Пуанкаре создал теорию диффузии на основе теории вероятности, Дж.Масквелл – электромагнитную теорию на основе дифференциального исчисления, идея случайного процесса сыграла существенную роль в изучении биологами динамики популяции и разработке основ математической экологии.

Современная физика является одной из наиболее математизированных областей естествознания. Движение математической формализации к физическим теориям является одним из важнейших признаков развития физического познания. Это можно видеть в закономерностях процесса познания, в создании теории относительности, квантовой механики, квантовой электромеханики, в развитии современной теории элементарных частиц.

Говоря о синтезе научного знания, необходимо отметить и роль математической логики в процессе создания понятий нового типа. Математическая логика по своему предмету является логикой, а по своему методу – математикой. Она оказывает существенное влияние как на создание и развитие обобщающих идей, понятий, так и на развитие познавательных функций других наук. Математическая логика сыграла важнейшую роль в создании алгоритмов и рекурсивных функций. Наряду с этим, трудно без математической логики представить себе создание и развитие электроники, кибернетики, структурного языкознания.

Математическая логика сыграла важнейшую роль в процессе возникновения таких общенаучных понятий, как алгоритм, информация, обратная связь, система, множество, функция и др.

Математизация науки есть в сущности двуединый процесс, включающий рост и развитие как конкретных наук, так и самой математики. При этом взаимодействие между конкретными науками и математикой носит диалектической характер. С одной стороны, решение проблем конкретных наук выдвигает множество задач, имеющих чисто математический характер, с другой стороны, математический аппарат дает возможность точнее сформулировать законы и теории конкретных наук.

Другая причина математизации современной науки связана с решением крупных научно-технических проблем. Это, в свою очередь, требует применения современной вычислительной техники, что нельзя представить без математического обеспечения. Можно отметить, что на стыке математики и других конкретных наук возникли дисциплины «пограничного» характера, такие как математическая психология, математическая социология и т.д. В методах исследования синтетических наук, таких как кибернетика, информатика, бионика и др. математика выполняет определяющую роль.

Возрастание взаимосвязи естественных, общественных и технических наук и процесс их математизации представляет собой ту основу, на которой формируются и приобретают общенаучный статус такие понятия, как функция, система, структура, модель, элемент, множество, вероятность, оптимальность, дифференциал, интеграл и др.

Моделирование – метод научного познания, основанный на изучении реальных объектов посредством изучения моделей этих объектов, т.е. посредством изучения более доступных для исследования и (или) вмешательства объектов-заместителей естественного или искусственного происхождения, обладающих свойствами реальных объектов (аналоги объектов, подобные реальным в структурном или функциональном плане).

При мысленном (образном) моделировании свойства реального объекта изучаются через мысленно-наглядные представления о нем (с этого варианта моделирования начинается, вероятно, любое первое изучение интересующего объекта).

При физическом (предметном) моделировании модель воспроизводит определенные геометрические, физические, функциональные свойства реального объекта, при этом являясь более доступной или удобной для исследования благодаря отличию от реального объекта в некотором не существенном для данного исследования плане (например, устойчивость небоскреба или моста, в некотором приближении, можно изучать на сильно уменьшенной физической модели – рискованно, дорого и вовсе не обязательно «крушить» реальные объекты).

При знаковом моделировании модель, являющаяся схемой, графиком, математической формулой, воспроизводит поведение определенной интересующей характеристики реального объекта благодаря тому, что существует и известна математическая зависимость этой характеристики от прочих параметров системы (построить приемлемые физические модели изменяющегося земного климата или электрона, излучающего электромагнитную волну при межуровневом переходе – задача безнадежная; да и устойчивость небоскреба, вероятно, неплохо заранее просчитать поточнее).

По степени адекватности модели прототипу их принято подразделять на эвристические (приблизительно соответствующие прототипу по изучаемому поведению в целом, но не позволяющие дать ответ на вопрос, насколько интенсивно должен происходить тот или иной процесс в реальности), качественные (отражающие принципиальные свойства реального объекта и качественно соответствующие ему по характеру поведения) и количественные (достаточно точно соответствующие реальному объекту, так что численные значения исследуемых параметров, являющиеся результатом исследования модели, близки к значениям тех же параметров в реальности).

Свойства любой модели не должны, да и не могут, точно и полностью соответствовать абсолютно всем свойствам соответствующего реального объекта в любых ситуациях. В математических моделях любой дополнительный параметр может привести к существенному усложнению решения соответствующей системы уравнений, при численном моделировании непропорционально вырастает время обработки задачи компьютером, нарастает ошибка счета. Таким образом, при моделировании является существенным вопрос об оптимальной, для данного конкретного исследования, степени соответствия модели оригиналу по вариантам поведения исследуемой системы, по связям с другими объектами и по внутренним связям исследуемой системы; в зависимости от вопроса, на который хочет ответить исследователь, одна и та же модель одного и того же реального объекта может быть признана адекватной или абсолютно не отражающей реальность.

Модель - это система, исследование которой служит средством для получения информации о другой системе ”. Модели классифицируют исходя из наиболее существенных признаков объектов. Понятие “модель” возникло в процессе опытного изучения мира. Первыми, кто применил модели на практике, были строители.

Способы создания моделей различны : физический, математический, физико-математический.

Физическое моделирование характеризуется тем, что исследования проводятся на установках, обладающих физическим подобием, т. е. сохраняющих полностью или хотя бы в основном природу явлений.

Более широкими возможностями обладает математическое моделирование . Это способ исследования различных процессов путем изучения явлений, имеющих различное физическое содержание, но описываемых одинаковыми математическими моделями. Математическое моделирование имеет огромное преимущество перед физическим, поскольку нет необходимости сохранять размеры модели. Это дает существенный выигрыш во времени и стоимости исследования.

Моделирование широко применяется в технике. Это и исследование гидроэнергетических объектов и космических ракет, специальные модели для наладки приборов управления и тренировки персонала, управляющего различными сложными объектами. Многообразно применение моделирования в военной технике. В последнее время особое значение пробрело моделирование биологических и физиологических процессов.

Общеизвестна роль моделирования общественно-исторических процессов. Применение моделей позволяет проводить контролируемые эксперименты в ситуациях, где экспериментирование на реальных объектах является практически невозможным или по каким-то причинам (экономическим, нравственным и т. д.) нецелесообразным.

Большое значение на современном этапе развития науки и техники приобретают задачи предсказания, управления, распознавания. Метод эволюционного моделирования возник при попытке воспроизведения на ЭВМ поведения человека. Эволюционное моделирование было предложено как альтернатива эвристическому и бионическому подходу, моделировавшему мозг человека в нейронных структурах и сетях. При этом основная идея звучала так: заменить процесс моделирования интеллекта моделированием процесса его эволюции.

Таким образом, моделирование превращается в один из универсальных методов познания в сочетании с ЭВМ. Особо хочется подчеркнуть роль моделирования - бесконечную последовательность уточненных представлений о природе.

В общем случае процесс моделирования состоит из следующих этапов:

1. Постановка задачи и определение свойств оригинала, подлежащих исследованию.

2. Констатация затруднительности или невозможности исследования оригинала в натуре.

3. Выбор модели, достаточно хорошо фиксирующей существенные свойства оригинала и легко поддающейся исследованию.

4. Исследование модели в соответствии с поставленной задачей.

5. Перенос результатов исследования модели на оригинал.

6. Проверка этих результатов.

Основными задачами являются: во-первых, выбор моделей и, во-вторых, перенос результатов исследования моделей на оригинал.

Так как понятие «моделирование» является достаточно общим и универсальным, к числу способов моделирования относятся столь различные подходы как, например, метод мембранной аналогии (физическое моделирование) и методы линейного программирования (оптимизационное математическое моделирование). Для того чтобы упорядочить употребление термина «моделирование» вводят классификацию различных способов моделирования. В наиболее общей форме выделяются две группы различных подходов к моделированию, определяемых понятиями «физическое моделирование» и «идеальное моделирование».

Физическое моделирование осуществляется путем воспроизведения исследуемого процесса на модели, имеющей в общем случае отличную от оригинала природу, но одинаковое математическое описание процесса функционирования.

Совокупность подходов к исследованию сложных систем, определяемая термином «математическое моделирование », является одной из разновидностей идеального моделирования. Математическое моделирование основано на использовании для исследования системы совокупности математических соотношений (формул, уравнений, операторов и т.д.), определяющих структуру исследуемой системы и ее поведение.

Математическая модель - это совокупность математических объектов (чисел, символов, множеств и т.д.), отражающих важнейшие для исследователя свойства технического объекта, процесса или системы.

Математическое моделирование - это процесс создания математической модели и оперирования ею с целью получения новой информации об объекте исследования.

Построение математической модели реальной системы, процесса или явления предполагает решение двух классов задач, связанных с построением «внешнего» и «внутреннего» описания системы. Этап, связанный с построением внешнего описания системы называется макроподходом. Этап, связанный с построением внутреннего описания системы называется микроподходом.

Макроподход - способ, посредством которого производится внешнее описание системы. На этапе построения внешнего описания делается упор на совместное поведение всех элементов системы, точно указывается, как система откликается на каждое из возможных внешних (входных) воздействий . Система рассматривается как «черный ящик», внутреннее строение которого неизвестно. В процессе построения внешнего описания исследователь имеет возможность, воздействуя различным образом на вход системы, анализировать ее реакцию на соответствующие входные воздействия. При этом степень разнообразия входных воздействий принципиальным образом связана с разнообразием состояний выходов системы. Если на каждую новую комбинацию входных воздействий система реагирует непредсказуемым образом, испытание необходимо продолжать. Если на основании полученной информации может быть построена система, в точности повторяющая поведение исследуемой, задачу макроподхода можно считать решенной.



Итак, метод «черного ящика» состоит в том, чтобы выявить, насколько это возможно, структуру системы и принципы ее функционирования, наблюдая только входы и выходы. Подобный способ описания системы некоторым образом аналогичен табличному заданию функции.

При микроподходе структура системы предполагается известной, то есть предполагается известным внутренний механизм преобразования входных сигналов в выходные. Исследование сводится к рассмотрению отдельных элементов системы. Выбор этих элементов неоднозначен и определяется задачами исследования и характером исследуемой системы. При использовании микроподхода изучается структура каждого из выделенных элементов, их функции, совокупность и диапазон возможных изменений параметров.

Микроподход - способ, посредством которого производится внутреннее описание системы, то есть описание системы в функциональной форме.

Результатом этого этапа исследования должен явиться вывод зависимостей, определяющих связь между множествами входных параметров, параметров состояния и выходных параметров системы. Переход от внешнего описания системы к ее внутреннему описанию называют задачей реализации.

Задача реализации заключается в переходе от внешнего описания системы к ее внутреннему описанию. Задача реализации представляет собой одну из важнейших задач в исследовании систем и, по существу, отражает абстрактную формулировку научного подхода к построению математической модели. В такой постановке задача моделирования заключается в построении множества состояний и вход-выходного отображения исследуемой системы на основе экспериментальных данных. В настоящее время задача реализации решена в общем виде для систем, у которых отображение вход-выход линейно. Для нелинейных систем общего решения задачи реализации пока не найдено.

Моделирование

Моделирование и его виды

Моделирование является одним из основных методов современных научных исследований.

Моделирование – это исследование объектов познания на их моделях, построение и изучение моделей реально существующих предметов, явлений и конструируемых объектов. Это воспроизведение изучаемых свойств объекта или явления с помощью модели при ее функционировании в определенных условиях. Модель – это образ, структура или материальное тело, которые воспроизводят с той или иной мерой сходства явление или объект. Модель изоморфна (сходственна, аналогична) с натурой (оригиналом), обобщением которой она является. Она воспроизводит наиболее характерные признаки изучаемого объекта, выбор которых определяется целью исследования. Модель всегда приближенно отображает объект или явление. В противном случае модель превращается в объект и теряет свое самостоятельное значение.

Для получения решения модель должна быть достаточно простой и в то же время она должна отражать существо задачи, чтобы найденные с ее помощью результаты имели смысл.

В процессе познания человек всегда, более или менее явно и сознательно, строит модели ситуаций окружающего мира и управляет своим поведением в соответствии с выводами, полученными им при изучении модели. Модель всегда отвечает конкретной цели и ограничена рамками поставленной задачи. Модель системы управления для специалиста по автоматике коренным образом отличается от модели этой же системы для специалиста по надежности. Моделирование в конкретных науках связывают с выяснением (или воспроизведением) свойств какого-либо объекта, процесса или явления с помощью другого объекта, процесса или явления, причем обычно предполагается соблюдение определенных количественных соотношений между моделью и оригиналом. Различают три вида моделирования.

1. Математическое (абстрактное) моделирование основывается на возможности описания изучаемого процесса или явления на языке некоторой научной теории (чаще всего на математическом).

2. Аналоговое моделирование основывается на изоморфизме (сходственности) явлений, имеющих различную физическую природу, но описываемых одинаковыми математическими уравнениями. Примером может служить изучение гидродинамического процесса с помощью исследования электрического поля. Оба эти явления описываются дифференциальным уравнением Лапласа в частных производных, решение которого обычными методами возможно только для частных случаев. В то же время экспериментальные исследования электрического поля намного проще соответствующих исследований в гидродинамике.

3. Физическое моделирование состоит в замене изучения некоторого объекта или явления экспериментальным исследованием его модели, имеющей ту же физическую природу. В науке любой эксперимент, проводимый в целях выявления тех или иных закономерностей изучаемого явления или для проверки правильности и границ применимости теоретических результатов, фактически представляет собой моделирование, так как объект исследования – конкретная модель (образец), обладающая определенными физическими свойствами. В технике физическое моделирование используют тогда, когда трудно провести натурный эксперимент. В основу физического моделирования положены теории подобия и анализ размерностей. Необходимым условием реализации этого вида моделирования является геометрическое подобие (подобие формы) и физическое подобие модели и оригинала: в сходственные моменты времени и в сходственных точках пространства значения переменных величин, характеризующих явления, для оригинала должны быть пропорциональны тем же значениям для модели. Это позволяет производить соответствующий пересчет полученных данных.

Математическое моделирование и вычислительный эксперимент.

В настоящее время наибольшее распространение получили математические модели, реализуемые на ЭВМ. При построении данных моделей можно выделить следующие этапы:

1. Создание или выбор модели, соответствующей поставленной задаче.

2. Создание условий функционирования модели.

3. Эксперимент на модели.

4. Обработка результатов.

Рассмотрим более подробно перечисленные выше этапы.

На математическое описание исследуемого объекта (процесса) на первом этапе накладывается ряд требований: разрешимость используемых уравнений, соответствие математического описания изучаемому процессу с допустимой точностью, адекватность принятых допущений, практическая целесообразность использования модели. Степень удовлетворения этих требований определяет характер математического описания и является наиболее сложной и трудоемкой частью при создании модели.

Рис. 2.1. Схема процесса построения математической модели

Реальные физические явления, как правило, очень сложны, и их никогда нельзя проанализировать точно и в полном объеме. Построение модели всегда связано с компромиссом, т.е. с принятием допущений при которых справедливы уравнения модели (рис. 2.1). Таким образом, чтобы с помощью модели можно было получить имеющие смысл результаты, она должна быть достаточно детальной. В то же время она должна быть достаточно простой, чтобы можно было получить решение при ограничениях налагаемых на результат такими факторами как сроки, быстродействие ЭВМ, квалификация исполнителей и т. д.

Математическая модель, отвечающая требованиям первого этапа моделирования, обязательно содержит в себе систему уравнений основного определяющего процесса или процессов. Только такая модель пригодна для моделирования. Это свойство лежит в основе отличия моделирования от расчета и определяет возможность использования модели для моделирования. Расчет, как правило, базируется на основе зависимостей, полученных ранее, при исследованиях процесса, и поэтому отображает определенные свойства объекта (процесса). Следовательно, методику расчета можно назвать моделью. Но функционирование такой модели воспроизводит не изучаемый процесс, а изученный. Очевидно, понятия моделирования и расчета четко не разграничиваются, потому что и при математическом моделировании на ЭВМ алгоритм модели сводится к расчету. Но в этом случае расчет носит вспомогательный характер, так как результаты расчета позволяют получить изменение количественных характеристик модели. Самостоятельного значения, какое имеет моделирование, в данном случае расчет иметь не может.

Рассмотрим второй этап моделирования. Модель в ходе эксперимента так же как и объект, функционирует в определенных условиях, которые задаются программой эксперимента. Условия моделирования не входят в понятие модели, поэтому с одной и той же моделью можно проводить различные эксперименты при задании различных условий моделирования. Математическому описанию условий функционирования модели, несмотря на кажущуюся однозначность толкования, необходимо уделять серьезное внимание. При описании математической модели некоторые несущественные процессы следует заменять экспериментальными данными и зависимостями или трактовать их упрощенно. Если эти данные не будут полностью соответствовать предполагаемым условиям функционирования модели, то результаты моделирования могут быть неверными.

После получения математического описания модели и условий функционирования составляют алгоритмы расчетов, блок-схемы программ для ЭВМ, а затем и программы.

В процессе отладки программ их составные части и отдельные программы в целом подвергаются всесторонней проверке для выявления ошибки или недостаточности математического описания. Проверку производят путем сопоставления полученных данных с известными фактическими данными. Окончательной проверкой является контрольный эксперимент, который осуществляют при одинаковых условиях с проведенным ранее экспериментом непосредственно на объекте. Совпадение с достаточной точностью результатов эксперимента на модели и эксперимента на объекте служит подтверждением соответствия модели и объекта (адекватности модели реальному объекту) и достоверности результатов последующих исследований.

Отлаженная и отвечающая принятым положениям программа моделирования на ЭВМ имеет все необходимые элементы для проведения самостоятельного эксперимента на модели (третий этап), который называют также вычислительным экспериментом .

Четвертый этап математического моделирования – обработка результатов принципиально не отличается от обработки результатов обычного эксперимента.

Более подробно рассмотрим широко распространенное в настоящее время понятие вычислительного эксперимента. Вычислительным экспериментом называется методология и технология исследований, основанные на применении прикладной математики и ЭВМ как технической базы при использовании математических моделей. В таблице приведена сравнительная характеристика натурного и вычислительного экспериментов. (Натурный эксперимент поводится в естественных условиях и на реальных объектах).

Сравнительная характеристика натурного и вычислительного экспериментов

Таблица 2.1

Натурный эксперимент Вычислительный эксперимент
Основные этапы 1. Анализ и выбор схемы эксперимента, уточнение элементов установки, ее конструкции. 1. На основе анализа объекта (процесса) выбирается или создается математическая модель.
2. Разработка конструкторской документации, изготовление экспериментальной установки и ее отладка. 2. Для выбранной математической модели составляется алгоритм расчета, создается программа для машинного счета.
3. Пробный замер параметров на установке в соответствии с программой эксперимента. 3. Пробный машинный счет в соответствии с программой вычислительного эксперимента.
4. Детальный анализ результатов эксперимента, уточнение конструкции установки, ее доводка, оценка степени достоверности и точности проведенных измерений. 4. Детальный анализ результатов расчетов для уточнения и корректировки алгоритма и программ счета, доводка программы.
5. Проведение чистовых экспериментов в соответствии с программой. 5. Окончательный машинный счет в соответствии с программой.
6. Обработка и анализ экспериментальных данных. 6. Анализ результатов машинного счета.
Преимущества Как правило, более достоверные данные об изучаемом объекте (процессе) Широкие возможности, большая информативность и доступность. Позволяет получить значения всех интересующих параметров. Возможность качественно и количественно проследить функционирование объекта (эволюцию процессов). Сравнительная простота уточнения и расширения математической модели.

На основе математического моделирования и методов вычислительной математики создались теория и практика вычислительного эксперимента. Рассмотрим подробнее этапы технологического цикла вычислительного эксперимента.

1. Для исследуемого объекта строится модель, формулируются допущения и условия применимости модели, границы, в которых будут справедливы полученные результаты; модель записывается в математических терминах, как правило, в виде дифференциальных или интегродифференциальных уравнений; создание математической модели проводится специалистами, хорошо знающими данную область естествознания или техники, а также математиками, представляющими себе возможности решения математической задачи.

2. Разрабатывается метод расчета сформулированной математической задачи. Эта задача представляется в виде совокупности алгебраических формул, по которым должны вестись вычисления и условия, показывающие
последовательность применения этих формул; набор этих формул н условий носит название вычислительного алгоритма. Вычислительный эксперимент имеет многовариантный характер, так как решения поставленных задач часто зависят от многочисленных входных параметров. Тем не менее каждый конкретный расчет в вычислительном эксперименте проводится при фиксированных значениях всех параметров. Между тем в результате такого эксперимента часто ставится задача определения оптимального набора параметров. Поэтому при создании оптимальной установки приходится проводить большое число расчетов однотипных вариантов задачи, отличающихся значением некоторых параметров. При организации вычислительного эксперимента обычно используются эффективные численные методы.

3. Разрабатываются алгоритм и программа решения задачи на ЭВМ. Программирование решений определяется теперь не только искусством и опытом исполнителя, а перерастает в самостоятельную науку со своими принципиальными подходами.

4. Проведение расчетов на ЭВМ. Результат получается в виде некоторой цифровой информации, которую далее необходимо будет расшифровать. Точность информации определяется при вычислительном эксперименте достоверностью модели, положенной в основу эксперимента, правильностью алгоритмов и программ (проводятся предварительные «тестовые» испытания).

5. Обработка результатов расчетов, их анализ и выводы. На этом этапе могут возникнуть необходимость уточнения математической модели (усложнения или, наоборот, упрощения), предложения по созданию упрощенных инженерных способов решения и формул, дающих возможности получить необходимую информацию более простым способом.

Возможности вычислительного эксперимента шире, чем эксперимента с физической моделью, так как получаемая информация более подробная. Математическая модель может быть сравнительно просто уточнена или расширена. Для этого достаточно изменить описание некоторых ее элементов. Кроме того, несложно выполнить математическое моделирование при различных условиях моделирования, что позволяет получить оптимальное сочетание конструкционных параметров, показателей работы объекта (характеристик процесса). Для оптимизации указанных параметров целесообразно использовать методику планирования эксперимента, подразумевая под последним вычислительный эксперимент.

Вычислительный эксперимент приобретает исключительное значение в тех случаях, когда натурные эксперименты и построение физической модели оказываются невозможными. Особенно ярко можно проиллюстрировать значение вычислительного эксперимента при исследовании масштабов современного воздействия человека на природу. То, что принято называть климатом – устойчивое среднее распределение температуры, осадков, облачности и т. д., – представляет собой результат сложного взаимодействия грандиозных физических процессов, протекающих в атмосфере, на поверхности земли и в океане. Характер и интенсивность этих процессов в настоящее время изменяются значительно быстрее, чем в сравнительно, близком геологическом прошлом в связи с воздействием загрязнения воздуха индустриальными выбросами углекислого газа, пыли н т. д. Климатическую систему можно исследовать, строя соответствующую математическую модель, которая должна описывать эволюцию климатической системы, учитывающей взаимодействующие между собой атмосферы океана и суши. Масштабы климатической системы настолько грандиозны, что эксперимент даже в одном каком-то регионе чрезвычайно дорог, не говоря уже о том, что вывести такую систему из равновесия было бы опасно. Таким образом, глобальный климатический эксперимент возможен, но не натурный, а вычислительный, проводящий исследования не реальной климатической системы, а ее математической модели.

В науке и технике известно немало областей, в которых вычислительный эксперимент оказывается единственно возможным при исследовании сложных систем.


Похожая информация.


В области естественных наук наиболее распространенными являются два вида моделирования - физическое и математическое .

Процесс физического моделирования состоит в изучении системы посредством анализа некоторого макета, сохраняющего физическую природу системы или внешне напоминающего изучаемый объект.

Физические модели (их еще называют натурными) могут иметь вид полномасштабных макетов (например, тренажеры летательных аппаратов), могут выполняться в уменьшенном масштабе (глобус) или в увеличенном масштабе (планетарная модель атома). В инженерной практике широко используются как макеты в натуральную величину, так и уменьшенные модели объектов. В последнем случае параметры экспериментов с физической моделью выбираются из подобия.

Примерами физических моделей являются: модели летательного аппарата или автомобиля, исследуемые в аэродинамической трубе; построенный на базе военного истребителя миниатюрный аналог сверхзвукового пассажирского лайнера, используемый во время летных испытаний.

Статические физические модели, такие как макеты архитектурных объектов или заводских корпусов, позволяют наглядно представить пространственные соотношения.

Однако модели физического типа имеют ограниченную сферу применения. Не для всяких явлений и объектов могут быть построены дающие значимые результаты физические аналоги.

Математическая (или символическая) модель концентрирует в себе записанную в форме математических соотношений совокупность наших знаний, представлений и гипотез о соответствующем объекте или явлении.

Математическая модель - абстрактный образ системы, отражающий ее важнейшие свойства. Поскольку математические модели являются абстрактными и, следовательно, наиболее общими, то именно они находят самое широкое применение в исследовании систем.

Натурные эксперименты представляют собой источник информации ограниченного объема. Математическая модель допускает более широкие исследования и обобщения, результаты которых дают информацию для прогнозирования поведения системы в будущем. Правда, чтобы обеспечить эти возможности, приходится решать проблему соответствия (адекватности ) модели и системы, т.е. проводить дополнительное исследование согласованности результатов моделирования с реальной ситуацией.

Математические модели строят на основе законов и закономерностей, выявленных фундаментальными науками: физикой, химией, экономикой, биологией и т.д. После того как модель сформулирована, необходимо исследовать ее поведение. С усложнением анализируемых объектов использование для этих целей аналитических методов возможно лишь в ограниченном количестве случаев. Выход состоит в переходе к машинным реализациям математических моделей.

Математические машинные модели делят на аналоговые и цифровые в соответствии с типами вычислительных машин, на которых они реализованы.

Аналоговое моделирование основано на том факте, что различные по природе явления и процессы могут иметь одинаковое математическое описание. Хорошо известным примером служит описание одними и теми же уравнениями электрического колебательного контура и пружинного маятника. На аналоговых вычислительных машинах эти уравнения воспроизводятся обычно с помощью электрических схем, построенных на электронных операционных усилителях и функциональных блоках, моделирующих предопределенный набор математических действий и функций, например арифметические действия, интегрирование, нелинейные функции. Искомые характеристики исследуемой системы регистрируются путем измерения на модели соответствующих электрических величин. Переработка информации в такой модели носит параллельный характер и реализуется в форме электрического процесса, происходящего в собранной схеме.

Цифровые модели, реализуемые на цифровых электронных вычислительных машинах, представляют собой алгоритмы переработки входной информации в выходную. Входной информацией могут быть параметры модели, ее начальные состояния и т.п., а выходной - траектории этой модели.

Моделирующий алгоритм строится на основе математической модели системы. Последняя может быть как алгоритмической , так и аналитической .

Примером алгоритмической модели является конечный автомат, заданный с помощью одношаговой функции перехода, которая собственно и определяет алгоритм пересчета состояний автомата, т.е. воспроизведения ее траектории.

Примером аналитической модели является система обыкновенных дифференциальных уравнений, в которой для получения решения необходимо использовать какой-либо метод интегрирования. Данная модель преобразуется в алгоритмическую при использовании метода численного интегрирования. Такое преобразование приводит, вообще говоря, к изменению свойств модели, что в принципе должно учитываться при исследовании.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта