Главная » Галлюциногенные » Миссия вояджер 1 и 2. «Вояджер» и «Пионер» - спутники покинувшие Солнечную систему

Миссия вояджер 1 и 2. «Вояджер» и «Пионер» - спутники покинувшие Солнечную систему

Ровно 40 лет назад, 5 сентября 1977 года, в космос запустили аппарат «Вояджер 1» . Хотя «Вояджер 1» запустили позже его побратима «Вояджера 2», он обогнал его и первым в истории вылетел за пределы Солнечной системы.

В годовщину запуска «Вояджера 1» мы рассказываем удивительные факты про него.

«Вояджер 1» все еще летит

Умер Леонид Брежнев, а «Вояджер 1» летел. Распался СССР, а «Вояджер 1» летел. Пришел и ушел Борис Ельцин, пришел Владимир Путин, а «Вояджер 1» все еще летит. При том что основная миссия космического аппарата должна была продлиться всего пять лет — предполагалось, что он пролетит рядом с Юпитером, Сатурном и его спутником Титаном, и потом перестанет передавать сигналы на Землю.

«Вояджер 1» пролетел расстояние, которое не укладывается в голове

Сейчас он находится на расстоянии около 20 миллиардов километров от Земли. Это как почти три миллиона раз слетать в Нью-Йорк из Москвы. «Вояджер 1» летит со скоростью около 60 тысяч километров в час, то есть то же расстояние до Нью-Йорка он бы преодолел за восемь минут.

«Вояджер 1» стал первым аппаратом, покинувшим Солнечную систему

В августе 2012 года космический аппарат вышел в межзвездную среду. Приборы космического аппарата фиксировали, что Солнце по мере отдаления воздействовало на него все слабее и наблюдали рост воздействия частиц межзвездного происхождения. Где сейчас находится аппарат, можно посмотреть в отдельном приложении NASA.

Радиосигнал до аппарата идет 19 часов

Ученые продолжают поддерживать связь с «Вояджером 1». Сигнал до космического аппарата сейчас идет 19 часов 20 минут и 51 секунду, и это время постоянно увеличивается. «Вояджер 1» передает информацию с тех приборов, которые все еще включены: магнитометра и детекторов заряженных частиц и космических лучей.

Другие приборы, в том числе камеры, отключены либо из-за выхода из строя, либо для экономии энергии.

«Вояджер 1» сфотографировал Землю с рекордного расстояния

В феврале 1990 года «Вояджер 1» передал на Землю одни из последних фотографий. Наибольшую известность получила та, которую стали называть «Бледное голубое пятнышко». На этом снимке Земля сфотографирована с расстояния в шесть миллиардов километров камерой, при помощи которой можно с 800 метров разглядеть заголовок в газете.

Земля — это маленькая точка на коричневой полосе.

На борту «Вояджера 1» — послание инопланетянам

К корпусу «Вояджера» прикреплена позолоченная пластинка, на которой записано послание для инопланетных существ. В частности, на ней есть приветствие на 50 языках. Кроме того, там записана классическая музыка, музыка разных народов мира, звуки природы.

Также для инопланетян на пластинку в аналоговой форме записали фотографии людей, Земли из космоса, самолета, автомобилей, нот и так далее.

Когда-нибудь «Вояджер 1» долетит до звезд

По расчетам ученых, через 40 тысяч лет он пролетит на относительно небольшом расстоянии от звезды AC+79 3888 в созвездии Жирафа. «Относительно» — это в космических масштабах. В действительности, Вояджер 1" пролетит в более чем в одном световом годе от этой звезды.

С участием аппаратов данной серии.

Всего было создано и отправлено в космос два аппарата серии «Вояджер»: «Вояджер-1» и «Вояджер-2». Аппараты были созданы в Лаборатории реактивного движения (Jet Propulsion Laboratory - JPL) НАСА . Проект считается одним из самых успешных и результативных в истории межпланетных исследований - оба «Вояджера» впервые передали качественные снимки и , а «Вояджер-2» впервые достиг и . «Вояджеры» стали третьим и четвёртым космическими аппаратами, план полёта которых предусматривал вылет за пределы Солнечной системы (первыми двумя были «Пионер-10» и «Пионер-11»). Первым в истории аппаратом, достигшим границ Солнечной системы и вышедшим за её пределы, стал «Вояджер-1».

Аппараты серии «Вояджер» - это высокоавтономные роботы, оснащённые научными приборами для исследования внешних планет, а также собственными энергетическими установками, ракетными двигателями, компьютерами, системами радиосвязи и управления. Общая масса каждого аппарата - около 721 кг.

Проект «Вояджер»

«Вояджер» - космический зонд.

Проект «Вояджер» - один из самых выдающихся экспериментов, выполненных в космосе в последней четверти XX века. Расстояния до планет-гигантов слишком велики для наземных средств наблюдения. Поэтому отправленные на «Вояджерами» фотоснимки и данные измерений до сих пор имеют большую научную ценность.

Идея проекта впервые появилась в конце 1960-х годов, незадолго до запуска первых пилотируемых аппаратов к и аппаратов «Пионер» к Юпитеру.

Большое Красное пятно Юпитера. Фото сделано «Вояджером-1»

Первоначально планировалось исследовать только Юпитер и Сатурн. Однако благодаря тому, что все планеты-гиганты удачно расположились в сравнительно узком секторе Солнечной системы («парад планет»), было возможно использование гравитационных манёвров для облёта всех внешних планет, за исключением . Поэтому траектория полёта была рассчитана исходя из этой возможности, хотя официально изучение Урана и Нептуна не вошло в программу миссии (для гарантированного достижения этих планет потребовалось бы строительство более дорогих аппаратов с более высокими характеристиками по надёжности).

После того, как «Вояджер-1» успешно выполнил программу исследования Сатурна и его , было принято окончательное решение направить «Вояджер-2» к Урану и Нептуну. Для этого пришлось слегка изменить его траекторию, отказавшись от близкого пролёта около Титана.

Научное оснащение аппарата

Нептун. Фото сделано «Вояджером-2»

  • Телевизионные камеры, чёткостью 800 строк, используются специальные видиконы с памятью. Считывание одного кадра требует 48 с.
    • широкоугольная (поле около 3°), фокусное расстояние 200 мм;
    • узкоугольная (0,4°), фокусное расстояние 500 мм;
  • Спектрометры:
    • Инфракрасный, диапазон от 4 до 50 мкм;
    • Ультрафиолетовый, диапазон 50-170 нм;
  • Фотополяриметр;
  • Плазменный комплекс:
    • детектор плазмы;
    • детектор заряженных частиц низких энергий;
    • детектор космических лучей;
    • магнитометры высокой и низкой чувствительности;
    • приёмник плазменных волн.

Энергооснащение аппарата

Слоистая атмосфера Титана, спутника Сатурна

В отличие от космических аппаратов, исследующих внутренние планеты, «Вояджеры» не могли использовать , так как поток солнечного излучения, по мере удаления аппаратов от , становится слишком мал - например, вблизи орбиты Нептуна он примерно в 900 раз меньше, чем на орбите Земли.

Источником электроэнергии являются три . Топливом в них служит плутоний-238 (в отличие от плутония-239, используемого в ядерном оружии); их мощность в момент старта космического аппарата составляла примерно 470 ватт при напряжении 30 вольт постоянного тока. Период полураспада плутония-238 составляет примерно 87,74 года, и генераторы, использующие его, теряют 0,78 % своей мощности в год. В 2006 году, через 29 лет после запуска, такие генераторы должны иметь мощность только 373 Вт, то есть около 79,5 % от исходной. Кроме того, биметаллическая термопара, которая конвертирует тепло в электричество, также теряет эффективность, и реальная мощность будет ещё ниже. На 11 августа 2006 года мощность генераторов «Вояджера-1» и «Вояджера-2» снизилась до 290 Вт и 291 Вт, соответственно, то есть составила около 60 % от мощности на момент запуска. Эти показатели лучше, чем предполётные предсказания, основанные на консервативной теоретической модели деградации термопары. С падением мощности приходится сокращать энергопотребление космического аппарата, что ограничивает его функциональность.

Технические проблемы «Вояджера-2» и их решение

Полёт «Вояджера-2» продлился гораздо дольше, чем было запланировано. В связи с этим после пролёта Юпитера учёным, сопровождавшим миссию, пришлось решить огромное количество технических проблем. Заложенные изначально правильные подходы к конструированию аппаратов позволили это сделать. К наиболее значимым и успешно решённым проблемам можно отнести:

  • выход из строя автоматической подстройки частоты гетеродина. Без автоматической подстройки приёмник может принимать лишь сигналы в пределах собственной полосы пропускания, которая составляет менее 1/1000 нормального её значения. Даже доплеровские сдвиги от суточного вращения Земли превышают её в 30 раз. Оставался единственный выход из положения - каждый раз рассчитывать новое значение передаваемой частоты и подстраивать наземный передатчик так, чтобы после всех сдвигов сигнал как раз попадал в полосу пропускания приемника. Это и было сделано - компьютер теперь включен в контур передатчика.
  • выход из строя одной из ячеек оперативной памяти бортовой ЭВМ - программу удалось переписать и загрузить так, что этот бит перестал влиять на неё;
  • на определённом участке полёта применявшаяся система кодирования управляющего сигнала уже переставала отвечать требованиям достаточной помехозащищённости из-за ухудшения отношения сигнал/шум. В бортовую ЭВМ была загружена новая программа, осуществлявшая кодирование гораздо более защищённым кодом (был применён двойной код Рида - Соломона).
  • при пролёте плоскости бортовая поворотная платформа с телекамерами была заклинена, вероятно, частицей этих колец. Осторожные попытки поворота её несколько раз в противоположные стороны позволили, в конце концов, разблокировать платформу;
  • падение мощности питающих изотопных элементов потребовало составления сложных циклограмм работы бортового оборудования, часть которого начали время от времени отключать, чтобы предоставить другой части достаточно электроэнергии;
  • незапланированное вначале удаление аппаратов от Земли потребовало многократной модернизации наземного приёмо-передающего комплекса, чтобы принимать слабеющий сигнал.

Послание внеземным цивилизациям

Образец золотой пластинки, прикреплённой к аппаратам.

К борту каждого «Вояджера» прикрепили круглую алюминиевую коробку, положив туда позолоченный видеодиск. На диске 115 слайдов, на которых собраны важнейшие научные данные, виды Земли, её континентов, различные ландшафты, сцены из жизни животных и человека, их анатомическое строение и биохимическая структура, включая молекулу ДНК.

В двоичном коде сделаны необходимые разъяснения и указано местоположение Солнечной системы относительно 14 мощных . В качестве «мерной линейки» указана сверхтонкая структура молекулы водорода (1420 МГц).

Кроме изображений, на диске записаны и звуки: шёпот матери и плач ребёнка, голоса птиц и зверей, шум ветра и дождя, грохот вулканов и землетрясений, шуршание песка и океанский прибой.

Человеческая речь представлена на диске короткими приветствиями на 55 языках народов мира. По-русски сказано: «Здравствуйте, приветствую вас!». Особую главу послания составляют достижения мировой музыкальной культуры. На диске записаны произведения Баха, Моцарта, Бетховена, джазовые композиции Луи Армстронга, Чака Берри, народная музыка многих стран.

На диске записано также обращение Картера, который в 1977 году был президентом США. Вольный перевод обращения звучит так:

Этот аппарат создан в США, стране с населением 240 млн человек среди 4-миллиардного населения Земли. Человечество всё ещё разделено на отдельные нации и государства, но страны быстро идут к единой земной цивилизации.

Мы направляем в космос это послание. Оно, вероятно, выживет в течение миллиарда лет нашего будущего, когда наша цивилизация изменится и полностью изменит лик Земли… Если какая-либо цивилизация перехватит «Вояджер» и сможет понять смысл этого диска - вот наше послание:

Это - подарок от маленького далёкого мира: наши звуки, наша наука, наши изображения, наша музыка, наши мысли и чувства. Мы пытаемся выжить в наше время, чтобы жить и в вашем. Мы надеемся, настанет день, когда будут решены проблемы, перед которыми мы стоим сегодня, и мы присоединимся к галактической цивилизации. Эти записи представляют наши надежды, нашу решимость и нашу добрую волю в этой , огромной и внушающей благоговение.

В 2015 году НАСА приняло решение выложить в интернет все звуки с золотой пластинки для зондов «Вояджеров». Ознакомиться с ними может любой желающий на сайте НАСА.

Аппараты покидают солнечную систему

Иллюстрация выхода космических аппаратов за пределы Солнечной системы.

После встречи с Нептуном траектория «Вояджера-2» отклонилась к югу. Теперь его полёт проходит под углом 48° к эклиптике, в южной полусфере. «Вояджер-1» поднимается над эклиптикой (начальный угол 38°). Аппараты навсегда покидают пределы Солнечной системы.

Технические возможности аппаратов таковы: энергии в радиоизотопных термоэлектрических батареях хватит для работы по минимальной программе примерно до 2025 года. Проблемой может стать возможная потеря Солнца солнечным датчиком, так как с большого расстояния Солнце становится всё более тусклым. Тогда направленный радиолуч отклонится от Земли, и приём сигналов аппарата станет невозможным. Это может произойти около 2030 года.

Теперь из научных исследований «Вояджеров» на первом месте - изучение переходных областей между солнечной и межзвёздной плазмой. «Вояджер-1» пересёк гелиосферную ударную волну (termination shock ) в декабре 2004 года на расстоянии 94 а. е. от Солнца. Информация, поступающая с «Вояджера-2», привела к новому открытию: хотя аппарат на тот момент ещё не достиг данной границы, но получаемые от него данные показали, что она асимметрична - её южная часть примерно на 10 а. е. ближе к Солнцу, чем северная (вероятное объяснение - влияние межзвёздного магнитного поля). «Вояджер-2» пересёк гелиосферную ударную волну 30 августа 2007 года на расстоянии 84,7 а. е. Ожидается, что аппараты пересекут гелиопаузу примерно через 10 лет после пересечения гелиосферной ударной волны.

Космический аппарат «Вояджер-2», запущенный 20 августа 1977 года, пересёк в августе 2007 года границу Солнечной системы (точнее, гелиосферы). 10 декабря 2007 года NASA сообщило о результатах анализа данных, присланных «Вояджером».

На определённом расстоянии скорость солнечного ветра резко падает и перестаёт быть сверхзвуковой. Область (практически поверхность), в которой это происходит, называется границей ударной волны (termination shock или termination shockwave). Это и есть граница, которую пересекли «Вояджеры». Можно считать её границей внутренней гелиосферы. По некоторым определениям, гелиосфера здесь и кончается.

«Вояджер-2» подтвердил, что гелиосфера - не идеальный шар, она сплющена: её южная граница находится ближе к Солнцу, чем северная. Кроме того, аппарат сделал ещё одно неожиданное наблюдение: торможение солнечного ветра за счёт противодействия межзвёздного газа должно было бы приводить к резкому повышению температуры и плотности плазмы ветра. Действительно, на границе ударной волны температура была выше, чем во внутренней гелиосфере, но всё равно в 10 раз меньше, чем ожидалось. Чем вызвано расхождение и куда уходит энергия, неизвестно.

Учёные надеются, что связь с «Вояджерами» удастся поддерживать и после того, как они пересекут гелиопаузу.


Оценка 1 Оценка 2 Оценка 3 Оценка 4 Оценка 5

Покинуть Солнечную систему и улететь к звездам очень сложно. Сначала, истратив немало топлива, надо взлететь над Землей в космос. При этом ваша скорость относительно Земли может оказаться нулевой, но если вы взлетели вовремя и в нужном направлении, то относительно Солнца вы будете лететь вместе с Землей, с ее орбитальной скоростью относительно Солнца 30 км/с.

Вовремя включив дополнительный двигатель и увеличив скорость еще на 17 км/с относительно Земли, относительно Солнца вы получите скорость 30 + 17 = 47 км/с, которая называется третьей космической. Она достаточна, чтобы безвозвратно покинуть Солнечную систему. Но топливо для рывка в 17 км/с доставлять на орбиту дорого, и ни один космический аппарат до сих пор не развивал третью космическую скорость и не покидал Солнечную систему таким способом. Самый быстрый аппарат «Новые горизонты» полетел к Плутону, включив дополнительный двигатель на орбите Земли, но развил скорость только в 16,3 км/с.

Более дешевый способ покинуть Солнечную систему - разогнаться за счет планет, сближаясь с ними, используя их как буксиры и постепенно наращивая скорость около каждой. Для этого нужна определенная. конфигурация планет - по спирали - чтобы, расставаясь с очередной планетой, лететь именно к следующей. Из-за медлительности самых далеких Урана и Нептуна такая конфигурация возникает редко, примерно раз в 170 лет. Последний раз Юпитер, Сатурн, Уран и Нептун выстроились в спираль в 1970-е годы. Американские ученые воспользовались этим построением планет и отправили за пределы Солнечной системы космические аппараты: «Пионер-10» (Pioneer 10, стартовал 3 марта 1972 года), «Пионер-11» (Pioneer 11, стартовал 6 апреля 1973), «Вояджер-2» (Voyager 2, стартовал 20 августа 1977) и «Вояджер-1» (Voyager 1, стартовал 5 сентября 1977).

Все четыре аппарата к началу 2015 года удалились от Солнца на границу Солнечной системы. «Пионер-10» имеет скорость 12 км/с относительно Солнца и находится от него на расстоянии около 113 а. е. (астрономических единиц, средних расстояний от Солнца до Земли), что составляет приблизительно 17 млрд км. «Пионер-11» - со скоростью 11,4 км/с на расстоянии 92 а.е., или 13,8 млрд км. «Вояджер-1» - со скоростью около 17 км/с на расстоянии 130,3 а.е., или 19,5 млрд км (это самый далекий от Земли и Солнца объект, созданный людьми). «Вояджер-2» - со скоростью 15 км/с на расстоянии 107 а. е„ или 16 млрд км. Но до звезд этим аппаратам лететь еще очень далеко: соседняя звезда Проксима Центавра находится дальше аппарата «Вояджер-1» в 2 000 раз. И не забывайте, что звезды маленькие, а расстояния между ними большие. Поэтому все аппараты, не запущенные специально к конкретным звездам (а таких пока нет), вряд ли вообще когда-нибудь пролетят рядом со звездами. Конечно, по космическим меркам «сближениями» можно считать: пролет «Пионера-10» через 2 миллиона лет в будущем на расстоянии несколько световых лет от звезды Альдебаран, «Вояджера-1» - через 40 тысяч лет в будущем на расстоянии двух световых лет от звезды АС+79 3888 в созвездии Жирафа и «Вояджера-2» - через 40 тысяч лет в будущем на расстоянии двух световых лет от звезды Росс 248.

Важно знать:

Третья космическая скорость - минимальная скорость, которую надо придать объекту около Земли для того, чтобы он покинул Солнечную систему. Равна 17 км/с относительно Земли и 47 км/с относительно Солнца.

Солнечный ветер - поток энергичных протонов, электронов и других частиц от Солнца в космическое пространство.

Гелиосфера - область пространства около Солнца, где солнечный ветер, двигаясь со скоростью порядка 300 км/с, является наиболее энергичной составляющей космической среды.

Все, что мы знаем о космосе за пределами Солнечной системы, мы узнаем, анализируя излучение (свет) и гравитацию космических объектов. При этом приходится делать много допущений. Например, массу черной дыры мы определяем, предполагая массы кружащих вокруг нее звезд. Их массы предполагаем, считая, что эти звезды похожи на Солнце.

«Пионеры» и «Вояджеры» - единственные пока эксперименты безо всяких допущений, организованные нами на краю (а в будущем - и за пределами) Солнечной системы. Прямой эксперимент - это совсем другое дело! Мы знаем массы этих аппаратов - мы их изготовили, поэтому мы точно вычисляем массу любого объекта, который влияет на аппараты. Вы скажете: «Таких нет, аппараты летят в межпланетной и межзвездной пустоте». Но оказалось, что это не пустота: даже пылинки, стучащие по аппаратам, существенно меняют их траекторию. В уникальных экспериментах всегда много мистики, ее полно и в истории «Пионеров» и «Вояджеров».

Первая странность: 15 августа 1977 года, за несколько дней до запуска максимально далеких аппаратов, был пойман самый загадочный радиосигнал «Wow!». Может быть, с его помощью инопланетяне сообщили друг другу о важном событии - готовящемся выходе людей за пределы Солнечной системы?

Каких успехов достигли «Вояджер» и «Пионер» в пути на край Солнечной системы

По дороге на край Солнечной системы «Пионер-10» исследовал астероиды и стал первым аппаратом, пролетевшим около Юпитера. И сразу озадачил ученых: энергия, излучаемая Юпитером в космос, оказалась в 2,5 раза больше энергии, получаемой Юпитером от Солнца. А крупнейшие спутники Юпитера оказались состоящими не из камней, а преимущественно изо льда. После 2003 года связь с «Пионером-10» потеряна. «Пионер-11» также исследовал Юпитер, а затем стал первым космическим аппаратом, исследовавшим Сатурн. В 1995 году связь с «Пионером-11» потеряна.

Аппараты «Вояджер » работают до сих пор и сообщают ученым о состоянии космоса вокруг них. После 37 лет полета! Это также можно считать мистикой, поскольку никто не рассчитывал на столь долгую работу: пришлось даже перепрограммировать счет времени внутри бортовых компьютеров «Вояджеров» - он не был рассчитан на даты после 2007 года. Внутри аппаратов энергию вырабатывают радиоизотопные генераторы, использующие ядерную реакцию распада плутония-238 - как в атомных электростанциях. Этой энергии должно хватить еще на десятки лет.

Основная аппаратура оказалась надежнее, чем предполагали создатели. Главная проблема - угасание радиосигналов связи с удалением аппаратов. Сейчас сигнал от аппаратов до Земли идет (со скоростью света) более 16 часов! Но антенны дальней космической связи, гигантские «тарелки» размером почти с футбольное поле, умудряются ловить сигналы «Вояджеров». Мощность передатчика «Вояджера» 28 Вт, примерно в 100 раз мощнее мобильного телефона. А падает мощность сигнала пропорционально квадрату расстояния. Легко сосчитать, что слышать сигнал «Вояджеров» - это как слышать мобильник с Сатурна (безо всяких станций сотовой связи!).

По пути на край Солнечной системы «Вояджеры» пролетели мимо Юпитера и Сатурна и получили детальные снимки их спутников. «Вояджер-2» пролетел, кроме того, мимо Урана и Нептуна, став первым и единственным пока аппаратом, посетившим эти планеты. «Вояджеры» подтвердили загадки, открытые «Пионерами»: многие спутники Юпитера и Сатурна оказались не только ледяными, но и, видимо, содержащими водоемы подо льдом.

Граница Солнечной системы

Границу Солнечной системы можно определять по-разному. Гравитационная граница проходит там, где притяжение Солнца уравновешивается притяжением Галактики - на расстоянии примерно 0,5 парсека, или 100000 а.е. от Солнца. Но изменения начинаются гораздо ближе. Мы точно знаем, что дальше Нептуна нет больших планет, но есть множество карликовых, а также кометы и прочие малые тела Солнечной системы, состоящие в основном изо льда. Видимо, на расстоянии от 1000 до 100000 а.е. от Солнца Солнечную систему со всех сторон окружает рой комочков снега, комет - так называемое Облако Оорта . Возможно, оно простирается до соседних звезд. И вообще снежинки, пылинки и газы, водород и гелий, вероятно, являются типичными составляющими межзвездной среды. Это значит, что между звездами - не пусто!

Важно знать:

Граница ударной волны - граничная поверхность внутри гелиосферы вдали от Солнца, где происходит резкое замедление солнечного ветра из-за его столкновения с межзвездной средой.

Гелиопауза - граница, на которой солнечный ветер полностью тормозится галактическим звездным ветром и другими компонентами межзвездной среды.

Галактический звездный ветер (космические лучи) - аналогичные солнечному ветру потоки энергичных частиц (протонов, электронов и других), возникающие в звездах и пронизывающие нашу Галактику.

Еще одну границу определяет солнечный ветер, поток энергичных частиц от Солнца: область, где он господствует, называется гелиосферой. Такой ветер создают и другие звезды, поэтому где-то солнечный ветер должен встречаться с налетающим на Солнечную систему объединенным ветром звезд Галактики - галактическим звездным ветром, или по-другому космическими лучами. В столкновении с галактическим звездным ветром солнечный тормозится и теряет энергию. Куда она девается, не совсем ясно. В этом столкновении ветров должны возникать загадочные явления, с которыми в последние годы как раз встречаются аппараты «Вояджер» .

Как и ожидали ученые, на некотором расстоянии от Солнца солнечный ветер начал стихать - это так называемая граница ударной волны, граница гелиосферы. Аппарат «Вояджер-1» пересекал ее несколько раз, т.к. она оказалась очень запутанной. К декабрю 2010 года на расстоянии 17,4 млрд км от Солнца для «Вояджера-1» солнечный ветер стих совершенно. Вместо него почувствовалось мощное дуновение межзвездного, галактического ветра: к 2012 году в 100 раз возросло число электронов, сталкивающихся с аппаратом со стороны межзвездного пространства. Соответственно, проявился мощный электрический ток и создаваемое им магнитное поле. Видимо, «Вояджер-1» достиг гелиопаузы. Однако, вопреки ожиданиям, аппарат обнаруживает не четкую границу двух сталкивающихся потоков частиц, а хаотическое нагромождение огромных пузырей. Потоки частиц на их поверхностях создают мощные электрические токи и магнитные поля.

«Вояджер» и «Пионер» - послания инопланетянам

Все упомянутые аппараты несут послания для инопланетян. На борту «Пионеров» закреплены металлические пластины, на которых схематически изображены: сам аппарат; в том же масштабе - мужчина и женщина; два атома водорода как мера времени и длины; Солнце и планеты (еще включая Плутон); траектория аппарата с Земли мимо Юпитера и своеобразная космическая карта, на которой показаны направления с Земли, 14 пульсаров и центр Галактики. Пульсары, быстро вращающиеся нейтронные звезды, в Галактике довольно редки, а частота их излучения является уникальной характеристикой, своеобразным «паспортом» каждого из них. Эта частота закодирована на табличке «Пионеров». Следовательно, космическая карта с пульсарами однозначно покажет инопланетянам, где в Галактике находится Солнечная система. Более того, со временем частота пульсара меняется вполне закономерно, и, сверив текущую частоту с указанной на карте, инопланетяне смогут определить, сколько времени прошло с момента запуска найденного ими аппарата «Пионер».

На борту аппаратов «Вояджер» установлены золотые пластинки в футлярах. На пластинках записаны звуки Земли (ветер, гром, сверчки, птицы, поезд, трактор и т.д.), приветствия на разных языках (по-русски «Здравствуйте, приветствую вас»), музыка (Бах, Чак Берри, Моцарт, Луи Армстронг, Бетховен, Стравинский и фольклор) и 122 изображения (по математике, физике, химии, планетам, анатомии человека, жизни людей и т. д. - полный список можно найти на сайте НАСА http://уоуаеег.ipl.nasa.gov/spacecraft/goldenrec.html. Прилагается устройство для воспроизведения этих звуков и изображений. На футляре пластинок - рисунок, в котором закодированы: два атома водорода для масштаба времени и длины; та же космическая карта с пульсарами и объяснение, как воспроизвести звуки и изображения.

Аномалия «Пионеров»

В 1997 году, через несколько месяцев после исчезновения сигнала «Пионера-11», один из ученых, анализируя данные, вскочил с кресла с криком: «Нас не пускают за пределы Солнечной системы!». Он обнаружил торможение аппарата после пересечения им орбиты Юпитера. У «Пионера-10» и долетавших до Юпитера аппаратов «Улисс» (Ulysses) и «Галилео» (Galileo) нашли такое же торможение. Только «Вояджеры» торможения не испытывали, поскольку при малейшем отклонении от графика полета разгонялись двигателями. Особый ажиотаж вокруг торможения «Пионеров» поднялся, когда выяснилось, что оно равно постоянной Хаббла, умноженной на скорость света. Выходит, что аппараты теряют энергию (тормозятся) точно так же, как частицы излучения (фотоны). И версия № 1: если фотоны теряют энергию из-за расширения Вселенной, значит, и «Пионеры» по той же причине. Другие объяснения: 2) ученые не учли какой-то вполне прозаичный источник потерь энергии (тогда, правда, совпадение с постоянной Хаббла чисто случайное) или 3) Вселенная наполнена субстанцией, отнимающей энергию при движении сквозь нее как у «Пионеров», так и у фотонов.

По космическим меркам «торможение «Пионеров» - очень маленькая величина: 1/1 ООО ООО ООО м/с2. Каждые сутки аппарат пролетает на 1,5 километра меньше, чем положенный миллион километров! Чтобы это объяснить, ученые 15 лет пытались учесть все остальные потери энергии и вещества, все силы, действующие на аппараты. Но поиски объяснения № 2 провалились. Правда, американский ученый Слава Турищев обнаружил, что тепло рассеивается аппаратами преимущественно в сторону от Солнца, т.е. в тень,- это и является непосредственной причиной торможения «Пионеров». Частица теплового излучения (фотон) имеет импульс, следовательно, покидая объект, излучение создает реактивную тягу в противоположном направлении (на этом основаны проекты аннигиляционных фотонных двигателей для межзвездных ракет). Но загадкой осталось, ЧТО именно заставляет аппараты так рассеивать тепло? И главное - аппараты разной конструкции!

Анализируя, с чем вообще в, казалось бы, пустом космосе взаимодействуют аппараты, ученые обнаружили, что по ним довольно часто стучат космические пылинки и льдинки. Приборы смогли определять направление и силу этих ударов. Оказалось, что Солнечную систему пронизывают мелкие твердые частицы двух сортов: одни летят вокруг Солнца, другие - к Солнцу из межзвездных далей. Именно вторые тормозят космические аппараты. При ударе кинетическая энергия пылинки становится внутренней, т.е.- теплом. Если пылинка остановлена аппаратом (что логично), то весь ее импульс передается аппарату. А ее энергия рассеивается в направлении ее прилета, т.е. в направлении от Солнца. Аппараты зарегистрировали немало ударов сравнительно крупными пылинками - порядка 10 микрон. И для объяснения торможения «Пионеров» им достаточно стукаться о такие пылинки в среднем каждые 10 км пути. Именно такую плотность пыли в межзвездном космосе увидели современные инфракрасные телескопы.

Вообще внешние области Солнечной системы (за Сатурном) оказались запылены, заснежены и загазованы гораздо сильнее, чем внутренние. Около Солнца пылинки, снежинки и газ когда-то слиплись в планеты, спутники и астероиды. Немало вещества осело и на Солнце. Но большинство пылинок, льдинок и атомов газов было изгнано Солнцем на периферию системы. К тому же, на периферию проникает межзвездная пыль, рождающаяся в оболочках других звезд. Значит, за Нептуном и далее в межзвездном и межгалактическом пространстве пылинок, льдинок и газа должно быть еще больше. Вполне возможно, что межзвездная среда, равномерно заполняющая Вселенную, действительно отнимает энергию как у космических аппаратов, так и у фотонов. Основную роль при этом играют крупные (10 микрон) пылинки и льдинки, а также молекулы водорода, которые другим образом себя не проявляют.

Please enable JavaScript to view the

Зонд "Вояджер-2", покинувший Землю 33 года назад, начал посылать на Землю сообщения, не поддающиеся декодированию.

В 1977 году, когда этот космический аппарат был запущен НАСА в рамках программы «Вояджер», ученые поместили в него носитель данных (12-дюймовый диск). Понимая, что вероятность контакта с высокоразвитой внеземной формой жизни , все же, существовала, они записали на этот диск образцы музыки, а также приветствия на 55 разных языках.

В настоящий момент, поток данных с «Вояджера-2» не поддается дешифровке: посылаемые им сигналы имеют неизвестный формат. Несмотря на то, что официально НАСА объясняет ситуацию сбоем в системе, отвечающей за кодирование данных, существует альтернативное мнение, согласно которому смена формата стала результатом того самого контакта, к которому ученые подготовили «Вояджер-2» в 1977 году.

Уфолог Хартвиг Хаусдорф (Hartwig Hausdorf) комментирует положение дел следующим образом: «Создается впечатление, будто кто-то перепрограммировал или похитил зонд – впрочем, возможно, всей правды мы до сих пор не знаем».
Формат, в котором с «Вояджера-2» отправлялась исследовательская информация, изменился в прошлом месяце, когда аппарат был на расстоянии 8,6 миллиарда миль от Земли. Согласно представителям НАСА, специалисты агентства занимаются решением проблемы. В данный момент зонд переведен в режим, в котором он передает данные только о своем состоянии.


"ВОЯДЖЕР-2" ИССЛЕДУЕТ УРАН

Борислав Славолюбов

20 августа 1977 года с космодрома космического центра им. Кеннеди был запущен космический аппарат "Вояджер-2". Первоначально станция стартовала к Юпитеру и Сатурну. Однако на рубеже 70-х и 80-х годов все планеты-гиганты удачно расположились в сравнительно узком секторе Солнечной системы ("парад планет"). Последний раз такое "собрание" проходило 180 лет назад. Использование гравитационного маневра сделало возможным дальнейший полет "Вояджера" - к Урану и Нептуну. Без такого маневра полет к Урану продолжался бы на 20 лет дольше, 30 лет вместо 9 - станция летела бы до сих пор.

После пролета мимо Сатурна под воздействием притяжения этой планеты "Вояджер-2" совершил пертурбационный маневр (разворот почти на 90°) и перешел на траекторию полета к Урану. В 1981 году вероятность выполнения научной программы у Урана оценивалась в 60-70%. Во время пролета системы Сатурна произошло заклинивание поворотной платформы аппарата. Для того, чтобы понять, в чем неисправность, в Лаборатории Реактивного Движения (JPL) были срочно изготовлены 86 (!) макетов силового привода платформы, на которых и провели всестороннее изучение нештатной ситуации. Удалось выяснить, что причиной заклинивания послужила большая нагрузка на платформу вблизи Сатурна, и неисправность можно устранить. Была разработана программа более аккуратного управления платформой. Как запасной вариант, было предусмотрено наведение приборов путем разворота всей станции с помощью двигателей микроориентации.

В 1986 году в южном полушарии Урана стояло полярное лето. К Солнцу (и к подлетающему "Вояджеру-2") был обращен южный полюс планеты. Из-за большого наклонения спутниковой системы Урана по отношению к эклиптике было решено совершить пролет вблизи лишь одного спутника. В 1984 году этим спутником была выбрана Миранда. Было принято решение о минимальном расстоянии до Миранды в 29 тысяч километров. Рассматривался вариант и более тесного сближения - до 15 тысяч километров, но в этом случае система компенсации сдвига изображения телевизионных камер не могла бы предотвратить смазывания получаемых снимков.
При пролете мимо Урана впервые для связи с "Вояждером-2" использовались новые 64-метровые антенны, установленные в США, Испании и Австралии. Из-за падения мощностей радиоизотопных батарей (до 400 Вт) приходилось ограничить научную программу и использовать приборы поочередно.
В период с 4 ноября 1985 г. по 10 января 1986 г. станция вела обзорные наблюдения Урана с использованием телевизионных камер, которые регистрировали образования в атмосфере планеты и движение ее спутников. На снимках, полученных 30 декабря, был обнаружен новый спутник - Пак, размером около 170 км. Примерно в это же время было сфотографировано главное кольцо и несколько других. По мере постепенного сближения с Ураном в течение января 1986 года были сфотографированы еще около десятка небольших внутренних спутников размером в несколько десятков километров.
Кроме ранее известных 9 колец было открыто еще 2 слабых кольца - 1986 U1R и 1986 U2R. Дополнительно, установленный на аппарате фотополяриметр обнаружил по крайней мере еще несколько неполных колец, лежащих за пределами кольца Эпсилон.

Также было обнаружено, что узкие кольца погружены в широкое, разреженное кольцо.

Был сделан вывод, что кольцо Эпсилон состоит из крупных частиц размером около 1 метра (точнее, от 10 см до 10 м).
За 6 дней до максимального сближения с Ураном произошел серьезный сбой в передаче данных. Выяснилось, что при переходе на более мощный алгоритм сжатия (Рида-Солона) при передаче данных изображения искажены сеткой черных и белых линий. Одна группа, не доверяя компьютеру, обработала вручную все пикселы. Результат оказался тот же. Другая группа подготовила новое задание аппарату: прочесть и передать на Землю все, что он записал в память. Прошло много часов, прежде чем был получен ответ. Сравнение показало, что среди многих килобайт программы в одном восьмиразрядном слове один из нулей замещен единицей. Запрос с Земли и ответ Вояджера-2 показали, что перевести эту ячейку в "нулевое" состояние не удается. Тогда программисты так переписали эту часть программы, чтобы дефектный триггер не вызывал искажений. За четыре дня до сближения программа была послана на борт. Телеметрическая информация стала поступать без искажений.
В атмосфере Урана наблюдалось гораздо меньше деталей, чем в атмосферах Сатурна и Юпитера. На полученных снимках видна коричневатая дымка над южной полярной областью, освещенной Солнцем, а также некоторые облачные образования на различных широтах, движущиеся с неодинаковой скоростью.

Были обнаружены ветры, направление которых совпадает с направлением вращения планеты, причем в высоких широтах циркуляция атмосферы происходит с большей скоростью, чем у экватора. В самых верхних слоях атмосферы температура высокая: 750 К на дневной и 1000 К на ночной стороне планеты. В нижней части атмосферы над обоими полюсами температура одинакова. Исследования температуры в функции широты показали, что в высоких широтах близ полюса и в низких широтах близ экватора она одинакова. Зарегистрирован холодный пояс шириной 10-15°, ось которого тянется примерно вдоль 40-й параллели. Температура атмосферы в этом поясе существенно ниже, чем в прилегающих областях. Станция обнаружила на Уране корону атомарного водорода над молекулярным водородом. Температура этой короны на дневной стороне 750 К, на ночной 1000 К.
Вояджер-2 открыл у Урана магнитосферу с напряженностью 0,25 Гс. Его полярность та же что и у Юпитера и Сатурна, и противоположна полярности магнитного поля Земли и Меркурия. Магнитометры станции показали, что в пределах магнитосферы планеты находятся орбиты спутников - Миранды, Ариэля и Умбриеля. Зарегистрированы возмущения магнитного поля этими тремя спутниками. Шлейф магнитосферы планеты простирается на большое расстояние. При проходе шлейфа зарегистрировано изменение направления поля на обратное, обусловленное наклоном магнитной оси Урана к оси вращения. Этот наклон составляет около 60 градусов, больше, чем у любой другой планеты Солнечной системы. При вращении Урана его магнитная ось перемещается в пространстве и увлекает за собой силовые линии магнитного поля, закручивая их.
Внутренняя магнитосфера Урана, по-видимому, представляет собой комбинацию горячих (100 000 К) и очень горячих (10 000 000 К) ионов. Горячие ионы обнаружены вблизи планеты, их плотность в 10 раз выше, чем плотность очень горячих ионов, которые обнаружены по обе стороны орбиты Миранды. Считают, что источником этих ионов является не солнечный ветер, а более удаленные от планеты спутники Урана. Генерируемые ими ионы (в основном протоны) при приближении к планете могут поглощаться Мирандой. Прибор для регистрации космического излучения обнаружил повышение интенсивности магнитного поля Урана внутри орбиты Миранды. Интенсивность поясов радиации Урана практически такая же, как у поясов Земли, и несколько меньше, чем у поясов Сатурна. В поясах Урана ниже содержание электронов высокой энергии, чем в поясах Земли.
Наблюдения магнитного поля Урана были важны еще и потому, что они позволили определить период вращения Урана вокруг оси и на основании этого - скорость ветров в атмосфере путем прослеживания движения облачных образований.
Зарегистрировано свечение Урана в УФ диапазоне, распространяющееся примерно на 50 тыс. км от планеты. На ночной стороне планеты обнаружены авроральные явления в районе магнитного полюса. Также зафиксировано интенсивное так называемое "электросвечение" атмосферы на дневной стороне планеты и радиоизлучение с ночной стороны. Плотность экзосферы достигает 100 штук в куб.см на уровне самого внешнего, кольца.

За несколько дней до пролета Урана станция начала подробную съемку крупнейших спутников:

В день пролета были получены беспрецедентные по разрешению снимки четырех крупнейших спутников. Наиболее близко от этих спутников станция пролетела от Ариэля - в 130 тысячах километров. В результате были получены снимки с разрешением до 2-3 километров на пиксель, показывающие геологически активную поверхность спутника. Для других спутников расстояние было гораздо выше: Умбриэль 557 тыс. км. (10 км на пиксель), Титания - 369 тыс. км. (13 км на пиксель) и Оберон - 660 тыс. км (12 км на пиксель).

Вояджер-2 прошел в 81200 км от облачного слоя Урана 24 января 1986 года. При проходе АМС через плоскость колец на расстоянии около 100 тысяч км от центра планеты прибор для изучения волн в плазме регистрировал приблизительно 30 слабых столкновений с частицами каждую секунду. Примерно в это же время АМС подошла к Миранде - до 30 тысяч километров от ее поверхности. Это позволило получить снимки с разрешением 560 метров на пиксель.

Но, к сожалению, все пять крупных спутников Урана были отсняты лишь с одного - подсолнечного полушария.
Через 3 часа АМС вошла в радиотень Урана и провела радиозондирование ее атмосферы. Съемка системы Урана продолжалась и после пролета планеты. Всего от АМС было получено около 6 тыс. снимков Урана, его спутников и колец.


"ВОЯДЖЕР-2" ИССЛЕДУЕТ УРАН

Борислав Славолюбов

20 августа 1977 года с космодрома космического центра им. Кеннеди был запущен космический аппарат "Вояджер-2". Первоначально станция стартовала к Юпитеру и Сатурну. Однако на рубеже 70-х и 80-х годов все планеты-гиганты удачно расположились в сравнительно узком секторе Солнечной системы ("парад планет"). Последний раз такое "собрание" проходило 180 лет назад. Использование гравитационного маневра сделало возможным дальнейший полет "Вояджера" - к Урану и Нептуну. Без такого маневра полет к Урану продолжался бы на 20 лет дольше, 30 лет вместо 9 - станция летела бы до сих пор.

После пролета мимо Сатурна под воздействием притяжения этой планеты "Вояджер-2" совершил пертурбационный маневр (разворот почти на 90°) и перешел на траекторию полета к Урану. В 1981 году вероятность выполнения научной программы у Урана оценивалась в 60-70%. Во время пролета системы Сатурна произошло заклинивание поворотной платформы аппарата. Для того, чтобы понять, в чем неисправность, в Лаборатории Реактивного Движения (JPL) были срочно изготовлены 86 (!) макетов силового привода платформы, на которых и провели всестороннее изучение нештатной ситуации. Удалось выяснить, что причиной заклинивания послужила большая нагрузка на платформу вблизи Сатурна, и неисправность можно устранить. Была разработана программа более аккуратного управления платформой. Как запасной вариант, было предусмотрено наведение приборов путем разворота всей станции с помощью двигателей микроориентации.

В 1986 году в южном полушарии Урана стояло полярное лето. К Солнцу (и к подлетающему "Вояджеру-2") был обращен южный полюс планеты. Из-за большого наклонения спутниковой системы Урана по отношению к эклиптике было решено совершить пролет вблизи лишь одного спутника. В 1984 году этим спутником была выбрана Миранда. Было принято решение о минимальном расстоянии до Миранды в 29 тысяч километров. Рассматривался вариант и более тесного сближения - до 15 тысяч километров, но в этом случае система компенсации сдвига изображения телевизионных камер не могла бы предотвратить смазывания получаемых снимков.
При пролете мимо Урана впервые для связи с "Вояждером-2" использовались новые 64-метровые антенны, установленные в США, Испании и Австралии. Из-за падения мощностей радиоизотопных батарей (до 400 Вт) приходилось ограничить научную программу и использовать приборы поочередно.
В период с 4 ноября 1985 г. по 10 января 1986 г. станция вела обзорные наблюдения Урана с использованием телевизионных камер, которые регистрировали образования в атмосфере планеты и движение ее спутников. На снимках, полученных 30 декабря, был обнаружен новый спутник - Пак, размером около 170 км. Примерно в это же время было сфотографировано главное кольцо и несколько других. По мере постепенного сближения с Ураном в течение января 1986 года были сфотографированы еще около десятка небольших внутренних спутников размером в несколько десятков километров.
Кроме ранее известных 9 колец было открыто еще 2 слабых кольца - 1986 U1R и 1986 U2R. Дополнительно, установленный на аппарате фотополяриметр обнаружил по крайней мере еще несколько неполных колец, лежащих за пределами кольца Эпсилон.

Также было обнаружено, что узкие кольца погружены в широкое, разреженное кольцо.

Был сделан вывод, что кольцо Эпсилон состоит из крупных частиц размером около 1 метра (точнее, от 10 см до 10 м).
За 6 дней до максимального сближения с Ураном произошел серьезный сбой в передаче данных. Выяснилось, что при переходе на более мощный алгоритм сжатия (Рида-Солона) при передаче данных изображения искажены сеткой черных и белых линий. Одна группа, не доверяя компьютеру, обработала вручную все пикселы. Результат оказался тот же. Другая группа подготовила новое задание аппарату: прочесть и передать на Землю все, что он записал в память. Прошло много часов, прежде чем был получен ответ. Сравнение показало, что среди многих килобайт программы в одном восьмиразрядном слове один из нулей замещен единицей. Запрос с Земли и ответ Вояджера-2 показали, что перевести эту ячейку в "нулевое" состояние не удается. Тогда программисты так переписали эту часть программы, чтобы дефектный триггер не вызывал искажений. За четыре дня до сближения программа была послана на борт. Телеметрическая информация стала поступать без искажений.
В атмосфере Урана наблюдалось гораздо меньше деталей, чем в атмосферах Сатурна и Юпитера. На полученных снимках видна коричневатая дымка над южной полярной областью, освещенной Солнцем, а также некоторые облачные образования на различных широтах, движущиеся с неодинаковой скоростью.

Были обнаружены ветры, направление которых совпадает с направлением вращения планеты, причем в высоких широтах циркуляция атмосферы происходит с большей скоростью, чем у экватора. В самых верхних слоях атмосферы температура высокая: 750 К на дневной и 1000 К на ночной стороне планеты. В нижней части атмосферы над обоими полюсами температура одинакова. Исследования температуры в функции широты показали, что в высоких широтах близ полюса и в низких широтах близ экватора она одинакова. Зарегистрирован холодный пояс шириной 10-15°, ось которого тянется примерно вдоль 40-й параллели. Температура атмосферы в этом поясе существенно ниже, чем в прилегающих областях. Станция обнаружила на Уране корону атомарного водорода над молекулярным водородом. Температура этой короны на дневной стороне 750 К, на ночной 1000 К.
Вояджер-2 открыл у Урана магнитосферу с напряженностью 0,25 Гс. Его полярность та же что и у Юпитера и Сатурна, и противоположна полярности магнитного поля Земли и Меркурия. Магнитометры станции показали, что в пределах магнитосферы планеты находятся орбиты спутников - Миранды, Ариэля и Умбриеля. Зарегистрированы возмущения магнитного поля этими тремя спутниками. Шлейф магнитосферы планеты простирается на большое расстояние. При проходе шлейфа зарегистрировано изменение направления поля на обратное, обусловленное наклоном магнитной оси Урана к оси вращения. Этот наклон составляет около 60 градусов, больше, чем у любой другой планеты Солнечной системы. При вращении Урана его магнитная ось перемещается в пространстве и увлекает за собой силовые линии магнитного поля, закручивая их.
Внутренняя магнитосфера Урана, по-видимому, представляет собой комбинацию горячих (100 000 К) и очень горячих (10 000 000 К) ионов. Горячие ионы обнаружены вблизи планеты, их плотность в 10 раз выше, чем плотность очень горячих ионов, которые обнаружены по обе стороны орбиты Миранды. Считают, что источником этих ионов является не солнечный ветер, а более удаленные от планеты спутники Урана. Генерируемые ими ионы (в основном протоны) при приближении к планете могут поглощаться Мирандой. Прибор для регистрации космического излучения обнаружил повышение интенсивности магнитного поля Урана внутри орбиты Миранды. Интенсивность поясов радиации Урана практически такая же, как у поясов Земли, и несколько меньше, чем у поясов Сатурна. В поясах Урана ниже содержание электронов высокой энергии, чем в поясах Земли.
Наблюдения магнитного поля Урана были важны еще и потому, что они позволили определить период вращения Урана вокруг оси и на основании этого - скорость ветров в атмосфере путем прослеживания движения облачных образований.
Зарегистрировано свечение Урана в УФ диапазоне, распространяющееся примерно на 50 тыс. км от планеты. На ночной стороне планеты обнаружены авроральные явления в районе магнитного полюса. Также зафиксировано интенсивное так называемое "электросвечение" атмосферы на дневной стороне планеты и радиоизлучение с ночной стороны. Плотность экзосферы достигает 100 штук в куб.см на уровне самого внешнего, кольца.

За несколько дней до пролета Урана станция начала подробную съемку крупнейших спутников:

В день пролета были получены беспрецедентные по разрешению снимки четырех крупнейших спутников. Наиболее близко от этих спутников станция пролетела от Ариэля - в 130 тысячах километров. В результате были получены снимки с разрешением до 2-3 километров на пиксель, показывающие геологически активную поверхность спутника. Для других спутников расстояние было гораздо выше: Умбриэль 557 тыс. км. (10 км на пиксель), Титания - 369 тыс. км. (13 км на пиксель) и Оберон - 660 тыс. км (12 км на пиксель).

Вояджер-2 прошел в 81200 км от облачного слоя Урана 24 января 1986 года. При проходе АМС через плоскость колец на расстоянии около 100 тысяч км от центра планеты прибор для изучения волн в плазме регистрировал приблизительно 30 слабых столкновений с частицами каждую секунду. Примерно в это же время АМС подошла к Миранде - до 30 тысяч километров от ее поверхности. Это позволило получить снимки с разрешением 560 метров на пиксель.

Но, к сожалению, все пять крупных спутников Урана были отсняты лишь с одного - подсолнечного полушария.
Через 3 часа АМС вошла в радиотень Урана и провела радиозондирование ее атмосферы. Съемка системы Урана продолжалась и после пролета планеты. Всего от АМС было получено около 6 тыс. снимков Урана, его спутников и колец.

Источники:
Ежегодник БСЭ за 1987 год
Л. В. Ксанфомалити. "Дальше - только звезды", "Земля и Вселенная" № 3 1990 г.
Фотожурнал NASA



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта