Главная » Галлюциногенные » Написать каноническое уравнение прямой заданной уравнениями. Каноническое и параметрическое уравнения прямой

Написать каноническое уравнение прямой заданной уравнениями. Каноническое и параметрическое уравнения прямой


Рассмотрим решение примера.

Пример.

Найдите координаты любой точки прямой, заданной в пространстве уравнениями двух пересекающихся плоскостей .

Решение.

Перепишем систему уравнений в следующем виде

В качестве базисного минора основной матрицы системы возьмем отличный от нуля минор второго порядка , то есть, z – свободная неизвестная переменная. Перенесем слагаемые, содержащие z , в правые части уравнений: .

Примем , где - произвольное действительное число, тогда .

Решим полученную систему уравнений :

Таким образом, общее решение системы уравнений имеет вид , где .

Если взять конкретное значение параметра , то мы получим частное решение системы уравнений, которое нам дает искомые координаты точки, лежащей на заданной прямой. Возьмем , тогда , следовательно, - искомая точка прямой.

Можно выполнить проверку найденных координат точки, подставив их в исходые уравнения двух пересекающихся плоскостей:

Ответ:

Направляющий вектор прямой, по которой пересекаются две плоскости.

В прямоугольной системе координат от прямой линии неотделим направляющий вектор прямой . Когда прямая а в прямоугольной системе координат в трехмерном пространстве задана уравнениями двух пересекающихся плоскостей и , то координаты направляющего вектора прямой не видны. Сейчас мы покажем, как их определять.

Мы знаем, что прямая перпендикулярна к плоскости, когда она перпендикулярна любой прямой, лежащей в этой плоскости. Тогда нормальный вектор плоскости перпендикулярен любому ненулевому вектору, лежащему в этой плоскости. Этими фактами и воспользуемся при нахождении направляющего вектора прямой.

Прямая а лежит как в плоскости , так и в плоскости . Следовательно, направляющий вектор прямой а перпендикулярен и нормальному вектору плоскости , и нормальному вектору плоскости . Таким образом, направляющим вектором прямой а является и :

Множество всех направляющих векторов прямой а мы можем задать как , где - параметр, принимающий любые действительные значения, отличные от нуля.

Пример.

Найдите координаты любого направляющего вектора прямой, которая задана в прямоугольной системе координат Oxyz в трехмерном пространстве уравнениями двух пересекающихся плоскостей .

Решение.

Нормальными векторами плоскостей и являются векторы и соответственно. Направляющим вектором прямой, являющейся пересечением двух заданных плоскостей, примем векторное произведение нормальных векторов:

Ответ:

Переход к параметрическим и каноническим уравнениям прямой в пространстве.

Бывают случаи, в которых использование уравнений двух пересекающихся плоскостей для описания прямой не совсем удобно. Некоторые задачи проще решаются, если известны канонические уравнения прямой в пространстве вида или параметрические уравнения прямой в пространстве вида , где x 1 , y 1 , z 1 - координаты некоторой точки прямой, a x , a y , a z - координаты направляющего вектора прямой, а - параметр, принимающий произвольные действительные значения. Опишем процесс перехода от уравнений прямой вида к каноническим и параметрическим уравнениям прямой в пространстве.

В предыдущих пунктах мы научились находить координаты некоторой точки прямой, а также координаты некоторого направляющего вектора прямой, которая задана уравнениями двух пересекающихся плоскостей. Этих данных достаточно, чтобы записать и канонические и параметрические уравнения этой прямой в прямоугольной системе координат в пространстве.

Рассмотрим решение примера, а после этого покажем еще один способ нахождения канонических и параметрических уравнений прямой в пространстве.

Пример.

Решение.

Вычислим сначала координаты направляющего вектора прямой. Для этого найдем векторное произведение нормальных векторов и плоскостей и :

То есть, .

Теперь определим координаты некоторой точки заданной прямой. Для этого найдем одно из решений системы уравнений .

Определитель отличен от нуля, возьмем его в качестве базисного минора основной матрицы системы. Тогда переменная z является свободной, переносим слагаемые с ней в правые части уравнений, и придаем переменной z произвольное значение :

Решаем методом Крамера полученную систему уравнений:

Следовательно,

Примем , при этом получаем координаты точки прямой: .

Теперь мы можем записать требуемые канонические и параметрические уравнения исходной прямой в пространстве:

Ответ:

и

Вот второй способ решения этой задачи.

При нахождении координат некоторой точки прямой мы решаем систему уравнений . В общем случае ее решения можно записать в виде .

А это как раз искомые параметрические уравнения прямой в пространстве. Если каждое из полученных уравнений разрешить относительно параметра и после этого приравнять правые части равенств, то получим канонические уравнения прямой в пространстве

Покажем решение предыдущей задачи по этому методу.

Пример.

Прямая в трехмерном пространстве задана уравнениями двух пересекающихся плоскостей . Напишите канонические и параметрические уравнения этой прямой.

Решение.

Решаем данную систему из двух уравнений с тремя неизвестными (решение приведено в предыдущем примере, не будем повторяться). При этом получаем . Это и есть искомые параметрические уравнения прямой в пространстве.

Осталось получить канонические уравнения прямой в пространстве:

Полученные уравнения прямой внешне отличаются от уравнений, полученных в предыдущем примере, однако они эквивалентны, так как определяют одно и то же множество точек трехмерного пространства (а значит, одну и ту же прямую).

Ответ:

и

Список литературы.

  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

Канонические уравнения прямой

Постановка задачи. Найти канонические уравнения прямой, заданной как линия пересечения двух плоскостей (общими уравнениями)

План решения. Канонические уравнения прямой с направляющим вектором , проходящей через данную точку , имеют вид

. (1)

Поэтому, чтобы написать канонические уравнения прямой, необходимо найти ее направляющий вектор и какую-нибудь точку на прямой.

1. Так как прямая принадлежит одновременно обеим плоскостям, то ее направляющий вектор ортогонален нормальным векторам обеих плоскостей, т.е. согласно определению векторного произведения, имеем

. (2)

2. Выбираем какую-нибудь точку на прямой. Поскольку направляющий вектор прямой не параллелен хотя бы одной из координатных плоскостей, то прямая пересекает эту координатную плоскость. Следовательно, в качестве точки на прямой может быть взята точка ее пересечения с этой координатной плоскостью.

3. Подставляем найденные координаты направляющего вектора и точки в канонические уравнения прямой (1).

Замечание. Если векторное произведение (2) равно нулю, то плоскости не пересекаются (параллельны) и записать канонические уравнения прямой не представляется возможным.

Задача 12. Написать канонические уравнения прямой.

Канонические уравнения прямой:

,

где – координаты какой-либо точки прямой, – ее направляющий вектор.

Найдем какую-либо точку прямой . Пусть , тогда

Следовательно, – координаты точки, принадлежащей прямой.

Пусть l - некоторая прямая пространства. Как и в планиметрии, любой вектор

а =/= 0, коллинеарный прямой l , называется направляющим вектором этой прямой.

Положение прямой в пространстве полностью определяется заданием направляющего вектора и точки, принадлежащей прямой.

Пусть прямая l с направляющим вектором а проходит через точку M 0 , а М - произвольная точка пространства. Очевидно, что точка М (рис. 197) принадлежит прямой l тогда и только тогда, когда вектор \(\overrightarrow{M_0 M}\) коллинеарен вектору а , т. е.

\(\overrightarrow{M_0 M}\) = ta , t \(\in \) R . (1)

Если точки М и M 0 заданы своими радиус-векторами r и r 0 (рис. 198) относительно некоторой точки О пространства, то \(\overrightarrow{M_0 M}\) = r - r 0 , и уравнение (1) принимает вид

r = r 0 + ta , t \(\in \) R . (2)

Уравнения (1) и (2) называются векторно-параметрическими уравнениями прямой. Переменная t в векторно-параметрических уравнениях прямой называется параметром .

Пусть точка M 0 прямой l и направляющий вектор а заданы своими координатами:

M 0 (х 0 ; у 0 , z 0), а = (а 1 ; а 2 ; а 3).

Тогда, если (х; у; z ) - координаты произвольной точки М прямой l , то

\(\overrightarrow{M_0 M} \) = (х - х 0 ; у - у 0 ; z - z 0)

и векторное уравнение (1) равносильно следующим трем уравнениям:

х - х 0 = 1 , у - у 0 = 2 , z - z 0 = 3

$$ \begin{cases} x = x_0 + ta_1 \\ y = y_0 + ta_2 \\ z = z_0 + ta_3, \;\;t\in R\end{cases} (3)$$

Уравнения (3) называются параметрическими уравнениями прямой в пространстве.

Задача 1. Написать параметрические уравнения прямой, проходящей через точку

M 0 (-3; 2; 4) и имеющей направляющий вектор а = (2; -5; 3).

В данном случае х 0 = -3, у 0 = 2, z 0 = 4; а 1 = 2; а 2 = -5; а 3 = 3. Подставив эти значения в формулы (3), получим параметрические уравнения данной прямой

$$ \begin{cases} x = -3 - 2t \\ y = 2 - 5t \\ z = 4 + 3t, \;\;t\in R\end{cases} $$

Исключим параметр t из уравнений (3). Это можно сделать, так как а =/= 0, и поэтому одна из координат вектора а заведомо отлична от нуля.

Пусть сначала все координаты отличны от нуля. Тогда

$$ t=\frac{x-x_0}{a_1},\;\;t=\frac{y-y_0}{a_2},\;\;t=\frac{z-z_0}{a_3} $$

и, следовательно,

$$ \frac{x-x_0}{a_1}=\frac{y-y_0}{a_2}=\frac{z-z_0}{a_3} \;\; (4)$$

Эти уравнения называются каноническими уравнениями прямой .

Заметим, что уравнения (4) образуют систему двух уравнений с тремя переменными х, у и z.

Если в уравнениях (3) одна из координат вектора а , например а 1 равна нулю, то, исключив параметр t , снова получим систему двух уравнений с тремя переменными х, у и z :

\(x=x_0, \;\; \frac{y-y_0}{a_2}=\frac{z-z_0}{a_3}\)

Эти уравнения также называются каноническими уравнениями прямой. Для единообразия их также условно записывают в виде (4)

\(\frac{x-x_0}{0}=\frac{y-y_0}{a_2}=\frac{z-z_0}{a_3}\)

считая, что если знаменатель равен нулю, то равен нулю и соответствующий числитель. Эти уравнения являются уравнениями прямой, проходящей через точку M 0 (х 0 ; у 0 , z 0) параллельно координатной плоскости yOz , так как этой плоскости параллелен ее направляющий вектор (0; а 2 ; а 3).

Наконец, если в уравнениях (3) две координаты вектора а , например а 1 и а 2 равны нулю, то эти уравнения принимают вид

х = х 0 , y = у 0 , z = z 0 + ta 3 , t \(\in \) R .

Это уравнения прямой, проходящей через точку M 0 (х 0 ; у 0 ; z 0) параллельно оси Oz . Для такой прямой х = х 0 , y = у 0 , a z - любое число. И в этом случае для единообразия уравнения прямой можно записывать (с той же оговоркой) в виде (4)

\(\frac{x-x_0}{0}=\frac{y-y_0}{0}=\frac{z-z_0}{a_3}\)

Таким образом, для любой прямой пространства можно написать канонические уравнения (4), и, наоборот, любое уравнение вида (4) при условии, что хотя бы один из коэффициентов а 1 , а 2 , а 3 не равен нулю, задает некоторую прямую пространства.

Задача 2. Написать канонические уравнения прямой, проходящей через точку M 0 (- 1; 1, 7) параллельно вектору а = (1; 2; 3).

Уравнения (4) в данном случае записываются слeдующим образом:

\(\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-7}{3}\)

Выведем уравнения прямой, проходящей через две данные точки M 1 (х 1 ; у 1 ; z 1) и

M 2 (х 2 ; у 2 ; z 2). Очевидно, что за направляющий вектор этой прямой можно взять вектор a = (х 2 - х 1 ; у 2 - у 1 ; z 2 - z 1), а за точку М 0 , через которую проходит прямая, например, точку M 1 . Тогда уравнения (4) запишутся так:

\(\frac{x-x_1}{x_2 - x_1}=\frac{y-y_1}{y_2 - y_1}=\frac{z-z_1}{z_2 - z_1}\) (5)

Это и есть уравнения прямой, проходящей через две точки M 1 (х 1 ; у 1 ; z 1) и

M 2 (х 2 ; у 2 ; z 2).

Задача 3. Написать уравнения прямой, проходящей через точки M 1 (-4; 1; -3) и M 2 (-5; 0; 3).

В данном случае х 1 = -4, у 1 = 1, z 1 = -3, х 2 = -5, у 2 = 0, z 2 = 3. Подставив эти значения в формулы (5), получим

\(\frac{x+4}{-1}=\frac{y-1}{-1}=\frac{z+3}{6}\)

Задача 4. Написать уравнения прямой, проходящей через точки M 1 (3; -2; 1) и

M 2 (5; -2; 1 / 2).

После подстановки координат точек M 1 и M 2 в уравнения (5) получим

\(\frac{x-3}{2}=\frac{y+2}{0}=\frac{z-1}{-\frac{1}{2}}\)

Каноническими уравнениями прямой в пространстве называются уравнения, определяющие прямую, проходящую через заданную точку коллинеарно направляющему вектору.

Пусть дана точка и направляющий вектор . Произвольная точка лежит на прямой l только в том случае, если векторы и коллинеарны, т. е. для них выполняется условие:

.

Приведённые выше уравнения и есть канонические уравнения прямой.

Числа m , n и p являются проекциями направляющего вектора на координатные оси. Так как вектор ненулевой, то все числа m , n и p не могут одновременно равняться нулю. Но одно или два из них могут оказаться равными нулю. В аналитической геометрии допускается, например, такая запись:

,

которая означает, что проекции вектора на оси Oy и Oz равны нулю. Поэтому и вектор , и прямая, заданная каноническими уравнениями, перпендикулярны осям Oy и Oz , т. е. плоскости yOz .

Пример 1. Составить уравнения прямой в пространстве, перпендикулярной плоскости и проходящей через точку пересечения этой плоскости с осью Oz .

Решение. Найдём точку пересечения данной плоскости с осью Oz . Так как любая точка, лежащая на оси Oz , имеет координаты , то, полагая в заданном уравнении плоскости x = y = 0 , получим 4z - 8 = 0 или z = 2 . Следовательно, точка пересечения данной плоскости с осью Oz имеет координаты (0; 0; 2) . Поскольку искомая прямая перпендикулярна плоскости, она параллельна вектору её нормали . Поэтому направляющим вектором прямой может служить вектор нормали заданной плоскости.

Теперь запишем искомые уравнения прямой, проходящей через точку A = (0; 0; 2) в направлении вектора :

Уравнения прямой, проходящей через две данные точки

Прямая может быть задана двумя лежащими на ней точками и В этом случае направляющим вектором прямой может служить вектор . Тогда канонические уравнения прямой примут вид

.

Приведённые выше уравнения и определяют прямую, проходящую через две заданные точки.

Пример 2. Составить уравнение прямой в пространстве, проходящей через точки и .

Решение. Запишем искомые уравнения прямой в виде, приведённом выше в теоретической справке:

.

Так как , то искомая прямая перпендикулярна оси Oy .

Прямая как линия пересечения плоскостей

Прямая в пространстве может быть определена как линия пересечения двух непараллельных плоскостей и , т. е. как множество точек, удовлетворяющих системе двух линейных уравнений

Уравнения системы называются также общими уравнениями прямой в пространстве.

Пример 3. Составить канонические уравнения прямой в пространстве, заданной общими уравнениями

Решение. Чтобы написать канонические уравнения прямой или, что то же самое, уравнения прямой, проходящей через две данные точки, нужно найти координаты каких-либо двух точек прямой. Ими могут служить точки пересечения прямой с какими-нибудь двумя координатными плоскостями, например yOz и xOz .

Точка пересечения прямой с плоскостью yOz имеет абсциссу x = 0 . Поэтому, полагая в данной системе уравнений x = 0 , получим систему с двумя переменными:

Её решение y = 2 , z = 6 вместе с x = 0 определяет точку A (0; 2; 6) искомой прямой. Полагая затем в заданной системе уравнений y = 0 , получим систему

Её решение x = -2 , z = 0 вместе с y = 0 определяет точку B (-2; 0; 0) пересечения прямой с плоскостью xOz .

Теперь запишем уравнения прямой, проходящей через точки A (0; 2; 6) и B (-2; 0; 0) :

,

или после деления знаменателей на -2:

,



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта