Главная » Галлюциногенные » Первообразная и ее геометрический смысл. Первообразная функции и общий вид

Первообразная и ее геометрический смысл. Первообразная функции и общий вид

Рассмотрим движение точки вдоль прямой. Пусть за время t от начала движения точка прошла путь s(t). Тогда мгновенная скорость v(t) равна производной функции s(t), то есть v(t) = s"(t).

В практике встречается обратная задача: по заданной скорости движения точки v(t) найти пройденный ею путь s(t) , то есть найти такую функцию s(t), производная которой равна v(t) . Функцию s(t), такую, что s"(t) = v(t) , называют первообразной функции v(t).

Например, если v(t) = аt , где а заданное число, то функция
s(t) = (аt 2) / 2 v(t), так как
s"(t) = ((аt 2) / 2) " = аt = v(t).

Функция F(x) называется первообразной функции f(x) на некотором промежутке, если для всех х из этого промежутка F"(x) = f(x).

Например, функция F(x) = sin x является первообразной функции f(x) = cos x, так как (sin x)" = cos x ; функция F(x) = х 4 /4 является первообразной функции f(x) = х 3 , так как (х 4 /4)" = х 3 .

Рассмотрим задачу.

Задача .

Доказать, что функции х 3 /3, х 3 /3 + 1, х 3 /3 – 4 являются первообразной одной и той же функции f(x) = х 2 .

Решение .

1) Обозначим F 1 (x) = х 3 /3, тогда F" 1 (x) = 3 ∙ (х 2 /3) = х 2 = f(x).

2) F 2 (x) = х 3 /3 + 1, F" 2 (x) = (х 3 /3 + 1)" = (х 3 /3)" + (1)"= х 2 = f(x).

3) F 3 (x) = х 3 /3 – 4, F" 3 (x) = (х 3 /3 – 4)" = х 2 = f(x).

Вообще любая функция х 3 /3 + С, где С – постоянная, является первообразной функции х 2 . Это следует из того, что производная постоянной равна нулю. Этот пример показывает, что для заданной функции ее первообразная определяется неоднозначно.

Пусть F 1 (x) и F 2 (x) – две первообразные одной и той же функции f(x).

Тогда F 1 "(x) = f(x) и F" 2 (x) = f(x).

Производная их разности g(х) = F 1 (x) – F 2 (x) равна нулю, так как g"(х) = F" 1 (x) – F" 2 (x) = f(x) – f(x) = 0.

Если g"(х) = 0 на некотором промежутке, то касательная к графику функции у = g(х) в каждой точке этого промежутка параллельна оси Ох. Поэтому графиком функции у = g(х) является прямая, параллельная оси Ох, т.е. g(х) = С, где С – некоторая постоянная. Из равенств g(х) = С, g(х) = F 1 (x) – F 2 (x) следует, что F 1 (x) = F 2 (x) + С.

Итак, если функция F(x) является первообразной функции f(x) на некотором промежутке, то все первообразные функции f(x) записываются в виде F(x) + С, где С – произвольная постоянная.

Рассмотрим графики всех первообразных заданной функции f(x). Если F(x) – одна из первообразных функции f(x), то любая первообразная этой функции получается прибавлением к F(x) некоторой постоянной: F(x) + С. Графики функций у = F(x) + С получаются из графика у = F(x) сдвигом вдоль оси Оу. Выбором С можно добиться того, чтобы график первообразной проходил через заданную точку.

Обратим внимание на правила нахождения первообразных.

Вспомним, что операцию нахождения производной для заданной функции называют дифференцированием . Обратную операцию нахождения первообразной для данной функции называют интегрированием (от латинского слова «восстанавливать» ).

Таблицу первообразных для некоторых функций можно составить, используя таблицу производных. Например, зная, что (cos x)" = -sin x, получаем (-cos x)" = sin x , откуда следует, что все первообразные функции sin x записываются в виде -cos x + С , где С – постоянная.

Рассмотрим некоторые значения первообразных.

1) Функция: х р, р ≠ -1 . Первообразная: (х р+1) / (р+1) + С.

2) Функция: 1/х, х > 0. Первообразная: ln x + С.

3) Функция: х р, р ≠ -1 . Первообразная: (х р+1) / (р+1) + С.

4) Функция: е х . Первообразная: е х + С.

5) Функция: sin x . Первообразная: -cos x + С.

6) Функция: (kx + b) p , р ≠ -1, k ≠ 0. Первообразная: (((kx + b) p+1) / k(p+1)) + С.

7) Функция: 1/(kx + b), k ≠ 0 . Первообразная: (1/k) ln (kx + b)+ С.

8) Функция: е kx + b , k ≠ 0 . Первообразная: (1/k) е kx + b + С.

9) Функция: sin (kx + b), k ≠ 0 . Первообразная: (-1/k) cos (kx + b) .

10) Функция: cos (kx + b), k ≠ 0. Первообразная: (1/k) sin (kx + b).

Правила интегрирования можно получить с помощью правил дифференцирования . Рассмотрим некоторые правила.

Пусть F(x) и G(x) – первообразные соответственно функций f(x) и g(x) на некотором промежутке. Тогда:

1) функция F(x) ± G(x) является первообразной функции f(x) ± g(x);

2) функция аF(x) является первообразной функции аf(x).

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Этот урок — первый из серии видео, посвященных интегрированию. В нём мы разберём, что такое первообразная функции, а также изучим элементарные приёмы вычисления этих самых первообразных.

На самом деле здесь нет ничего сложного: по существу всё сводится к понятию производной, с которым вы уже должны знакомы.:)

Сразу отмечу, что, поскольку это самый первый урок в нашей новой теме, сегодня не будет никаких сложных вычислений и формул, но то, что мы изучим сегодня, ляжет в основу гораздо более сложных выкладок и конструкций при вычислении сложных интегралов и площадей.

Кроме того, приступая к изучению интегрирования и интегралов в частности, мы неявно предполагаем, что ученик уже, как минимум, знаком к понятиям производной и имеет хотя бы элементарные навыки их вычисления. Без четкого понимания этого, делать в интегрировании совершенно нечего.

Однако здесь же кроется одна из самых частых и коварных проблем. Дело в том, что, начиная вычислять свои первые первообразные, многие ученики путают их с производными. В результате на экзаменах и самостоятельных работах допускаются глупые и обидные ошибки.

Поэтому сейчас я не буду давать четкого определения первообразной. А взамен предлагаю вам посмотреть, как она считается на простом конкретном примере.

Что такое первообразная и как она считается

Мы знаем такую формулу:

\[{{\left({{x}^{n}} \right)}^{\prime }}=n\cdot {{x}^{n-1}}\]

Считается эта производная элементарно:

\[{f}"\left(x \right)={{\left({{x}^{3}} \right)}^{\prime }}=3{{x}^{2}}\]

Посмотрим внимательно на полученное выражение и выразим ${{x}^{2}}$:

\[{{x}^{2}}=\frac{{{\left({{x}^{3}} \right)}^{\prime }}}{3}\]

Но мы можем записать и так, согласно определению производной:

\[{{x}^{2}}={{\left(\frac{{{x}^{3}}}{3} \right)}^{\prime }}\]

А теперь внимание: то, что мы только что записали и есть определением первообразной. Но, чтобы записать ее правильно, нужно написать следующее:

Аналогично запишем и такое выражение:

Если мы обобщим это правило, то сможем вывести такую формулу:

\[{{x}^{n}}\to \frac{{{x}^{n+1}}}{n+1}\]

Теперь мы можем сформулировать четкое определение.

Первообразной функции называется такая функция, производная которой равна исходной функции.

Вопросы о первообразной функции

Казалось бы, довольно простое и понятное определение. Однако, услышав его, у внимательного ученика сразу возникнет несколько вопросов:

  1. Допустим, хорошо, эта формула верна. Однако в этом случае при $n=1$ у нас возникают проблемы: в знаменателе появляется «ноль», а на «ноль» делить нельзя.
  2. Формула ограничивается только степенями. Как считать первообразную, например, синуса, косинуса и любой другой тригонометрии, а также констант.
  3. Экзистенциальный вопрос: а всегда ли вообще можно найти первообразную? Если да, то как быть с первообразной суммы, разности, произведения и т.д.?

На последний вопрос я отвечу сразу. К сожалению, первообразная, в отличие от производной, считается не всегда. Нет такой универсальной формулы, по которой из любой исходной конструкции мы получим функцию, которая будет равна этой сходной конструкции. А что касается степеней и констант — сейчас мы об этом поговорим.

Решение задач со степенными функциями

\[{{x}^{-1}}\to \frac{{{x}^{-1+1}}}{-1+1}=\frac{1}{0}\]

Как видим, данная формула для ${{x}^{-1}}$ не работает. Возникает вопрос: а что тогда работает? Неужели мы не можем посчитать ${{x}^{-1}}$? Конечно, можем. Только давайте для начала вспомним такое:

\[{{x}^{-1}}=\frac{1}{x}\]

Теперь подумаем: производная какой функции равна $\frac{1}{x}$. Очевидно, что любой ученик, который хоть немного занимался этой темой, вспомнит, что этому выражению равна производная натурального логарифма:

\[{{\left(\ln x \right)}^{\prime }}=\frac{1}{x}\]

Поэтому мы с уверенностью можем записать следующее:

\[\frac{1}{x}={{x}^{-1}}\to \ln x\]

Эту формулу нужно знать, точно так же, как и производную степенной функции.

Итак, что нам известно на данный момент:

  • Для степенной функции — ${{x}^{n}}\to \frac{{{x}^{n+1}}}{n+1}$
  • Для константы — $=const\to \cdot x$
  • Частный случай степенной функции — $\frac{1}{x}\to \ln x$

А если простейшие функции мы начнем умножать и делить, как тогда посчитать первообразную произведения или частного. К сожалению, аналогии с производной произведения или частного здесь не работают. Какой-либо стандартной формулы не существует. Для некоторых случаев существуют хитрые специальные формулы — с ними мы познакомимся на будущих видеоуроках.

Однако запомните: общей формулы, аналогичной формуле для вычисления производной частного и произведения, не существует.

Решение реальных задач

Задача № 1

Давайте каждую из степенных функций посчитаем отдельно:

\[{{x}^{2}}\to \frac{{{x}^{3}}}{3}\]

Возвращаясь к нашему выражению, мы запишем общую конструкцию:

Задача № 2

Как я уже говорил, первообразные произведений и частного «напролом» не считаются. Однако здесь можно поступить следующим образом:

Мы разбили дробь на сумму двух дробей.

Посчитаем:

Хорошая новость состоит в том, что зная формулы вычисления первообразных, вы уже способны считать более сложные конструкции. Однако давайте пойдем дальше и расширим наши знания еще чуть-чуть. Дело в том, что многие конструкции и выражения, которые, на первый взгляд, не имеют никакого отношения к ${{x}^{n}}$, могут быть представлены в виде степени с рациональным показателем, а именно:

\[\sqrt{x}={{x}^{\frac{1}{2}}}\]

\[\sqrt[n]{x}={{x}^{\frac{1}{n}}}\]

\[\frac{1}{{{x}^{n}}}={{x}^{-n}}\]

Все эти приемы можно и нужно комбинировать. Степенные выражения можно

  • умножать (степени складываются);
  • делить (степени вычитаются);
  • умножать на константу;
  • и т.д.

Решение выражений со степенью с рациональным показателем

Пример № 1

Посчитаем каждый корень отдельно:

\[\sqrt{x}={{x}^{\frac{1}{2}}}\to \frac{{{x}^{\frac{1}{2}+1}}}{\frac{1}{2}+1}=\frac{{{x}^{\frac{3}{2}}}}{\frac{3}{2}}=\frac{2\cdot {{x}^{\frac{3}{2}}}}{3}\]

\[\sqrt{x}={{x}^{\frac{1}{4}}}\to \frac{{{x}^{\frac{1}{4}}}}{\frac{1}{4}+1}=\frac{{{x}^{\frac{5}{4}}}}{\frac{5}{4}}=\frac{4\cdot {{x}^{\frac{5}{4}}}}{5}\]

Итого всю нашу конструкцию можно записать следующим образом:

Пример № 2

\[\frac{1}{\sqrt{x}}={{\left(\sqrt{x} \right)}^{-1}}={{\left({{x}^{\frac{1}{2}}} \right)}^{-1}}={{x}^{-\frac{1}{2}}}\]

Следовательно, мы получим:

\[\frac{1}{{{x}^{3}}}={{x}^{-3}}\to \frac{{{x}^{-3+1}}}{-3+1}=\frac{{{x}^{-2}}}{-2}=-\frac{1}{2{{x}^{2}}}\]

Итого, собирая все в одно выражение, можно записать:

Пример № 3

Для начала заметим, что $\sqrt{x}$ мы уже считали:

\[\sqrt{x}\to \frac{4{{x}^{\frac{5}{4}}}}{5}\]

\[{{x}^{\frac{3}{2}}}\to \frac{{{x}^{\frac{3}{2}+1}}}{\frac{3}{2}+1}=\frac{2\cdot {{x}^{\frac{5}{2}}}}{5}\]

Перепишем:

Надеюсь, я никого не удивлю, если скажу, что то, что мы только что изучали — это лишь самые простые вычисления первообразных, самые элементарные конструкции. Давайте сейчас рассмотрим чуть более сложные примеры, в которых помимо табличных первообразных еще потребуется вспомнить школьную программу, а именно, формулы сокращенного умножения.

Решение более сложных примеров

Задача № 1

Вспомним формулу квадрата разности:

\[{{\left(a-b \right)}^{2}}={{a}^{2}}-ab+{{b}^{2}}\]

Давайте перепишем нашу функцию:

Первообразную такой функции нам сейчас предстоит найти:

\[{{x}^{\frac{2}{3}}}\to \frac{3\cdot {{x}^{\frac{5}{3}}}}{5}\]

\[{{x}^{\frac{1}{3}}}\to \frac{3\cdot {{x}^{\frac{4}{3}}}}{4}\]

Собираем все в общую конструкцию:

Задача № 2

В этом случае нам нужно раскрыть куб разности. Вспомним:

\[{{\left(a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}\cdot b+3a\cdot {{b}^{2}}-{{b}^{3}}\]

С учетом этого факта можно записать так:

Давайте немного преобразуем нашу функцию:

Считаем как всегда — по каждому слагаемому отдельно:

\[{{x}^{-3}}\to \frac{{{x}^{-2}}}{-2}\]

\[{{x}^{-2}}\to \frac{{{x}^{-1}}}{-1}\]

\[{{x}^{-1}}\to \ln x\]

Запишем полученную конструкцию:

Задача № 3

Сверху у нас стоит квадрат суммы, давайте его раскроем:

\[\frac{{{\left(x+\sqrt{x} \right)}^{2}}}{x}=\frac{{{x}^{2}}+2x\cdot \sqrt{x}+{{\left(\sqrt{x} \right)}^{2}}}{x}=\]

\[=\frac{{{x}^{2}}}{x}+\frac{2x\sqrt{x}}{x}+\frac{x}{x}=x+2{{x}^{\frac{1}{2}}}+1\]

\[{{x}^{\frac{1}{2}}}\to \frac{2\cdot {{x}^{\frac{3}{2}}}}{3}\]

Давайте напишем итоговое решение:

А теперь внимание! Очень важная вещь, с которой связана львиная доля ошибок и недопониманий. Дело в том, что до сих пор считая первообразные с помощью производных, приводя преобразования, мы не задумывались о том, чему равна производная константы. А ведь производная константы равна «нулю». А это означает, что можно записать такие варианты:

  1. ${{x}^{2}}\to \frac{{{x}^{3}}}{3}$
  2. ${{x}^{2}}\to \frac{{{x}^{3}}}{3}+1$
  3. ${{x}^{2}}\to \frac{{{x}^{3}}}{3}+C$

Вот это очень важно понимать: если производная функции всегда одна и та же, то первообразных у одной и той же функции бесконечно много. Просто к нашим первообразным мы можем дописывать любые числа-константы и получать новые.

Неслучайно, в пояснении к тем задачам, которые мы только что решали, было написано «Запишите общий вид первообразных». Т.е. уже заранее предполагается, что их не одна, а целое множество. Но, на самом деле, они отличаются лишь константой $C$ в конце. Потому в наших задачах мы исправим то, что мы не дописали.

Еще раз переписываем наши конструкции:

В таких случаях следует дописывать, что $C$ — константа — $C=const$.

Во второй нашей функции мы получим следующую конструкцию:

И последняя:

И вот теперь мы действительно получили то, что от нас требовалось в исходном условии задачи.

Решение задач на нахождение первообразных с заданной точкой

Сейчас, когда мы знаем о константах и об особенностях записи первообразных, вполне логично возникает следующий тип задач, когда из множества всех первообразных требуется найти одну-единственную такую, которая проходила бы через заданную точку. В чем состоит эта задача?

Дело в том, что все первообразные данной функции отличаются лишь тем, что они сдвинуты по вертикали на какое-то число. А это значит, что какую бы точку на координатной плоскости мы не взяли, обязательно пройдет одна первообразная, и, причем, только одна.

Итак, задачи, которые сейчас мы будем решать, сформулированы следующем образом: не просто найти первообразную, зная формулу исходной функции, а выбрать именно такую из них, которая проходит через заданную точку, координаты которой будут даны в условии задачи.

Пример № 1

Для начала просто посчитаем каждое слагаемое:

\[{{x}^{4}}\to \frac{{{x}^{5}}}{5}\]

\[{{x}^{3}}\to \frac{{{x}^{4}}}{4}\]

Теперь подставляем эти выражения в нашу конструкцию:

Эта функция должна проходить через точку $M\left(-1;4 \right)$. Что значит, что она проходит через точку? Это значит, что если вместо $x$ поставить везде $-1$, а вместо $F\left(x \right)$ — $-4$, то мы должны получить верное числовое равенство. Давайте так и сделаем:

Мы видим, что у нас получилось уравнение относительно $C$, поэтому давайте попробуем его решить:

Давайте запишем то самое решение, которое мы искали:

Пример № 2

В первую очередь необходимо раскрыть квадрат разности по формуле сокращенного умножения:

\[{{x}^{2}}\to \frac{{{x}^{3}}}{3}\]

Исходная конструкция запишется следующим образом:

Теперь давайте найдем $C$: подставим координаты точки $M$:

\[-1=\frac{8}{3}-12+18+C\]

Выражаем $C$:

Осталось отобразить итоговое выражение:

Решение тригонометрических задач

В качестве финального аккорда к тому, что мы только что разобрали, предлагаю рассмотреть две более сложные задачи, в которых содержится тригонометрия. В них точно так же потребуется найти первообразные для всех функций, затем выбрать из этого множества одну-единственную, которая проходит через точку $M$ на координатной плоскости.

Забегая наперед, хотел бы отметить, что тот прием, который мы сейчас будем использовать для нахождения первообразных от тригонометрических функций, на самом деле, является универсальным приемом для самопроверки.

Задача № 1

Вспомним следующую формулу:

\[{{\left(\text{tg}x \right)}^{\prime }}=\frac{1}{{{\cos }^{2}}x}\]

Исходя из этого, мы можем записать:

Давайте подставим координаты точки $M$ в наше выражение:

\[-1=\text{tg}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}+C\]

Перепишем выражение с учетом этого факта:

Задача № 2

Тут будет чуть сложнее. Сейчас увидите, почему.

Вспомним такую формулу:

\[{{\left(\text{ctg}x \right)}^{\prime }}=-\frac{1}{{{\sin }^{2}}x}\]

Чтобы избавится от «минуса», необходимо сделать следующее:

\[{{\left(-\text{ctg}x \right)}^{\prime }}=\frac{1}{{{\sin }^{2}}x}\]

Вот наша конструкция

Подставим координаты точки $M$:

Итого запишем окончательную конструкцию:

Вот и все, о чем я хотел сегодня вам рассказать. Мы изучили сам термин первообразных, как считать их от элементарных функций, а также как находить первообразную, проходящую через конкретную точку на координатной плоскости.

Надеюсь, этот урок хоть немного поможет вам разобраться в этой сложной теме. В любом случае, именно на первообразных строятся неопределенные и неопределенные интегралы, поэтому считать их совершенно необходимо. На этом у меня все. До новых встреч!

Вычисление площади является основным в теории площадей. Возникает вопрос о ее нахождении, когда фигура имеет неправильную форму или необходимо прибегнуть к ее вычислению через интеграл.

Данная статья рассказывает о вычислении площади криволинейной трапеции по геометрическому смыслу. Это позволяет выявлять связь между интегралом и площадью криволинейной трапеции. Если дана функция f (x) , причем непрерывная на интервале [ a ; b ] , знак перед выражением не меняется.

Yandex.RTB R-A-339285-1 Определение 1

Фигура, обозначенная как G , ограничена линиями вида y = f (x) , y = 0 , x = a и x = b , называется криволинейной трапецией . Она принимает обозначение S (G) .

Рассмотрим на рисунке, приведенном ниже.

Для вычисления криволинейно трапеции необходимо разбить отрезок [ a ; b ] на количество n частей x i - 1 ; x i , i = 1 , 2 , . . . , n с точками, определенными на a = x 0 < x 1 < x 2 < . . . < x n - 1 < x n = b , причем дать обозначение λ = m a x i = 1 , 2 , . . . , n x i - x i - 1 с точками x i , i = 1 , 2 , . . . , n - 1 . Необходимо выбрать так, чтобы λ → 0 при n → + ∞ , тогда фигуры, которые соответствуют нижней и верхней частям Дарбу, считаются входящей Р и объемлющей Q многоугольными фигурами для G . Рассмотрим рисунок, приведенный ниже.

Отсюда имеем, что P ⊂ G ⊂ Q , причем при увеличении количества точек разбиения n , получим неравенство вида S - s < ε , где ε является малым положительным числом, s и S являются верхними и нижними суммами Дабру из отрезка [ a ; b ] . Иначе это запишется как lim λ → 0 S - s = 0 . Значит, при обращении к понятию определенного интеграла Дарбу, получим, что lim λ → 0 S = lim λ → 0 s = S G = ∫ a b f (x) d x .

Из последнего равенства получим, что определенный интеграл вида ∫ a b f (x) d x является площадью криволинейной трапеции для заданной непрерывной функции вида y = f (x) . Это и есть геометрический смысл определенного интеграла.

При вычислении ∫ a b f (x) d x получим площадь искомой фигуры, которая ограничивается линиями y = f (x) , y = 0 , x = a и x = b .

Замечание: Когда функция y = f (x) является неположительной из отрезка [ a ; b ] , тогда получаем, что площадь криволинейной трапеции вычисляется, исходя из формулы S (G) = - ∫ a b f (x) d x .

Пример 1

Вычислить площадь фигуры, которая ограничена заданными линиями вида y = 2 · e x 3 , y = 0 , x = - 2 , x = 3 .

Решение

Для того, чтобы решить, необходимо для начал построить фигуру на плоскости, где имеется прямая y = 0 , совпадающая с О х, с прямыми вида x = - 2 и x = 3 , параллельными оси о у, где кривая y = 2 · e x 3 строится при помощи геометрических преобразований графика функции y = e x . Построим график.

Отсюда видно, что необходимо найти площадь криволинейной трапеции. Вспоминая геометрический смысл интеграла, получаем, что искомая площадь и будет выражена определенным интегралом, который необходимо разрешить. Значит, необходимо применить формулу S (G) = ∫ - 2 3 2 · e x 3 d x . Такой неопределенный интеграл вычисляется, исходя из формулы Ньютона-Лейбница

S (G) = ∫ - 2 3 2 · e x 3 d x = 6 · e x 3 - 2 3 = 6 · e 3 3 - 6 · e - 2 3 = 6 · e - e - 2 3

Ответ: S (G) = 6 · e - e - 2 3

Замечание: Для нахождения площади криволинейной трапеции не всегда можно построить фигуру. Тогда решение выполняется следующим образом. При известной функции f (x) неотрицательной или неположительной на отрезке [ a ; b ] , применяется формула вида S G = ∫ a b f (x) d x или S G = - ∫ a b f (x) d x .

Пример 2

Произвести вычисление площади, ограниченной линиями вида y = 1 3 (x 2 + 2 x - 8) , y = 0 , x = - 2 , x = 4 .

Решение

Для построения этой фигуры получим, что у = 0 совпадает с О х, а х = - 2 и х = 4 являются параллельными О у. График функции y = 1 3 (x 2 + 2 x - 8) = 1 3 (x + 1) 2 - 3 - это парабола с координатами точки (- 1 ; 3) , являющейся ее вершиной с направленными вверх ветвями. Чтобы найти точки пересечения параболы с О х, необходимо вычислить:

1 3 (x 2 + 2 x - 8) = 0 ⇔ x 2 + 2 x - 8 = 0 D = 2 2 - 4 · 1 · (- 8) = 36 x 1 = - 2 + 36 2 = 2 , x 2 = - 2 - 36 2 = - 4

Значит, парабола пересекает ох в точках (4 ; 0) и (2 ; 0) . Отсюда получим, что фигура, обозначенная как G , получит вид, изображенный на рисунке ниже.

Данная фигура не является криволинейной трапецией, потому как функция вида y = 1 3 (x 2 + 2 x - 8) изменяет знак на промежутке [ - 2 ; 4 ] . Фигура G может быть представлена в виде объединений двух криволинейных трапеций G = G 1 ∪ G 2 , исходя из свойства аддитивности площади, имеем, что S (G) = S (G 1) + S (G 2) . Рассмотрим график, приведенный ниже.

Отрезок [ - 2 ; 4 ] считается неотрицательной областью параболы, тогда отсюда получаем, что площадь будет иметь вид S G 2 = ∫ 2 4 1 3 (x 2 + 2 x - 8) d x . Отрезок [ - 2 ; 2 ] неположительный для функции вида y = 1 3 (x 2 + 2 x - 8) , значит, исходя из геометрического смысла определенного интеграла, получим, что S (G 1) = - ∫ - 2 2 1 3 (x 2 + 2 x - 8) d x . Необходимо произвести вычисления по формуле Ньютона-Лейбница. Тогда определенный интеграл примет вид:

S (G) = S (G 1) + S (G 2) = - ∫ - 2 2 1 3 (x 2 + 2 x - 8) d x + ∫ 2 4 1 3 (x 2 + 2 x - 8) d x = = - 1 3 x 3 3 + x 2 - 8 x - 2 2 + 1 3 x 3 3 + x 2 - 8 x 2 4 = = - 1 3 2 3 3 + 2 2 - 8 · 2 - - 2 3 3 + (- 2) 2 - 8 · (- 2) + + 1 3 4 3 3 + 4 3 - 8 · 4 - 2 3 3 + 2 2 - 8 · 2 = = - 1 3 8 3 - 12 + 8 3 - 20 + 1 3 64 3 - 16 - 8 3 + 12 = 124 9

Стоит отметить, что нахождение площади не верно по принципу S (G) = ∫ - 2 4 1 3 (x 2 + 2 x - 8) d x = 1 3 x 3 3 + x 2 - 8 x - 2 4 = = 1 3 4 3 3 + 4 3 - 8 · 4 - - 2 3 3 + - 2 2 - 8 · - 2 = 1 3 64 3 - 16 + 8 3 - 20 = - 4

Так как полученное число является отрицательным и представляет собой разность S (G 2) - S (G 1) .

Ответ: S (G) = S (G 1) + S (G 2) = 124 9

Если фигуры ограничены линиями вида y = c , y = d , x = 0 и x = g (y) , а функция равна x = g (y) , причем непрерывна и имеет неменяющийся знак на промежутке [ c ; d ] , то их называют криволинейными тарпециями.Рассмотримна рисунке, приведенном ниже.

Определение 2

∫ c d g (y) d y заключается в том, что его значением является площадь криволинейной трапеции для непрерывной и неотрицательной функции вида x = g (y) , расположенной на интервале [ c ; d ] .

Пример 3

Произвести вычисление фигуры, которая ограничена осью ординат и линиями x = 4 ln y y + 3 , y = 1 , y = 4 .

Решение

Построение графика x = 4 ln y y + 3 не является простым. Поэтому необходимо решить без чертежа. Вспомним, что функция определена для всех положительных значений y . Рассмотрим значения функции, имеющиеся на отрезке [ 1 ; 4 ] . По свойствам элементарных функций знаем, что логарифмическая функция возрастает на всей области определения. Тогда не отрезке [ 1 ; 4 ] является неотрицательной. Значит имеем, что ln y ≥ 0 . Имеющееся выражение ln y y , определенное на том же отрезке, неотрицательно. Можно сделать вывод, что функция x = 4 ln y y + 3 является положительной на интервале, равном [ 1 ; 4 ] . Получаем, что фигура на этом интервале является положительной. Тогда ее площадь должна вычисляться по формуле S (G) = ∫ 1 4 4 ln y y + 3 d y .

Необходимо произвести вычисление неопределенного интеграла. Для этого необходимо найти первообразную функции x = 4 ln y y + 3 и применить формулу Ньютона-Лейбница. Получаем, что

∫ 4 ln y y + 3 d y = 4 ∫ ln y y d y + 3 ∫ d y = 4 ∫ ln y d (ln y) + 3 y = = 4 ln 2 y 2 + 3 y + C = 2 ln 2 y + 3 y + C ⇒ S (G) = ∫ 1 4 4 ln y y + 3 d y = 2 ln 2 + y + 3 y 1 4 = = 2 ln 2 4 + 3 · 4 - (2 ln 2 1 + 3 · 1) = 8 ln 2 2 + 9

Рассмотрим чертеж, приведенный ниже.

Ответ: S (G) = 8 ln 2 2 + 9

Итоги

В данной статье мы выявили геометрический смысл определенного интеграла и изучили связь с площадью криволинейной трапеции. Отсюда следует, что мы имеем возможность вычислять площадь сложных фигур при помощи вычисления интеграла для криволинейной трапеции. В разделе нахождения площадей и фигур, которые ограниченными линиями y = f (x) , x = g (y) , данные примеры рассмотрены подробно.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Занятие 2. Интегральное исчисление

    Неопределенный интеграл и его геометрический смысл. Основные свойства неопределенного интеграла.

    Основные методы интегрирования неопределенного интеграла.

    Определенный интеграл и его геометрический смысл.

    Формула Ньютона-Лейбница. Методы вычисления определенного интеграла.

Зная производную или дифференциал функции, можно найти саму эту функцию (восстановить функцию). Такое действие, обратное дифференцированию, называется интегрированием.

Первообразной функцией по отношению к данной функции называется такая функция
, производная от которой равна данной функции, т.е.

Для данной функции первообразных функций бесчисленное множество, т.к. любая из функций
, также является первообразной для .

Совокупность всех первообразных для данной функции называется ее неопределенным интегралом обозначается символом:

, где

называется подынтегральным выражением, функция
- подынтегральной функцией.

Геометрический смысл неопределенного интеграла. Геометрически, неопределенный интеграл представляет собой семейство интегральных кривых на плоскости, полученных путем параллельного переноса графика функции
вдоль оси ординат (рис. 3).


Основные свойства неопределённого интеграла

Свойство 1. Производная неопределенного интеграла равна подынтегральной функции:

Свойство 2. Дифференциал неопределенного интеграла равен подынтегральному выражению:

Свойство 3. Интеграл от дифференциала функции равен этой функции плюс const:

Свойство 4. Линейность интеграла.

Таблица основных интегралов

Интеграл

степенная

показательная

тригонометрические

обратные

тригонометрические

Основные методы интегрирования


    Метод интегрирования по частям – это метод, заключающийся в использовании формулы:

.

Этот метод применяется в том случае, если интеграл
является более простым для решения чем
. Как правило, этим методом решаются интегралы вида
, где
- многочлен, а - одна из следующих функций:
,
,
, , ,
,
.

Рассмотрим некоторую функцию
, определённую на промежутке
, рис. 4. Выполним 5 операций.

1. Разобьём промежуток точками произвольным образом на частей. Обозначим
, а наибольшую из длин этих частичных участков обозначим через , будем называть рангом дробления.

2. На каждом частичном участке
возьмём произвольную точку и вычислим в ней значение функции
.

3. Составим произведение


4. Составим сумму
. Эта сумма называется интегральной суммой или суммой Римана.

5. Измельчая дробление (за счёт увеличения числа точек дробления ) и устремляя при этом ранг дробления к нулю (
) т.е. (увеличивая число точек дробления, мы следим за тем, чтобы уменьшалась и стремилась к нулю длина всех частичных участков
), будем находить предел последовательности интегральных сумм

Если этот предел существует, не зависит от способа дробления и выбора точек , то он называется определённым интегралом от функции по промежутку и обозначается так:
.

Геометрический смысл определенного интеграла. Допустим, что функция непрерывна и положительна на промежутке . Рассмотрим криволинейную трапецию ABCD (рис. 4). Интегральная сумма
даёт нам сумму площадей прямоугольников с основаниями
и высотами
. Её можно принять за приближённое значение площади криволинейной трапеции ABCD , т.е.

,

причём, это равенство будет тем точнее, чем мельче дробление, и в пределе при n →+∞ и λ → 0 мы получим:

.

В этом и заключается геометрический смысл определённого интеграла.

Основные свойства определённого интеграла

Свойство 1. Определенный интеграл с одинаковыми пределами равен нулю.

Свойство 2. При перемене местами пределов интегрирования определённый интеграл меняет знак на противоположный.

Свойство 3. Линейность интеграла.

Свойство 4. Каковы бы ни были числа
, если функция
интегрируема на каждом из промежутков
,
,
(рис. 5), то:

Теорема. Если функция непрерывна на промежутке , то определённый интеграл от этой функции по промежутку равен разности значений какой-либо первообразной этой функции на верхнем и на нижнем пределах интегрирования, т.е.

(Формула Ньютона-Лейбница) .

Эта формула сводит нахождение определенных интегралов к нахождению неопределенных интегралов. Разность
называется приращением первообразной и обозначается
.

Рассмотрим основные способы вычисления определённого интеграла: замену переменных (подстановку) и интегрирование по частям.

    Подстановка (замена переменной) в определённом интеграле - необходимо выполнить следующие действия:


и
;

Замечание. При вычислении определённых интегралов с помощью подстановки нет необходимости возвращаться к первоначальному аргументу.

2. Интегрирование по частям в определённом интеграле сводится к применению формулы:

.

Примеры решения задач

Задание 1. Найти неопределенный интеграл методом непосредственного интегрирования.

1.
. Используя свойство неопределенного интеграла, вынесем за знак интеграла постоянный множитель. Затем, выполняя элементарные математические преобразования, приведем подынтегральную функцию к степенному виду:

.

Задание 2. Найти неопределенный интеграл, используя метод замены переменной.

1.
. Сделаем замену переменной
, тогда . Исходный интеграл примет вид:

Таким образом, мы получили неопределенный интеграл табличного вида: степенная функция. Используя правило нахождения неопределенного интеграла от степенной функции, найдем:

Сделав обратную замену, получим окончательный ответ:

Задание 3. Найти неопределенный интеграл, используя метод интегрирования по частям.

1.
. Введем следующие обозначения: смысл ... основное понятие интегрального исчисления – понятие неопределенного интеграла ... неопределенного интеграла Основные свойства неопределенного интеграла Использовать таблицу основных неопределенных ...

  • Рабочая программа учебной дисциплины "высшая математика" Цикл

    Рабочая программа

    ... основные законы... Интегральное исчисление функции одной переменной Первообразная. Неопределённый интеграл и его свойства ... интеграл и его геометрический смысл . Интеграл ... координатах. Неопределенный интеграл и... и практические занятия ". Петрушко И.М., ...

  • Документ

    Некотором промежутке Х. Если для любого хХ F"(x) = f(x), то функция F называется первообразной для функции f на промежутке Х. Первообразную для функции можно попытаться найти...

  • Первообразной для функции

    Документ

    ... . Функция F(x) называется первообразной для функции f(x) на промежутке (a;b), если для всех x(a;b) выполняется равенство F(x) = f(x). Например, для функции x2 первообразной будет функция x3 ...

  • Основы интегрального исчисления Учебное пособие

    Учебное пособие

    ... ; 5. Найти интеграл. ; B) ; C) ; D) ; 6. Функция называется первообразной к функции на множестве, если: для всех; в некоторой точке; для всех; в некоторой... интервалом. Определение 1. Функция называется первообразной для функции на множестве, ...

  • Первообразная Неопределённый интеграл

    Документ

    Интегрирования. Первообразная . Непрерывная функция F (x) называется первообразной для функции f (x) на промежутке X , если для каждого F’ (x) = f (x). П р и м е р. Функция F (x) = x 3 является первообразной для функции f (x) = 3x ...

  • СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ СССР Утверждено Учебно-методическим управлением по высшему образованию ВЫСШАЯ МАТЕМАТИКА МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ (С ПРОГРАММОЙ) для студентов-заочников инженерно-технических специальностей

    Методические указания

    Вопросы для самопроверки Дайте определение первообразной функции . Укажите геометрический смысл совокупности первообразных функций . Что называется неопределенным...



  • Предыдущая статья: Следующая статья:

    © 2015 .
    О сайте | Контакты
    | Карта сайта