Главная » Галлюциногенные » Преломление света история открытия. SA Преломление света

Преломление света история открытия. SA Преломление света

Обращали ли вы внимание, что торчащие из воды предметы кажутся как будто немного переломанными на границе между водой и воздухом? Подводная травинка, растущая со дна водоема, вроде как немного отклоняется, попадая на открытый воздух.

Примерно то же происходит и с ложкой в стакане воды. На самом деле предметы остаются такими же ровными, как и были, просто происходит преломление при распространении света, отчего и возникают эти зрительные эффекты.

Преломление света - это явление изменения направления движения светового луча при переходе из одной среды в другую. Различные среды, пропускающие свет, имеют различную оптическую плотность. Скорость света в них различна. Чем больше оптическая плотность среды, тем меньше в ней скорость света, и тем сильнее она будет преломлять свет, попадающий извне. Как же конкретно происходит преломление света?

Как происходит преломление света?

Предположим, что из воздуха на поверхность воды падает пучок света. Если провести перпендикуляр к поверхности воды и измерить угол падения, то выяснится, что угол луча после попадания в воду изменился, он стал меньше. То же самое произойдет в случае попадания луча из воздуха в стекло.

Угол, который образует падающий луч к проведенному к границе двух сред перпендикуляру после попадания во вторую среду, называется углом преломления. Опытным путем установлено, что если свет падает из среды оптически менее плотной в более плотную, то угол падения будет больше угла преломления.

Если же наоборот - оптическая плотность первой среды больше оптической плотности вещества второй среды, то угол падения будет меньше угла преломления. При изменении угла падения угол преломления будет также меняться. Однако отношение этих углов не остается постоянным. А вот отношение синусов этих углов - это постоянная величина. Таким образом, можно записать:

sinα / sinγ = n,

где α - угол падения, γ - угол преломления, n - постоянная величина для двух конкретных сред, не зависящая от угла падения.

Закон преломления света

Закон преломления света звучит следующим образом: падающий и преломленный луч лежат в одной плоскости, причем отношение синуса угла падения к синусу угла преломления - величина постоянная для двух сред.

Вследствие преломления света объекты на дне водоема кажутся ближе, чем они есть на самом деле, звезды на небосводе кажутся выше, чем они есть на самом деле.

Законы отражения и преломления света обусловливают многие явления в нашей жизни. Именно благодаря им мы видим мир таким, каков он есть. Вы можете ознакомиться с материалами по теме «отражение света» и законом отражения света в предыдущей теме.

На границе перехода из одной среды в другую, если она существенно больше, чем длина волны, наблюдается изменение направления световых лучей. При этом часть энергии отражается, то есть возвращается в ту же среду, а часть преломляется, проникая в другую среду. Используя законы отражения и преломления света, можно объяснить, какое направление имеют отраженные и преломленные лучи и какова доля световой энергии, которая отразилась или перешла из одной среды в другую. Чтобы возникло явление отражения и преломления света, тело должно быть довольно гладким, не матовым и обладать достаточно однородной внутренней структурой. Примером такого случая может быть граница раздела воды и воздуха в широкой емкости. Также зеркальной поверхностью обладают полированные металлические тела.

Чтобы понять сущность данных законов, можно провести несложный опыт. Следует направить узкий поток лучей на воду, налитую в большой сосуд. Можно заметить, что часть лучей отразится на поверхности, а оставшаяся перейдет в воду. Более того, мы увидим, что происходит преломление света в воде .

Закон отражения

Закон отражения определяет изменение направленности луча света при встрече с отражающей поверхностью. Он состоит в том, что и падающий, и отраженный луч находятся в единой плоскости с перпендикуляром к поверхности, и этой перпендикуляр разделяет угол между данными лучами на равные части.

Чаще его формулируют так: угол падения и угол отражения света равны:

α=γ

Такая формулировка является менее точной, поскольку не определяет точного направления отражения луча.

Закон отражения исходит из принципов волновой оптики. Экспериментально он был найден Евклидом в 3-м веке до н.э. Его можно считать следствием использования принципа Ферма для зеркальной поверхности.

Любая среда обладает в определенной степени отражательной и поглощающей способностью. Величиной, которая свидетельствует об отражательной способности поверхности, является коэффициент отражения света . Он определяет, какую долю энергии, принесенной на поверхность, составляет энергия, которая уносится с нее отраженным излучением. Его величина зависит от множества причин, в том числе от угла падения и состава излучения.

В результате перехода из более плотной в менее плотную оптически среду (допустим, в воздух из стекла) происходит полное отражение, которое означает, что преломленный луч исчезает.

Полное отражение наблюдается при падении лучей на жидкую ртуть или серебро, нанесенное на стекло.

Такое явление имеет место, если угол падения превышает предельный угол полного отражения света αпр .

Если α = αпр , то sin β = 1 , а sin αпр = n2/n1

Когда второй средой выступает воздух (то есть n2 ≈ 1 ), указанная формула приобретает следующий вид:

sin αпр=1/n

Критический угол для перехода из стекла в воздух составляет 42° (при n = 1,5) , для перехода из воды в воздух — 48,7° (при n = 1,33 ).

Полное внутреннее отражение света

В природе примерами полного отражения являются различные миражи и фата-моргана. Они возникают в результате отражения на границе слоев воздуха с различной температурой. Кроме того, полное отражение света объясняет и яркий блеск драгоценных камней, когда каждый входящий луч образует множество ярких исходящих лучей.

Если, находясь под водой, посмотреть на поверхность под определенным углом, можно увидеть не то, что находится в воздухе, а зеркальное изображение предметов, находящихся под водой. Это еще один пример полного внутреннего отражения.

В случае, когда угол падения на границу между двумя диэлектрическими средами не равен нулю, и отраженный, и преломленный лучи становятся частично поляризованными. Поляризация света при отражении определяется углом его падения. Угол, при котором происходит полная поляризация отраженного луча, а преломленный луч обладает максимально возможной степенью поляризации, называют углом Бpюстеpа.

Обратите внимание, что информация о выборе светофильтров для объективов доступна по этому адресу: .

Законы отражения и преломления света фото

Ниже приводим фотографии по теме статьи «Законы отражения и преломления света». Для открытия галереи фотографий достаточно нажать на миниатюру изображения.

Рассмотрим, как меняется направление луча при переходе его из воздуха в воду. В воде скорость света меньше, чем в воздухе. Среда, в которой скорость распространения света меньше, является оптически более плотной средой.

Таким образом, оптическая плотность среды характеризуется различной скоростью распространения света .

Это значит, что скорость распространения света больше в оптически менее плотной среде. Например, в вакууме скорость света равна 300 000 км/с, а в стекле - 200 000 км/с. Когда световой пучок падает на поверхность, разделяющую две прозрачные среды с разной оптической плотностью, например воздух и воду, то часть света отражается от этой поверхности, а другая часть проникает во вторую среду. При переходе из одной среды в другую луч света изменяет направление на границе сред (рис. 144). Это явление называется преломлением света .

Рис. 144. Преломление света при переходе луча из воздуха в воду

Рассмотрим преломление света подробнее. На рисунке 145 показаны: падающий луч АО, преломлённый луч ОВ и перпендикуляр к поверхности раздела двух сред, проведённый в точку падения О. Угол АОС - угол падения (α) , угол DOB - угол преломления (γ) .

Рис. 145. Схема преломления луча света при переходе из воздуха в воду

Луч света при переходе из воздуха в воду меняет своё направление, приближаясь к перпендикуляру CD.

Вода - среда оптически более плотная, чем воздух. Если воду заменить какой-либо иной прозрачной средой, оптически более плотной, чем воздух, то преломлённый луч также будет приближаться к перпендикуляру. Поэтому можно сказать, что если свет идёт из среды оптически менее плотной в более плотную среду, то угол преломления всегда меньше угла падения (см. рис. 145):

Луч света, направленный перпендикулярно к границе раздела двух сред, проходит из одной среды в другую без преломления.

При изменении угла падения меняется и угол преломления. Чем больше угол падения, тем больше угол преломления (рис. 146). При этом отношение между углами не сохраняется. Если составить отношение синусов углов падения и преломления, то оно остаётся постоянным.

Рис. 146. Зависимость угла преломления от угла падения

Для любой пары веществ с различной оптической плотностью можно написать:

где n - постоянная величина, не зависящая от угла падения. Она называется показателем преломления для двух сред. Чем больше показатель преломления, тем сильнее преломляется луч при переходе из одной среды в другую.

Таким образом, преломление света происходит по следующему закону: лучи падающий, преломлённый и перпендикуляр, проведённый к границе раздела двух сред в точке падения луча, лежат в одной плоскости.

  • Углом падения α называется угол между падающим лучом света и перпендикуляром к границе раздела двух сред, восстановленным в точке падения (рис. 1).
  • Углом отражения β называется угол между отраженным лучом света и перпендикуляром к отражающей поверхности, восстановленным в точке падения (см. рис. 1).
  • Углом преломления γ называется угол между преломленным лучом света и перпендикуляром к границе раздела двух сред, восстановленным в точке падения (см. рис. 1).
  • Под лучом понимают линию, вдоль которой переносится энергия электромагнитной волны. Условимся изображать оптические лучи графически с помощью геометрических лучей со стрелками. В геометрической оптике волновая природа света не учитывается (см. рис. 1).
  • Лучи, выходящие из одной точки, называют расходящимися , а собирающиеся в одной точке - сходящимися . Примером расходящихся лучей может служить наблюдаемый свет далеких звезд, а примером сходящихся - совокупность лучей, попадающих в зрачок нашего глаза от различных предметов.

При изучении свойств световых лучей были экспериментально установлены четыре основных закона геометрической оптики:

  • закон прямолинейного распространения света;
  • закон независимости световых лучей;
  • закон отражения световых лучей;
  • закон преломления световых лучей.

Преломление света

Измерения показали, что скорость света в веществе υ всегда меньше скорости света в вакууме c .

  • Отношение скорости света в вакууме c к ее скорости в данной среде υ называется абсолютным показателем преломления :

\(n=\frac{c}{\upsilon }.\)

Словосочетание «абсолютный показатель преломления среды » часто заменяют «показатель преломления среды ».

Рассмотрим луч, падающий на плоскую границу раздела двух прозрачных сред с показателями преломления n 1 и n 2 под некоторым углом α (рис. 2).

  • Изменение направления распространения луча света при прохождении через границу раздела двух сред называется преломлением света .

Законы преломления:

  • отношение синуса угла падения α к синусу угла преломления γ есть величина постоянная для двух данных сред

\(\frac{sin \alpha }{sin \gamma }=\frac{n_2}{n_1}.\)

  • лучи, падающий и преломленный, лежат в одной плоскости с перпендикуляром, проведенным в точке падения луча к плоскости границы раздела двух сред.

Для преломления выполняется принцип обратимости световых лучей :

  • луч света, распространяющийся по пути преломленного луча, преломившись в точке O на границе раздела сред, распространяется дальше по пути падающего луча.

Из закона преломления следует, что если вторая среда оптически более плотная через первая среда,

  • т.е. n 2 > n 1 , то α > γ \(\left(\frac{n_2}{n_1} > 1, \;\;\; \frac{sin \alpha }{sin \gamma } > 1 \right)\) (рис. 3, а);
  • если n 2 < n 1 , то α < γ (рис. 3, б).
Рис. 3

Первые упоминания о преломлении света в воде и стекле встречаются в труде Клавдия Птолемея «Оптика», вышедшего в свет во II веке нашей эры. Закон преломления света был экспериментально установлен в 1620 г. голландским ученым Виллебродом Снеллиусом. Заметим, что независимо от Снеллиуса закон преломления был также открыт Рене Декартом.

Закон преломления света позволяет рассчитывать ход лучей в различных оптических системах.

На границе раздела двух прозрачных сред обычно одновременно с преломлением наблюдается отражение волн. Согласно закону сохранения энергии сумма энергий отраженной W o и преломленной W np волн равна энергии падающей волны W n:

W n = W np + W o .

Полное отражение

Как уже говорилось выше, при переходе света из оптически более плотной среды в оптически менее плотную среду (n 1 > n 2), угол преломления γ становится больше угла падения α (см. рис. 3, б).

По мере увеличения угла падения α (рис. 4), при некотором его значении α 3 , угол преломления станет γ = 90°, т. е. свет не будет попадать во вторую среду. При углах больших α 3 свет будет только отражаться. Энергия преломленной волны W np при этом станет равной нулю, а энергия отраженной волны будет равна энергии падающей: W n = W o . Следовательно, начиная с этого угла падения α 3 (в дальнейшем будет обозначать его α 0), вся световая энергия отражается от границы раздела этих сред.

Это явление получило название полное отражение (см. рис. 4).

  • Угол α 0 , при котором начинается полное отражение, называется предельным углом полного отражения .

Значение угла α 0 определяется из закона преломления при условии, что угол преломления γ = 90°:

\(\sin \alpha_{0} = \frac{n_{2}}{n_{1}} \;\;\; \left(n_{2} < n_{1} \right).\)

Литература

Жилко, В.В. Физика: учеб. Пособие для 11 класса общеобразоват. шк. с рус. яз. обучения / В.В.Жилко, Л.Г.Маркович. - Минск: Нар. Асвета, 2009. - С. 91-96.

Обращали ли вы внимание, что торчащие из воды предметы кажутся как будто немного переломанными на границе между водой и воздухом? Подводная травинка, растущая со дна водоема, вроде как немного отклоняется, попадая на открытый воздух.

Примерно то же происходит и с ложкой в стакане воды. На самом деле предметы остаются такими же ровными, как и были, просто происходит преломление при распространении света , отчего и возникают эти зрительные эффекты.

Преломление света - это явление изменения направления движения светового луча при переходе из одной среды в другую. Различные среды, пропускающие свет, имеют различную оптическую плотность. Скорость света в них различна. Чем больше оптическая плотность среды, тем меньше в ней скорость света, и тем сильнее она будет преломлять свет, попадающий извне. Как же конкретно происходит преломление света?

Как происходит преломление света?

Предположим, что из воздуха на поверхность воды падает пучок света. Если провести перпендикуляр к поверхности воды и измерить угол падения, то выяснится, что угол луча после попадания в воду изменился, он стал меньше. То же самое произойдет в случае попадания луча из воздуха в стекло.

Угол, который образует падающий луч к проведенному к границе двух сред перпендикуляру после попадания во вторую среду, называется углом преломления. Опытным путем установлено, что если свет падает из среды оптически менее плотной в более плотную, то угол падения будет больше угла преломления.

Если же наоборот - оптическая плотность первой среды больше оптической плотности вещества второй среды, то угол падения будет меньше угла преломления. При изменении угла падения угол преломления будет также меняться. Однако отношение этих углов не остается постоянным. А вот отношение синусов этих углов - это постоянная величина. Таким образом, можно записать:

sinα / sinγ = n,

где α - угол падения, γ - угол преломления, n - постоянная величина для двух конкретных сред, не зависящая от угла падения.

Закон преломления света

Закон преломления света звучит следующим образом: падающий и преломленный луч лежат в одной плоскости, причем отношение синуса угла падения к синусу угла преломления - величина постоянная для двух сред.

Вследствие преломления света объекты на дне водоема кажутся ближе, чем они есть на самом деле, звезды на небосводе кажутся выше, чем они есть на самом деле.

Законы отражения и преломления света обусловливают многие явления в нашей жизни. Именно благодаря им мы видим мир таким, каков он есть. Вы можете ознакомиться с материалами по теме «отражение света» и



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта