Главная » Маринование грибов » Есть ли магнитное поле на марсе. Почему Марс потерял магнитное поле

Есть ли магнитное поле на марсе. Почему Марс потерял магнитное поле

Марс - четвёртая по удалённости от Солнца и седьмая (предпоследняя) по размерам планета Солнечной системы; масса планеты составляет 10,7 % массы Земли. Названа в честь Марса - древнеримского бога войны, соответствующего древнегреческому Аресу. Иногда Марс называют «красной планетой» из-за красноватого оттенка поверхности, придаваемого ей оксидом железа.

Марс - планета земной группы с разреженной атмосферой (давление у поверхности в 160 раз меньше земного). Особенностями поверхностного рельефа Марса можно считать ударные кратеры наподобие лунных, а также вулканы, долины, пустыни и полярные ледниковые шапки наподобие земных.

У Марса есть два естественных спутника - Фобос и Деймос (в переводе с древнегреческого - «страх» и «ужас» - имена двух сыновей Ареса, сопровождавших его в бою), которые относительно малы (Фобос - 26x21 км, Деймос - 13 км в поперечнике) и имеют неправильную форму.

Великие противостояния Марса, 1830-2035 гг.

Год Дата Расстояние, а. е.
1830 19 сентября 0,388
1845 18 августа 0,373
1860 17 июля 0,393
1877 5 сентября 0,377
1892 4 августа 0,378
1909 24 сентября 0,392
1924 23 августа 0,373
1939 23 июля 0,390
1956 10 сентября 0,379
1971 10 августа 0,378
1988 22 сентября 0,394
2003 28 августа 0,373
2018 27 июля 0,386
2035 15 сентября 0,382

Марс - четвёртая по удалённости от Солнца (после Меркурия, Венеры и Земли) и седьмая по размерам (превосходит по массе и диаметру только Меркурий) планета Солнечной системы. Масса Марса составляет 10,7 % массы Земли (6,423·1023 кг против 5,9736·1024 кг для Земли), объём - 0,15 объёма Земли, а средний линейный диаметр - 0,53 диаметра Земли (6800 км).

Рельеф Марса обладает многими уникальными чертами. Марсианский потухший вулкан гора Олимп - самая высокая гора в Солнечной системе, а долины Маринер - самый крупный каньон. Помимо этого, в июне 2008 года три статьи, опубликованные в журнале «Nature», представили доказательства существования в северном полушарии Марса самого крупного известного ударного кратера в Солнечной системе. Его длина - 10 600 км, а ширина - 8500 км, что примерно в четыре раза больше, чем крупнейший ударный кратер, до того также обнаруженный на Марсе, вблизи его южного полюса.

В дополнение к схожести поверхностного рельефа, Марс имеет период вращения и смену времён года аналогичные земным, но его климат значительно холоднее и суше земного.

Вплоть до первого пролёта у Марса космического аппарата «Маринер-4» в 1965 году многие исследователи полагали, что на его поверхности есть вода в жидком состоянии. Это мнение было основано на наблюдениях за периодическими изменениями в светлых и тёмных участках, особенно в полярных широтах, которые были похожи на континенты и моря. Тёмные борозды на поверхности Марса интерпретировались некоторыми наблюдателями как ирригационные каналы для жидкой воды. Позднее было доказано, что эти борозды были оптической иллюзией.

Из-за низкого давления вода не может существовать в жидком состоянии на поверхности Марса, но вполне вероятно, что в прошлом условия были иными, и поэтому наличие примитивной жизни на планете исключать нельзя. 31 июля 2008 года вода в состоянии льда была обнаружена на Марсе космическим аппаратом НАСА «Феникс» (англ. «Phoenix»).

В феврале 2009 орбитальная исследовательская группировка на орбите Марса насчитывала три функционирующих космических аппарата: «Марс Одиссей», «Марс-экспресс» и «Марсианский разведывательный спутник», это больше, чем около любой другой планеты, помимо Земли.

Поверхность Марса в настоящий момент исследовали два марсохода: «Спирит» и «Оппортьюнити». На поверхности Марса находятся также несколько неактивных посадочных модулей и марсоходов, завершивших исследования.

Собранные ими геологические данные позволяют предположить, что большую часть поверхности Марса ранее покрывала вода. Наблюдения в течение последнего десятилетия позволили обнаружить в некоторых местах на поверхности Марса слабую гейзерную активность. По наблюдениям с космического аппарата «Марс Глобал Сервейор», некоторые части южной полярной шапки Марса постепенно отступают.

Марс можно увидеть с Земли невооружённым глазом. Его видимая звёздная величина достигает 2,91m (при максимальном сближении с Землёй), уступая по яркости лишь Юпитеру (и то далеко не всегда во время великого противостояния) и Венере (но лишь утром или вечером). Как правило, во время великого противостояния, оранжевый Марс является ярчайшим объектом земного ночного неба, но это происходит лишь один раз в 15-17 лет в течение одной - двух недель.

Орбитальные характеристики

Минимальное расстояние от Марса до Земли составляет 55,76 млн км (когда Земля находится точно между Солнцем и Марсом), максимальное - около 401 млн км (когда Солнце находится точно между Землёй и Марсом).

Среднее расстояние от Марса до Солнца составляет 228 млн км (1,52 а. е.), период обращения вокруг Солнца равен 687 земным суткам. Орбита Марса имеет довольно заметный эксцентриситет (0,0934), поэтому расстояние до Солнца меняется от 206,6 до 249,2 млн км. Наклонение орбиты Марса равно 1,85°.

Марс ближе всего к Земле во время противостояния, когда планета находится в направлении, противоположном Солнцу. Противостояния повторяются каждые 26 месяцев в разных точках орбиты Марса и Земли. Но раз в 15-17 лет противостояния приходятся на то время, когда Марс находится вблизи своего перигелия; в этих так называемых великих противостояниях (последнее было в августе 2003 года) расстояние до планеты минимально, и Марс достигает наибольшего углового размера 25,1" и яркости 2,88m.

Физические характеристики

Сравнение размеров Земли (средний радиус 6371 км) и Марса (средний радиус 3386,2 км)

По линейному размеру Марс почти вдвое меньше Земли - его экваториальный радиус равен 3396,9 км (53,2 % земного). Площадь поверхности Марса примерно равна площади суши на Земле.

Полярный радиус Марса примерно на 20 км меньше экваториального, хотя период вращения у планеты больший, чем у Земли, что даёт повод предположить изменение скорости вращения Марса со временем.

Масса планеты - 6,418·1023 кг (11 % массы Земли). Ускорение свободного падения на экваторе равно 3,711 м/с (0,378 земного); первая космическая скорость составляет 3,6 км/с и вторая - 5,027 км/с.

Период вращения планеты - 24 часа 37 минут 22,7 секунд. Таким образом, марсианский год состоит из 668,6 марсианских солнечных суток (называемых солами).

Марс вращается вокруг своей оси, наклонённой к перпендикуляру плоскости орбиты под углом 24°56?. Наклон оси вращения Марса обеспечивает смену времён года. При этом вытянутость орбиты приводит к большим различиям в их продолжительности - так, северная весна и лето, вместе взятые, длятся 371 сол, то есть заметно больше половины марсианского года. В то же время, они приходятся на участок орбиты Марса, удалённый от Солнца. Поэтому на Марсе северное лето долгое и прохладное, а южное - короткое и жаркое.

Атмосфера и климат

Атмосфера Марса, фото орбитера «Викинг», 1976 г. Слева виден «кратер-смайлик» Галле

Температура на планете колеблется от -153 на полюсе зимой и до более +20 °C на экваторе в полдень. Средняя температура составляет -50°C.

Атмосфера Марса, состоящая, в основном, из углекислого газа, очень разрежена. Давление у поверхности Марса в 160 раз меньше земного - 6,1 мбар на среднем уровне поверхности. Из-за большого перепада высот на Марсе давление у поверхности сильно изменяется. Примерная толщина атмосферы - 110 км.

По данным НАСА (2004), атмосфера Марса состоит на 95,32 % из углекислого газа; также в ней содержится 2,7 % азота, 1,6 % аргона, 0,13 % кислорода, 210 ppm водяного пара, 0,08 % угарного газа, оксид азота (NO) - 100 ppm, неон (Ne) - 2,5 ppm, полутяжёлая вода водород-дейтерий-кислород (HDO) 0,85 ppm, криптон (Kr) 0,3 ppm, ксенон (Xe) - 0,08 ppm.

По данным спускаемого аппарата АМС «Викинг» (1976), в марсианской атмосфере было определено около 1-2 % аргона, 2-3 % азота, а 95 % - углекислый газ. Согласно данным АМС «Марс-2» и «Марс-3», нижняя граница ионосферы находится на высоте 80 км, максимум электронной концентрации 1,7·105 электрон/см3 расположен на высоте 138 км, другие два максимума находятся на высотах 85 и 107 км.

Радиопросвечивание атмосферы на радиоволнах 8 и 32 см АМС «Марс-4» 10 февраля 1974 г. показало наличие ночной ионосферы Марса с главным максимумом ионизации на высоте 110 км и концентрацией электронов 4,6·103 электрон/см3, а также вторичными максимумами на высоте 65 и 185 км.

Атмосферное давление

По данным НАСА на 2004 год, давление атмосферы на среднем радиусе составляет 6,36 мб. Плотность у поверхности ~0,020 кг/м3, общая масса атмосферы ~2,5·1016 кг.
Изменение атмосферного давления на Марсе в зависимости от времени суток, зафиксированное посадочным модулем Mars Pathfinder в 1997 году.

В отличие от Земли, масса марсианской атмосферы сильно изменяется в течение года в связи с таянием и намерзанием полярных шапок, содержащих углекислый газ. Во время зимы 20-30 процентов всей атмосферы намораживается на полярной шапке, состоящей из углекислоты. Сезонные перепады давления, по разным источникам, составляют следующие значения:

По данным НАСА (2004): от 4.0 до 8.7 мбар на среднем радиусе;
По данным Encarta (2000): от 6 до 10 мбар;
По данным Zubrin и Wagner (1996): от 7 до 10 мбар;
По данным посадочного аппарата Викинг-1: от 6,9 до 9 мбар;
По данным посадочного аппарата Mars Pathfinder: от 6,7 мбар.

Ударная впадина Эллада (Hellas Impact Basin) - самое глубокое место, где можно обнаружить самое высокое атмосферное давление на Марсе

В месте посадки зонда АМС Марс-6 в районе Эритрейского моря было зафиксировано давление у поверхности 6,1 миллибара, что на тот момент считалось средним давлением на планете, и от этого уровня было условлено отсчитывать высоты и глубины на Марсе. По данным этого аппарата, полученным во время спуска, тропопауза находится на высоте примерно 30 км, где давление составляет 5·10-7 г/см3 (как на Земле на высоте 57 км).

Область Эллада (Марс) настолько глубока, что атмосферное давление достигает примерно 12,4 миллибара, что выше тройной точки воды (~6,1 мб) и ниже точки кипения. При достаточно высокой температуре вода могла бы существовать там в жидком состоянии; при таком давлении, однако, вода закипает и превращается в пар уже при +10 °C.

На вершине высочайшего 27-километрового вулкана Олимп давление может составлять от 0,5 до 1 мбар (Zurek 1992).

До высадки на поверхность Марса посадочных модулей давление было измерено за счет ослабления радиосигналов с АМС Маринер-4, Маринер-6 и Маринер-7 при их захождении за марсианский диск - 6,5 ± 2,0 мб на среднем уровне поверхности, что в 160 раз меньше земного; такой же результат показали спектральные наблюдения АМС Марс-3. При этом в расположенных ниже среднего уровня областях (например, в марсианской Амазонии) давление, согласно этим измерениям, достигает 12 мб.

Начиная с 1930-х гг. советские астрономы пытались определять давление атмосферы методами фотографической фотометрии - по распределению яркости вдоль диаметра диска в разных диапазонах световых волн. Французские ученые Б.Лио и О.Дольфюс производили с этой целью наблюдения поляризации рассеянного атмосферой Марса света. Сводку оптических наблюдений опубликовал американский астроном Ж.-де Вокулер в 1951 году, и по ним получалось давление 85 мб, завышенное почти в 15 раз из-за помех со стороны атмосферной пыли.

Климат

Микроскопическое фото конкреции гематита размером 1,3 см, снятое марсоходом «Оппортьюнити» 2 марта 2004 г., показывает присутствие в прошлом жидкой воды

Климат, как и на Земле, носит сезонный характер. В холодное время года даже вне полярных шапок на поверхности может образовываться светлый иней. Аппарат «Феникс» зафиксировал снегопад, однако снежинки испарялись, не достигая поверхности.

По сведениям НАСА (2004 г.), средняя температура составляет ~210 K (-63 °C). По данным посадочных аппаратов Викинг, суточный температурный диапазон составляет от 184 K до 242 K (от -89 до -31 °C) (Викинг-1), а скорость ветра: 2-7 м/с (лето), 5-10 м/с (осень), 17-30 м/с (пылевой шторм).

По данным посадочного зонда Марс-6, средняя температура тропосферы Марса составляет 228 K, в тропосфере температура убывает в среднем на 2,5 градуса на километр, а находящаяся выше тропопаузы (30 км) стратосфера имеет почти постоянную температуру 144 K.

По данным исследователей из Центра имени Карла Сагана, в последние десятилетия на Марсе идёт процесс потепления. Другие специалисты считают, что такие выводы делать пока рано.

Существуют сведения, что в прошлом атмосфера могла быть более плотной, а климат - тёплым и влажным, и на поверхности Марса существовала жидкая вода и шли дожди. Доказательством этой гипотезы является анализ метеорита ALH 84001, показавший, что около 4 миллиардов лет назад температура Марса составляла 18 ± 4 °C.

Пылевые вихри

Пыльные вихри, сфотографированные марсоходом «Оппортьюнити» 15 мая 2005 г. Цифры в левом нижнем углу отображают время в секундах с момента первого кадра

Начиная с 1970-х гг. в рамках программы «Викинг», а также марсоходом «Оппортьюнити» и другими аппаратами были зафиксированы многочисленные пыльные вихри. Это воздушные завихрения, возникающие у поверхности планеты и поднимающие в воздух большое количество песка и пыли. Вихри часто наблюдаются и на Земле (в англоязычных странах их называют пыльными демонами - dust devil), однако на Марсе они могут достигать гораздо больших размеров: в 10 раз выше и в 50 раз шире земных. В марте 2005 года вихрь очистил солнечные батареи у марсохода «Спирит».

Поверхность

Две трети поверхности Марса занимают светлые области, получившие название материков, около трети - тёмные участки, называемые морями. Моря сосредоточены, в основном, в южном полушарии планеты, между 10 и 40° широты. В северном полушарии есть только два крупных моря - Ацидалийское и Большой Сырт.

Характер тёмных участков до сих пор остаётся предметом споров. Они сохраняются, несмотря на то, что на Марсе бушуют пылевые бури. В своё время, это служило доводом в пользу предположения, что тёмные участки покрыты растительностью. Сейчас полагают, что это просто участки, с которых, в силу их рельефа, легко выдувается пыль. Крупномасштабные снимки показывают, что на самом деле, тёмные участки состоят из групп тёмных полос и пятен, связанных с кратерами, холмами и другими препятствиями на пути ветров. Сезонные и долговременные изменения их размера и формы связаны, по-видимому, с изменением соотношения участков поверхности, покрытых светлым и тёмным веществом.

Полушария Марса довольно сильно различаются по характеру поверхности. В южном полушарии поверхность находится на 1-2 км над средним уровнем и густо усеяна кратерами. Эта часть Марса напоминает лунные материки. На севере большая часть поверхности находится ниже среднего уровня, здесь мало кратеров, и основную часть занимают относительно гладкие равнины, вероятно, образовавшиеся в результате затопления лавой и эрозии. Такое различие полушарий остаётся предметом дискуссий. Граница между полушариями следует примерно по большому кругу, наклонённому на 30° к экватору. Граница широкая и неправильная и образует склон в направлении на север. Вдоль неё встречаются самые эродированные участки марсианской поверхности.

Выдвинуто две альтернативных гипотезы, объясняющих асимметрию полушарий. Согласно одной из них, на раннем геологическом этапе литосферные плиты «съехались» (возможно, случайно) в одно полушарие, подобно континенту Пангея на Земле, а затем «застыли» в этом положении. Другая гипотеза предполагает столкновение Марса с космическим телом размером с Плутон.
Топографическая карта Марса, по данным Mars Global Surveyor, 1999 г.

Большое количество кратеров в южном полушарии предполагает, что поверхность здесь древняя - 3-4 млрд лет. Выделяют несколько типов кратеров: большие кратеры с плоским дном, более мелкие и молодые чашеобразные кратеры, похожие на лунные, кратеры, окружённые валом, и возвышенные кратеры. Последние два типа уникальны для Марса - кратеры с валом образовались там, где по поверхности текли жидкие выбросы, а возвышенные кратеры образовались там, где покрывало выбросов кратера защитило поверхность от ветровой эрозии. Самой крупной деталью ударного происхождения является равнина Эллада (примерно 2100 км в поперечнике).

В области хаотического ландшафта вблизи границы полушарий поверхность испытала разломы и сжатия больших участков, за которыми иногда следовала эрозия (вследствие оползней или катастрофического высвобождения подземных вод), а также затопление жидкой лавой. Хаотические ландшафты часто находятся у истока больших каналов, прорезанных водой. Наиболее приемлемой гипотезой их совместного образования является внезапное таяние подповерхностного льда.

Долины Маринер на Марсе

В северном полушарии, помимо обширных вулканических равнин, находятся две области крупных вулканов - Фарсида и Элизий. Фарсида - обширная вулканическая равнина протяжённостью 2000 км, достигающая высоты 10 км над средним уровнем. На ней находятся три крупных щитовых вулкана - гора Арсия, гора Павлина и гора Аскрийская. На краю Фарсиды находится высочайшая на Марсе и в Солнечной системе гора Олимп. Олимп достигает 27 км высоты по отношению к его основанию и 25 км по отношению к среднему уровню поверхности Марса, и охватывает площадь 550 км диаметром, окружённую обрывами, местами достигающими 7 км высоты. Объём Олимпа в 10 раз превышает объём крупнейшего вулкана Земли Мауна-Кеа. Здесь же расположено несколько менее крупных вулканов. Элизий - возвышенность до шести километров над средним уровнем, с тремя вулканами - купол Гекаты, гора Элизий и купол Альбор.

По другим данным (Faure и Mensing, 2007), высота Олимпа составляет 21287 метров над нулевым уровнем и 18 километров над окружающей местностью, а диаметр основания - примерно 600 км. Основание охватывает площадь 282600 км2. Кальдера (углубление в центре вулкана) имеет ширину 70 км и глубину 3 км.

Возвышенность Фарсида также пересечена множеством тектонических разломов, часто очень сложных и протяжённых. Крупнейший из них - долины Маринер - тянется в широтном направлении почти на 4000 км (четверть окружности планеты), достигая ширины 600 и глубины 7-10 км; по размерам этот разлом сравним с Восточноафриканским рифтом на Земле. На его крутых склонах происходят крупнейшие в Солнечной системе оползни. Долины Маринер являются самым большим известным каньоном в Солнечной системе. Каньон, который был открыт космическим аппаратом «Маринер-9» в 1971 году, мог бы занять всю территорию США, от океана до океана.

Панорама кратера Виктория, снятая марсоходом «Оппортьюнити». Она была заснята за три недели, в период с 16 октября по 6 ноября, 2006.

Панорама поверхности Марса в районе Husband Hill, снятая марсоходом «Спирит 23-28 ноября 2005».

Лёд и полярные шапки

Северная полярная шапка в летний период, фото Марс Глобал Сервейор. Длинный широкий разлом, рассекающий шапку слева - Северный разлом

Внешний вид Марса сильно изменяется в зависимости от времени года. Прежде всего, бросаются в глаза изменения полярных шапок. Они разрастаются и уменьшаются, создавая сезонные явления в атмосфере и на поверхности Марса. Южная полярная шапка может достигать широты 50°, северная - также 50°. Диаметр постоянной части северной полярной шапки составляет 1000 км. По мере того, как весной полярная шапка в одном из полушарий отступает, детали поверхности планеты начинают темнеть.

Полярные шапки состоят из двух составляющих: сезонной - углекислого газа и вековой - водяного льда. По данным со спутника Марс Экспресс толщина шапок может составлять от 1 м до 3,7 км. Аппарат «Марс Одиссей» обнаружил на южной полярной шапке Марса действующие гейзеры. Как считают специалисты НАСА, струи углекислого газа с весенним потеплением вырываются вверх на большую высоту, унося с собой пыль и песок.

Фотографии Марса, на которых видна пыльная буря. Июнь - сентябрь 2001 г.

Весеннее таяние полярных шапок приводит к резкому повышению давления атмосферы и перемещению больших масс газа в противоположное полушарие. Скорость дующих при этом ветров составляет 10-40 м/с, иногда до 100 м/с. Ветер поднимает с поверхности большое количество пыли, что приводит к пылевым бурям. Сильные пылевые бури практически полностью скрывают поверхность планеты. Пылевые бури оказывают заметное воздействие на распределение температуры в атмосфере Марса.

В 1784 г. астроном У. Гершель обратил внимание на сезонные изменения размера полярных шапок, по аналогии с таянием и намерзанием льдов в земных полярных областях. В 1860-е гг. французский астроном Э.Лиэ наблюдал волну потемнения вокруг тающей весенней полярной шапки, что тогда было истолковано гипотезой о растекании талых вод и росте растительности. Спектрометрические измерения, которые были проведены в начале XX в. в обсерватории Ловелла во Флагстаффе В. Слайфером, однако, не показали наличия линии хлорофилла - зелёного пигмента земных растений.

По фотографиям Маринера-7 удалось определить, что полярные шапки имеют толщину в несколько метров, а измеренная температура 115 K (-158 °C) подтвердила возможность того, что она состоит из замерзшей углекислоты - «сухого льда».

Возвышенность, которая получила название гор Митчелла, расположенная близ южного полюса Марса, при таянии полярной шапки выглядит как белый островок, поскольку в горах ледники тают позднее, в том числе, и на Земле.

Данные аппарата «Марсианский разведывательный спутник» позволили обнаружить под каменистыми осыпями у подножия гор значительный слой льда. Ледник толщиной в сотни метров занимает площадь в тысячи квадратных километров, и его дальнейшее изучение способно дать информацию об истории марсианского климата.

Русла «рек» и другие особенности

На Марсе имеется множество геологических образований, напоминающих водную эрозию, в частности, высохшие русла рек. Согласно одной из гипотез, эти русла могли сформироваться в результате кратковременных катастрофических событий и не являются доказательством длительного существования речной системы. Однако последние данные свидетельствуют о том, что реки текли в течение геологически значимых промежутков времени. В частности, обнаружены инвертированные русла (то есть русла, приподнятые над окружающей местностью). На Земле подобные образования формируются благодаря длительному накоплению плотных донных отложений с последующим высыханием и выветриванием окружающих пород. Кроме того, есть свидетельства смещения русел в дельте реки при постепенном поднятии поверхности.

В юго-западном полушарии, в кратере Эберсвальде обнаружена дельта реки площадью около 115 км2. Намывшая дельту река имела в длину более 60 км.

Данные марсоходов НАСА «Спирит» и «Оппортьюнити» свидетельствуют также о наличии воды в прошлом (найдены минералы, которые могли образоваться только в результате длительного воздействия воды). Аппарат «Феникс» обнаружил залежи льда непосредственно в грунте.

Кроме того, обнаружены тёмные полосы на склонах холмов, свидетельствующие о появлении жидкой солёной воды на поверхности в наше время. Они появляются вскоре после наступления летнего периода и исчезают к зиме, «обтекают» различные препятствия, сливаются и расходятся. «Сложно представить, что подобные структуры могли сформироваться не из потоков жидкости, а из чего-то иного», - заявил сотрудник НАСА Ричард Зурек.

На вулканической возвышенности Фарсида обнаружено несколько необычных глубоких колодцев. Судя по снимку аппарата «Марсианский разведывательный спутник», сделанному в 2007 году, один из них имеет диаметр 150 метров, а освещённая часть стенки уходит в глубину не менее, чем на 178 метров. Высказана гипотеза о вулканическом происхождении этих образований.

Грунт

Элементный состав поверхностного слоя марсианской почвы по данным посадочных аппаратов неодинаков в разных местах. Основная составляющая почвы - кремнезём (20-25 %), содержащий примесь гидратов оксидов железа (до 15 %), придающих почве красноватый цвет. Имеются значительные примеси соединений серы, кальция, алюминия, магния, натрия (единицы процентов для каждого).

Согласно данным зонда НАСА «Феникс» (посадка на Марс 25 мая 2008 года), соотношение pH и некоторые другие параметры марсианских почв близки к земным, и на них теоретически можно было бы выращивать растения. «Фактически, мы обнаружили, что почва на Марсе отвечает требованиям, а также содержит необходимые элементы для возникновения и поддержания жизни как в прошлом, так и в настоящем и будущем», сообщил ведущий исследователь-химик проекта Сэм Кунейвс. Также по его словам, данный щелочной тип грунта многие могут встретить на «своём заднем дворе», и он вполне пригоден для выращивания спаржи.

В месте посадки аппарата в грунте имеется также значительное количество водяного льда. Орбитальный зонд «Марс Одиссей» также обнаружил, что под поверхностью красной планеты есть залежи водяного льда. Позже это предположение было подтверждено и другими аппаратами, но окончательно вопрос о наличии воды на Марсе был решен в 2008 году, когда зонд «Феникс», севший вблизи северного полюса планеты, получил воду из марсианского грунта.

Геология и внутреннее строение

В прошлом на Марсе, как и на Земле происходило движение литосферных плит. Это подтверждается особенностями магнитного поля Марса, местами расположения некоторых вулканов, например, в провинции Фарсида, а также формой долины Маринер. Современное положение дел, когда вулканы могут существовать гораздо более длительное время, чем на Земле и достигать гигантских размеров говорит о том, что сейчас данное движение скорее отсутствует. В пользу этого говорит тот факт, что щитовые вулканы растут в результате повторных извержений из одного и того же жерла в течение длительного времени. На Земле из-за движения литосферных плит вулканические точки постоянно меняли своё положение, что ограничивало рост щитовых вулканов, и возможно не позволяло достичь им высоты, как на Марсе. С другой стороны, разница в максимальной высоте вулканов может объясняться тем, что из-за меньшей силы тяжести на Марсе возможно построение более высоких структур, которые не обрушились бы под собственным весом.

Сравнение строения Марса и других планет земной группы

Современные модели внутреннего строения Марса предполагают, что Марс состоит из коры со средней толщиной 50 км (и максимальной до 130 км), силикатной мантии толщиной 1800 км и ядра радиусом 1480 км. Плотность в центре планеты должна достигать 8,5 г/см2. Ядро частично жидкое и состоит в основном из железа с примесью 14-17 % (по массе) серы, причём содержание лёгких элементов вдвое выше, чем в ядре Земли. Согласно современным оценкам формирование ядра совпало с периодом раннего вулканизма и продолжалось около миллиарда лет. Примерно то же время заняло частичное плавление мантийных силикатов. Из-за меньшей силы тяжести на Марсе диапазон давлений в мантии Марса гораздо меньше, чем на Земле, а значит в ней меньше фазовых переходов. Предполагается, фазовый переход оливина в шпинелевую модификацию начинается на довольно больших глубинах - 800 км (400 км на Земле). Характер рельефа и другие признаки позволяют предположить наличие астеносферы, состоящей из зон частично расплавленного вещества. Для некоторых районов Марса составлена подробная геологическая карта.

Согласно наблюдениям с орбиты и анализу коллекции марсианских метеоритов поверхность Марса состоит главным образом из базальта. Есть некоторые основания предполагать, что на части марсианской поверхности материал является более кварцесодержащим, чем обычный базальт и может быть подобен андезитным камням на Земле. Однако эти же наблюдения можно толковать в пользу наличия кварцевого стекла. Значительная часть более глубокого слоя состоит из зернистой пыли оксида железа.

Магнитное поле Марса

У Марса было зафиксировано слабое магнитное поле.

Согласно показаниям магнетометров станций Марс-2 и Марс-3, напряжённость магнитного поля на экваторе составляет около 60 гамм, на полюсе 120 гамм, что в 500 раз слабее земного. По данным АМС Марс-5, напряжённость магнитного поля на экваторе составляла 64 гаммы, а магнитный момент - 2,4·1022 эрстед·см2.

Магнитное поле Марса крайне неустойчиво, в различных точках планеты его напряжённость может отличаться от 1,5 до 2 раз, а магнитные полюса не совпадают с физическими. Это говорит о том, что железное ядро Марса находится в сравнительной неподвижности по отношению к его коре, то есть механизм планетарного динамо, ответственный за магнитное поле Земли, на Марсе не работает. Хотя на Марсе не имеется устойчивого всепланетного магнитного поля, наблюдения показали, что части планетной коры намагничены и что наблюдалась смена магнитных полюсов этих частей в прошлом. Намагниченность данных частей оказалась похожей на полосовые магнитные аномалии в мировом океане.

По одной теории, опубликованной в 1999 году и перепроверенной в 2005 году (с помощью беспилотной станции Марс Глобал Сервейор), эти полосы демонстрируют тектонику плит 4 миллиарда лет назад до того, как динамо-машина планеты прекратила выполнять свою функцию, что послужило причиной резкого ослабления магнитного поля. Причины такого резкого ослабления неясны. Существует предположение, что функционирование динамо-машины 4 млдр. лет назад объясняется наличием астероида, который вращался на расстоянии 50-75 тысяч километров вокруг Марса и вызывал нестабильность в его ядре. Затем астероид снизился до предела Роша и разрушился. Тем не менее, это объяснение само содержит неясные моменты, и оспаривается в научном сообществе.

Геологическая история

Глобальная мозаика из 102 изображений орбитера Викинг-1 от 22 февраля 1980.

Возможно, в далёком прошлом в результате столкновения с крупным небесным телом произошла остановка вращения ядра, а также потеря основного объёма атмосферы. Считается, что потеря магнитного поля произошла около 4 млрд лет назад. Вследствие слабости магнитного поля солнечный ветер практически беспрепятственно проникает в атмосферу Марса, и многие из фотохимических реакций под действием солнечной радиации, которые на Земле происходят в ионосфере и выше, на Марсе могут наблюдаться практически у самой его поверхности.

Геологическая история Марса заключает в себя три нижеследующие эпохи:

Ноачианская эпоха (названа в честь «Ноачиской земли», района Марса): формирование наиболее старой сохранившейся до наших дней поверхности Марса. Продолжалась в период 4,5 млрд - 3,5 млрд лет назад. В эту эпоху поверхность была изрубцована многочисленными ударными кратерами. Плато провинции Фарсида было вероятно сформировано в этот период с интенсивным обтеканием водой позднее.

Гесперийская эра: от 3,5 млрд лет назад до 2,9 - 3,3 млрд лет назад. Эта эпоха отмечена образованием огромных лавовых полей.

Амазонийская эра (названа в честь «Амазонской равнины» на Марсе): 2,9-3,3 млрд лет назад до наших дней. Районы, образовавшиеся в эту эпоху, имеют очень мало метеоритных кратеров, но во всём остальном они полностью различаются. Гора Олимп сформирована в этот период. В это время в других частях Марса разливались лавовые потоки.

Спутники Марса

Естественными спутниками Марса являются Фобос и Деймос. Оба они открыты американским астрономом Асафом Холлом в 1877 году. Фобос и Деймос имеют неправильную форму и очень маленькие размеры. По одной из гипотез, они могут представлять собой захваченные гравитационным полем Марса астероиды наподобие (5261) Эврика из Троянской группы астероидов. Спутники названы в честь персонажей, сопровождающих бога Ареса (то есть Марса), - Фобоса и Деймоса, олицетворяющих страх и ужас, которые помогали богу войны в битвах.

Оба спутника вращаются вокруг своих осей с тем же периодом, что и вокруг Марса, поэтому всегда повёрнуты к планете одной и той же стороной. Приливное воздействие Марса постепенно замедляет движение Фобоса, и в конце концов приведёт к падению спутника на Марс (при сохранении текущей тенденции), или к его распаду. Напротив, Деймос удаляется от Марса.

Оба спутника имеют форму, приближающуюся к трёхосному эллипсоиду, Фобос (26,6x22,2x18,6 км) несколько крупнее Деймоса (15x12,2x10,4 км). Поверхность Деймоса выглядит гораздо более гладкой за счёт того, что большинство кратеров покрыто тонкозернистым веществом. Очевидно, на Фобосе, более близком к планете и более массивном, вещество, выброшенное при ударах метеоритов, либо наносило повторные удары по поверхности, либо падало на Марс, в то время как на Деймосе оно долгое время оставалось на орбите вокруг спутника, постепенно осаждаясь и скрывая неровности рельефа.

Жизнь на Марсе

Популярная идея, что Марс населён разумными марсианами, широко распространилась в конце XIX века.

Наблюдения Скиапарелли так называемых каналов, в сочетании с книгой Персиваля Лоуэлла по той же теме сделали популярной идею о планете, климат которой становился всё суше, холоднее, которая умирала и в которой существовала древняя цивилизация, производящая ирригационные работы.

Другие многочисленные наблюдения и объявления известных лиц породили вокруг этой темы так называемую «Марсианскую лихорадку» («Mars Fever»). В 1899 году, во время изучения атмосферных помех в радиосигнале, используя приёмники в Колорадской обсерватории, изобретатель Никола Тесла наблюдал повторяющийся сигнал. Затем он высказал догадку, что это может быть радиосигнал с других планет, например, Марса. В интервью 1901 года Тесла сказал, что ему пришла в голову мысль о том, что помехи могут быть вызваны искусственно. Хотя он не смог расшифровать их значение, для него было невозможным то, что они возникли совершенно случайно. По его мнению, это было приветствие одной планеты другой.

Теория Теслы вызвала горячую поддержку известного британского учёного-физика Уильяма Томсона (лорда Кельвина), который, посетив США в 1902 году, сказал, что по его мнению Тесла поймал сигнал марсиан, посланный в США. Однако затем Кельвин стал решительно отрицать это заявление перед тем, как покинул Америку: «На самом деле я сказал, что жители Марса, если они существуют, несомненно могут видеть Нью-Йорк, в частности свет от электричества».

На сегодняшний день условием для развития и поддержания жизни на планете считается наличие жидкой воды на её поверхности. Также существует требование, чтобы орбита планеты находилась в так называемой обитаемой зоне, которая для Солнечной системы начинается за Венерой и кончается большой полуосью орбиты Марса. Во время перигелия Марс находится внутри этой зоны, однако тонкая атмосфера, с низким давлением препятствует появлению жидкой воды на значительной территории на длительный период. Недавние свидетельства говорят о том, что любая вода на поверхности Марса является слишком солёной и кислотной для поддержания постоянной земноподобной жизни.

Отсутствие магнитосферы и крайне тонкая атмосфера Марса также являются проблемой для поддержания жизни. На поверхности планеты идёт очень слабое перемещение тепловых потоков, она плохо изолирована от бомбардировки частицами солнечного ветра, кроме того, при нагревании вода мгновенно испаряется, минуя жидкое состояние из-за низкого давления. Марс также находится на пороге т. н. «геологической смерти». Окончание вулканической активности по всей видимости остановило круговорот минералов и химических элементов между поверхностью и внутренней частью планеты.

Свидетельства говорят о том, что планета ранее была значительно более предрасположена к наличию жизни, чем теперь. Однако на сегодняшний день остатков организмов на ней не обнаружено. Согласно программе «Викинг», осуществлённой в середине 1970-х годов, была проведена серия экспериментов для обнаружения микроорганизмов в марсианской почве. Она дала положительные результаты, например, временное увеличение выделения CO2 при помещении частиц почвы в воду и питательную среду. Однако затем данное свидетельство жизни на Марсе было оспорено некоторыми учёными[кем?]. Это привело к их продолжительным спорам с учёным из NASA Гильбертом Левиным, который утверждал, что «Викинг» обнаружил жизнь. После переоценки данных «Викинга» в свете современных научных знаний об экстремофилах было установлено, что проведённые эксперименты были недостаточно совершенны для обнаружения этих форм жизни. Более того, эти тесты могли даже убить организмы, даже если они содержались в пробах. Тесты, проведённые в рамках программы «Феникс», показали, что почва имеет очень щелочной pH фактор и содержит магний, натрий, калий и хлорид. Питательных веществ в почве достаточно для поддержания жизни, однако жизненные формы должны иметь защиту от интенсивного ультрафиолетового света.

Интересно, что в некоторых метеоритах марсианского происхождения обнаружены образования, по форме напоминающие простейших бактерий, хотя и уступают мельчайшим земным организмам по размерам. Одним из таких метеоритов является ALH 84001, найденный в Антарктиде в 1984 году.

По результатам наблюдений с Земли и данных космического аппарата «Марс Экспресс» в атмосфере Марса обнаружен метан. В условиях Марса этот газ довольно быстро разлагается, поэтому должен существовать постоянный источник его пополнения. Таким источником может быть либо геологическая активность (но действующие вулканы на Марсе не обнаружены), либо жизнедеятельность бактерий.

Астрономические наблюдения с поверхности Марса

После посадок автоматических аппаратов на поверхность Марса появилась возможность вести астрономические наблюдения непосредственно с поверхности планеты. Вследствие астрономического положения Марса в Солнечной системе, характеристик атмосферы, периода обращения Марса и его спутников картина ночного неба Марса (и астрономических явлений, наблюдаемых с планеты) отличается от земной и во многом представляется необычной и интересной.

Цвет неба на Марсе

Во время восхода и захода Солнца марсианское небо в зените имеет красновато-розовый цвет, а в непосредственной близости к диску Солнца - от голубого до фиолетового, что совершенно противоположно картине земных зорь.

В полдень небо Марса жёлто-оранжевое. Причина таких отличий от цветовой гаммы земного неба - свойства тонкой, разрежённой, содержащей взвешенную пыль атмосферы Марса. На Марсе Рэлеевское рассеяние лучей (которое на Земле и является причиной голубого цвета неба) играет незначительную роль, эффект его слаб. Предположительно, жёлто-оранжевая окраска неба также вызывается присутствием 1 % магнетита в частицах пыли, постоянно взвешенной в марсианской атмосфере и поднимаемой сезонными пылевыми бурями. Сумерки начинаются задолго до восхода Солнца и длятся долго после его захода. Иногда цвет марсианского неба приобретает фиолетовый оттенок в результате рассеяния света на микрочастицах водяного льда в облаках (последнее - довольно редкое явление).

Солнце и планеты

Угловой размер Солнца, наблюдаемый с Марса, меньше видимого с Земли и составляет 2/3 от последнего. Меркурий с Марса будет практически недоступен для наблюдений невооружённым глазом из-за чрезвычайной близости к Солнцу. Самой яркой планетой на небе Марса является Венера, на втором месте - Юпитер (его четыре крупнейших спутника можно наблюдать без телескопа), на третьем - Земля.

Земля по отношению к Марсу является внутренней планетой, так же как Венера для Земли. Соответственно, с Марса Земля наблюдается как утренняя или вечерняя звезда, восходящая перед рассветом или видимая на вечернем небе после захода Солнца.

Максимальная элонгация Земли на небе Марса составит 38 градусов. Для невооружённого глаза Земля будет видна как яркая (максимальная видимая звёздная величина около -2,5) зеленоватая звезда, рядом с которой будет легко различима желтоватая и более тусклая (около 0,9) звёздочка Луны. В телескоп оба объекта покажут одинаковые фазы. Обращение Луны вокруг Земли будет наблюдаться с Марса следующим образом: на максимальном угловом удалении Луны от Земли невооружённый глаз легко разделит Луну и Землю: через неделю «звёздочки» Луны и Земли сольются в неразделимую глазом единую звезду, ещё через неделю Луна будет снова видна на максимальном расстоянии, но уже с другой стороны от Земли. Периодически наблюдатель на Марсе сможет видеть проход (транзит) Луны по диску Земли либо, наоборот, покрытие Луны диском Земли. Максимальное видимое удаление Луны от Земли (и их видимая яркость) при наблюдении с Марса будет значительно изменяться в зависимости от взаимного положения Земли и Марса, и, соответственно, расстояния между планетами. В эпохи противостояний оно составит около 17 минут дуги, на максимальном удалении Земли и Марса - 3,5 минуты дуги. Земля, как и другие планеты, будет наблюдаться в полосе созвездий Зодиака. Астроном на Марсе также сможет наблюдать прохождение Земли по диску Солнца, ближайшее произойдёт 10 ноября 2084 года.

Спутники - Фобос и Деймос


Прохождение Фобоса по диску Солнца. Снимки «Оппортьюнити»

Фобос при наблюдении с поверхности Марса имеет видимый диаметр около 1/3 от диска Луны на земном небе и видимую звёздную величину порядка -9 (приблизительно как Луна в фазе первой четверти). Фобос восходит на западе и садится на востоке, чтобы снова взойти через 11 часов, таким образом, дважды в сутки пересекая небо Марса. Движение этой быстрой луны по небу будет легко заметно в течение ночи, так же, как и смена фаз. Невооружённый глаз различит крупнейшую деталь рельефа Фобоса - кратер Стикни. Деймос восходит на востоке и заходит на западе, выглядит как яркая звезда без заметного видимого диска, звёздной величиной около -5 (чуть ярче Венеры на земном небе), медленно пересекающая небо в течение 2,7 марсианских суток. Оба спутника могут наблюдаться на ночном небе одновременно, в этом случае Фобос будет двигаться навстречу Деймосу.

Яркость и Фобоса, и Деймоса достаточна для того, чтобы предметы на поверхности Марса ночью отбрасывали чёткие тени. Оба спутника имеют относительно малый наклон орбиты к экватору Марса, что исключает их наблюдение в высоких северных и южных широтах планеты: так, Фобос никогда не восходит над горизонтом севернее 70,4° с. ш. или южнее 70,4° ю. ш.; для Деймоса эти значения составляют 82,7° с. ш. и 82,7° ю. ш. На Марсе может наблюдаться затмение Фобоса и Деймоса при их входе в тень Марса, а также затмение Солнца, которое бывает только кольцеобразным из-за малого углового размера Фобоса по сравнению с диском Солнца.

Небесная сфера

Северный полюс на Марсе, вследствие наклона оси планеты, находится в созвездии Лебедя (экваториальные координаты: прямое восхождение 21h 10m 42s, склонение +52° 53.0? и не отмечен яркой звездой: ближайшая к полюсу - тусклая звезда шестой величины BD +52 2880 (другие её обозначения - HR 8106, HD 201834, SAO 33185). Южный полюс мира (координаты 9h 10m 42s и -52° 53,0) находится в паре градусов от звезды Каппа Парусов (видимая звёздная величина 2,5) - её, в принципе, можно считать Южной Полярной звездой Марса.

Зодиакальные созвездия марсианской эклиптики аналогичны наблюдаемым с Земли, с одним отличием: при наблюдении годичного движения Солнца среди созвездий оно (как и другие планеты, включая Землю), выйдя из восточной части созвездия Рыб, будет проходить в течение 6 дней через северную часть созвездия Кита перед тем, как снова вступить в западную часть Рыб.

История изучения Марса

Исследование Марса началось давно, ещё 3,5 тысячи лет назад, в Древнем Египте. Первые подробные отчеты о положении Марса были составлены вавилонскими астрономами, которые разработали ряд математических методов для предсказания положения планеты. Пользуясь данными египтян и вавилонян, древнегреческие (эллинистические) философы и астрономы разработали подробную геоцентрическую модель для объяснения движения планет. Спустя несколько веков индийскими и исламскими астрономами был оценен размер Марса и расстояние до него от Земли. В XVI веке Николай Коперник предложил гелиоцентрическую модель для описания Солнечной системы с круговыми планетарными орбитам. Его результаты были пересмотрены Иоганном Кеплером, который ввел более точную эллиптическую орбиту Марса, совпадающую с наблюдаемой.

В 1659 году Франческо Фонтана, рассматривая Марс в телескоп, сделал первый рисунок планеты. Он изобразил чёрное пятно в центре чётко очерченной сферы.

В 1660 году к чёрному пятну прибавились две полярные шапки, добавленные Жаном Домиником Кассини.

В 1888 году Джованни Скиапарелли, учившийся в России, дал первые имена отдельным деталям поверхности: моря Афродиты, Эритрейское, Адриатическое, Киммерийское; озёра Солнца, Лунное и Феникс.

Расцвет телескопических наблюдений Марса пришёлся на конец XIX - середину XX века. Во многом он обусловлен общественным интересом и известными научными спорами вокруг наблюдавшихся марсианских каналов. Среди астрономов докосмической эры, проводивших телескопические наблюдения Марса в этот период, наиболее известны Скиапарелли, Персиваль Ловелл, Слайфер, Антониади, Барнард, Жарри-Делож, Л. Эдди, Тихов, Вокулёр. Именно ими были заложены основы ареографии и составлены первые подробные карты поверхности Марса - хотя они и оказались практически полностью неверными после полётов к Марсу автоматических зондов.

Колонизация Марса

Предполагаемый вид Марса после терраформирования

Относительно близкие к земным природные условия несколько облегчают выполнение этой задачи. В частности, на Земле есть места, в которых природные условия похожи на марсианские. Крайне низкие температуры в Арктике и Антарктиде сравнимы даже с самыми низкими температурами на Марсе, а на экваторе Марса в летние месяцы бывает так же тепло (+20 °C), как и на Земле. Также на Земле есть пустыни, схожие по виду с марсианским ландшафтом.

Но между Землёй и Марсом есть существенные различия. В частности, магнитное поле Марса слабее земного примерно в 800 раз. Вместе с разрежённой (в сотни раз в сравнении с Землёй) атмосферой это увеличивает количество достигающего его поверхности ионизирующего излучения. Измерения, проведённые американским беспилотным аппаратом The Mars Odyssey, показали, что радиационный фон на орбите Марса в 2,2 раза превышает радиационный фон на Международной космической станции. Средняя доза составила примерно 220 миллирада в день (2,2 миллигрея в день или 0,8 грея в год). Объём облучения, полученного в результате пребывания в таком фоне на протяжении трёх лет, приближается к установленным пределам безопасности для космонавтов. На поверхности Марса радиационный фон несколько ниже и доза составляет 0,2-0,3 Гр в год, значительно изменяясь в зависимости от местности, высоты и локальных магнитных полей.

Химический состав распространённых на Марсе минералов разнообразнее, чем у других небесных тел поблизости от Земли. По мнению корпорации 4Frontiers, их достаточно для снабжения не только самого Марса, но и Луны, Земли и астероидного пояса.

Время полёта с Земли до Марса (при нынешних технологиях) составляет 259 суток по полуэллипсу и 70 - по параболе. Для общения с потенциальными колониями может использоваться радиосвязь, которая имеет задержку 3-4 мин в каждом направлении во время максимального сближения планет (которое повторяется каждые 780 дней) и около 20 мин. при максимальном удалении планет; см. Конфигурация (астрономия).

К настоящему времени никаких практических шагов для колонизации Марса не предпринято, однако идёт разработка колонизации, например, проект Столетний космический корабль, разработка жилого модуля для пребывания на планете Deep Space Habitat.

Марс и Венера подобны Земле, поэтому ученые не теряют надежды найти жизнь на соседних планетах. Для Марса это более вероятно. Марсоходу «Кьюриосити» удалось выяснить наверняка, что когда-то там текли реки, а это значит, что была и атмосфера. Возможно, жизнь на Марсе существовала задолго до земной или будет возможна после терраформирования (изменения климатических условий). Для этого необходимо наличие магнитного поля у Марса.

Размеры, масса и орбиты планет

Красная планета существенно меньше Земли по размеру. По подсчетам ученых и данным, которые удалось получить в процессе многочисленных исследований, в Земле поместилось бы до шести объектов такого же объема, как Марс. Радиус четвертой планеты от Солнца по экватору составляет 0,53 земного, а поверхностная плотность — 37,6 %.

Орбитальные пути планет кардинально отличаются, зато сидерический оборот сходный. Это означает, что год на Марсе длится почти 687 дней, а сутки — 24 часа 40 минут. Осевой наклон практически одинаковый — 25 градуса у Марса, у Земли на два градуса меньше. Такая схожесть означает, что от красной планеты можно ожидать сезонности.

Структура и состав Земли и Марса

Представители планет земного типа (Венера, Земля и Марс) похожи по структуре. Это металлическое ядро с мантией и корой, но плотность Земли выше, чем Марса. То есть красная планета состоит из более легких элементов. У Земли есть каменное ядро, покрытое сверху жидким, а также силикатная мантия и твердая поверхностная кора. Что касается Марса, ученые еще не до конца уверены в отношении строения его ядра. Известно, что марсианское ядро состоит из железа и никеля, на 16-17 % — из серы. Мантия Марса составляет всего 1300-1800 км (для сравнения: толщина земной мантии — 2890 км), а кора охватывает 50-125 км (у Земли — 40 км). Мантия и кора Земли и Марса практически одинаковы по структуре, но отличаются по толщине.

Поверхностные особенности

Около 70 % поверхности Земли покрыто водами Мирового океана. По одной из версий, жидкая вода была в составе газопылевого облака, из которого образовалась Земля. По другой, она появилась в результате интенсивной астероидной и кометной бомбардировки, которой подверглась молодая планета. Некоторые ученые придерживаются мнения, что вода высвободилась из гидратированных минералов в процессе формирования Земли. Есть и другие гипотезы, и, возможно, что все они в той или иной степени верны.

На Марсе тоже когда-то была вода в жидком виде, что является необходимым условием развития жизни. Но сейчас это холодная и пустынная планета, на которой много оксида железа, который придает поверхности Марса красный оттенок. Вода имеется в виде льда на полюсах. Небольшое ее количество аккумулируется под поверхностью.

Марс и Земля сходны по ландшафту. На планетах встречаются горы и вулканы, каньоны и равнины, ущелья, хребты, плато. Наибольшая гора на Марсе называется Олимпом, а самая глубокая пропасть — это Долина Маринер. Обе планеты в процессе формирования подвергались метеоритным и астероидным атакам, но на Марсе следы сохранились куда лучше из-за отсутствия осадков и давления воздуха. Возраст отдельных насчитывает миллиарды лет. На Земле такие формирования постепенно разрушились.

Состав атмосферы и температура

Земля имеет плотную атмосферу, разделенную на пять слоев. У Марса атмосфера очень тонкая и высокое давление. Земная атмосфера состоит в основном из азота (78 %) и на 21 % из кислорода (оставшийся 1 % составляют другие вещества в газообразном состоянии), а на красной планете состав представлен преимущественно углекислым газом (96 %), азотом и аргоном (почти по 2 %, оставшийся 1 % — другие газы).

Это оказало влияние на температуру. Средняя земная температура составляет +14 градусов по Цельсию, максимум — 70,7 градуса, минимум — -89,2 градуса. На Марсе намного холоднее. Средняя температура опускается до -46 градусов по Цельсию, минимальная достигает -143 градуса, а максимум планета прогревается до 35 градусов. Кроме того, в атмосфере красной планеты содержится очень много пыли.

Есть ли у Марса магнитное поле

Магнитное поле исходит от ядра планеты и создает защитную область, которая отклоняет от первоначальной траектории электрические заряды. Все заряды с Солнца или другого объекта не грозят планете, на которой есть такое защитное поле. Земля магнитное поле имеет, но есть ли у Марса такая защита? В этом отношении планета отличается от Земли.

Какое магнитное поле на Марсе? Когда-то глобальная защитная оболочка вокруг планеты существовала, но со временем исчезла по ряду причин. Сейчас магнитное поле на Марсе есть, оно обширное, но не захватывает всю поверхность планеты. Есть локализованные районы, где поле проявляется сильнее. Радиус магнитного поля Марса в некоторых местах составляет 0,2-0,4 Гаусса, что приблизительно равно земным показателям.

Такие особенности сегодня пытаются объяснить ученые. Удалось выяснить, например, что магнитное поле Марса и строение планеты взаимосвязаны. Поле слабое из-за ядра. Марсианское ядро неподвижно относительно коры, что ослабляет действие того самого защитного поля.

Сравнение магнитосфер

Магнитное поле Земли и Марса не позволяет пробиваться к поверхности ионизированным частицам солнечного ветра и другим космическим частицам. Поле в буквальном смысле защищает жизнь на Земле. Наличие поля объясняется вращением металлического ядра в жидкой наружной части. К формированию магнитного поля приводит постоянное движение электрических зарядов.

В последнее время считается, что магнитные силы существенно изменяются или способствуют утечке кислорода из атмосферы. Это может быть действительно так, потому что магнитные полюса могут со временем меняться местами, они непостоянны. За 160 миллионов лет полюса менялись около 100 раз. Последний раз это случилось около 720 тысяч лет назад, а когда случится в следующий раз — неизвестно.

Магнитное поле Марса в сравнении с земным недостаточное для обеспечения жизни. Но потенциально обитаемая планета должна хотя бы иметь металлическое ядро. Это создаст предпосылки для формирования магнитного поля. Что касается Марса, магнитное поле имеется (хоть и «в остатке»), есть и металлическое ядро. Это означает, что в теории жизнь на планете либо существовала ранее, либо возможна при условии некоторых изменений.

Теории исчезновения поля

Почему на Марсе нет магнитного поля? Какая катастрофа «прорвала» защитную оболочку или что заставило металлическое ядро планеты замереть? Можно ли как-то восстановить поле? В настоящее время ученые рассматривают две основные теории исчезновения магнитного поля Марса.

Согласно первой теории, планета когда-то имела стабильное магнитное поле (как на Земле), но оно было «пробито» столкновением с каким-либо объектом больших размеров. Это столкновение остановило ядро планеты, поле начало ослабевать, а потом и вовсе утратило масштаб. И сегодня одни участки планеты остаются более защищенными, чем другими.

Вторая теория совершенно противоречит первой. Марс мог начать свое существование без магнитного поля. После зарождения планеты железное ядро в центре долгое время оставалось неподвижными и не создавало магнитных импульсов. Но когда-то сильнейшее магнитное поле Юпитера, способное отталкивать не только мелкие астероиды, но и огромные объекты, оттолкнуло какое-то косметическое тело и направило его на Марс.

В результате воздействия приливной силы за несколько десятков тысяч лет на Марсе появились конвективные потоки, которые заставили ядро планеты двигаться и спровоцировали формирование магнитного поля. По мере приближения космического тела к Марсу поле усиливалось, но спустя несколько миллионов лет тело разрушилось, так что и магнитное поле постепенно начало исчезать. Именно это сейчас и наблюдается исследователями.

Зачем NASA хочет создать искусственное поле

Ест ли у Марса магнитное поле, которое позволит колонизировать планету? Уже сейчас понятно, что такой защитной силы нет, но ученые продолжают исследования. Недавно появилась информация о том, что в NASA хотят создать искусственное магнитное поле на Марсе, чтобы атмосфера планеты стала плотнее. Это должно значительно упростить будущее изучение красной планеты и возможную колонизацию.

Как создать магнитное поле на Марсе? Авторы доклада, представленного на планетологической конференции, предложили развернуть модуль в такой точке между Марсом и Солнцем, где космический аппарат может оставаться практически неограниченно долго без использования двигателей. На модуле включат специальные магниты, способные создать поле в 1-2 тесла. Примерно такие же магниты устанавливали на Большом адронном коллайдере.

Поле образует «хвост», который закроет всю планету. Это поле будет очень слабым, но в теории и этого окажется достаточно. Согласно NASA, после этого атмосфера планеты начнет утолщаться. По достижению плотности, равной земной, средняя температура на Марсе поднимется до +4 градусов по Цельсию, а снежные шапки на полюсах растают. Воды в них достаточно, чтобы появились моря умеренных размеров.

Стоимость разработки и обслуживание космического модуля на Марсе и то, откуда он будет брать энергию, авторы доклада обходя стороной. По соотношению стоимости и эффективности метод не сравнивается с другими проектами. Например, была идея вырабатывать на Марсе элегаз. Даже небольшой концентрации этого газа достаточно, чтобы создать парниковый эффект и защитить поверхность планеты от агрессивных ультрафиолетовых лучей.

Ни одна из концепций NASA на сегодняшний день не доказана в полной мере. Это только предположения, основанные на том, что источником атмосферных потерь Марса был именно солнечный ветер. Но причины потери азота вряд ли связаны с одним только ветром, поэтому ученые пока не спешат внедрять проекты, а продолжают исследования.

Из истории исследования Марса

Первые наблюдения планеты проводились еще до изобретения телескопа. Существование Марса было зафиксировано в 1534 году до нашей эры древнеегипетскими астрономами. Они же рассчитали траекторию движения планеты. В вавилонской теории положение Марса на ночном небе было уточнено, были впервые получены временные измерения планетарного движения.

Карту поверхности Марса первым составил голландский астроном Х. Гюйгенс. Несколько рисунков, на которых было отображены темные области, он сделал в 1659 году. Существование ледяной шапки на полюсах предположил итальянский астроном Дж. Кассини в Он же вычислил период вращения планеты вокруг своей оси — 24 часа 40 минут. Он правильного значения этот результат отличается менее чем на три минуты.

С шестидесятых годов прошлого столетия к Марсу были направлены несколько АМС. С помощью орбитальных и наземных телескопов продолжалось дистанционное зондирование планеты с Земли для определения состава поверхности, исследования состава атмосферы и измерения скорости света.

Магнитное поле Марса, которое в пятьсот раз слабее земного, было зафиксировано станциями «Марс-2» и «Марс-3» в советское время. Космические аппараты «Марс-2» и «3» были запущены в 1971 году. Главная техническая задача не была решена, но научные исследования все равно оказались передовыми для своего времени.

Американцы запускали к Марсу «Маринер-4» в 1964 году. Космический аппарат сделал снимки поверхности и исследовал состав атмосферы. Первым искусственным спутником планеты стал «Маринер-9», запущенный в 1971 году. Поиск жизни в пробах грунта проводился в 1975 году двумя идентичными космическими аппаратами в рамках программы «Викинг». В дальнейшем для систематического исследования планеты использовались возможности телескопа «Хаббл».

Существование жизни на Марсе

Работу магнитного поля планеты ученые изучают и в том отношении, что это может указывать на существование жизни на Марсе. Многочисленные наблюдения породили вокруг этой темы настоящую «марсианскую лихорадку» еще в конце девятнадцатого века. Тогда Никола Тесла наблюдал какой-то неопознанный сигнал при изучении радиопомех в атмосфере.

Он высказал предположение, что это может быть сигнал с других планет, например, с Марса. Сам он не смог расшифровать значение сигналов, но был уверен, что они возникли не случайно. Гипотезу Теслы поддержал британский физик Уильяи Томсон (лорд Кельвин). В 1902 году во время визита в США он сказал, что Тесла действительно поймал сигнал марсиан.

Научные гипотезы по этому вопросу существуют давно. На Марсе был обнаружен метан и органические молекулы. В условиях красной планеты газ быстро разлагается, так что должен существовать источник его появления. Таковым может быть жизнедеятельность бактерий или геологическая активность (учитывая тот факт, что действующие вулканы на Марсе обнаружить не удалось, это не является причиной появления газа).

В настоящее время проблемами для поддержания жизни на Марсе являются отсутствие жидкой воды, магнитосферы, и слишком разреженная атмосфера. Кроме того, планета находится на грани «геологической смерти». Окончание активности вулканов окончательно остановит круговорот химических элементов между внутренней частью планеты и поверхностью.

Схема взаимодействия поля и Солнечного ветра

На планете Марс не существует планетарного магнитного поля. Планета имеет магнитные полюса, которые являются остатками древнего планетарного поля. Так как магнитное поле Марса фактически отсутствует, то он постоянно подвергается бомбардировке солнечным излучением, а также воздействием солнечного ветра, что делает его бесплодным миром, который мы и видим сегодня.

Большинство планет, создают магнитное поле с помощью динамо-эффекта. Металлы в ядре планеты расплавлены и постоянно движутся. Движущиеся металлы создают электрический ток, который в конечном итоге проявляется в виде магнитного поля.

Общие сведения

На Марсе есть магнитное поле, которое представляет собой остатки древних магнитных полей. Оно похоже на поля, найденные на дне океанов Земли. Ученые считают, что их присутствие является возможным признаком того, что у Марса была тектоника плит. Но другие данные свидетельствуют о том, что эти движения литосферных плит прекратились около 4 миллиардов лет назад.

Полосы поля достаточно сильны, почти так же, как у Земли, и могут распространяться на сотни километров в атмосферу. Они взаимодействуют с солнечным ветром и создают полярные сияния так же, как и на Земле. Ученые наблюдали более 13 000 этих сияний.

Отсутствие планетарного поля означает что ее поверхность получает в 2,5 раза больше излучения, чем Земля. Если люди собираются исследовать планету, необходим способ оградить человека от вредного воздействия.

Одно из последствий отсутствия, у планеты Марс магнитного поля — невозможность присутствия жидкой воды на поверхности. Марсоходы обнаружили большое количество водяного льда под поверхностью, и ученые считают, что там может быть жидкая вода. Недостаток воды добавляет препятствий, которые инженеры должны преодолеть для того, чтобы изучить, и впоследствии колонизировать, Красную планету.

· · · ·

Американцы все роют и роют на Красной планете. Пока – с помощью роботов. Фото NASA

На Марсе нет глобального магнитного поля, нет северного и южного полюсов. Поэтому компас здесь бесполезен. В разных районах планеты магнитная стрелка крутится, как собачонка, потерявшая хозяина. Почему у Марса нет единого магнитного поля? Ведь, по мнению специалистов, когда-то оно было.
По данным американского орбитального зонда Mars Global Surveyor, вместо единого поля сейчас существует множество локальных, иногда довольно сильных магнитных аномалий. На карте магнитного поля они дают пеструю пятнисто-мозаичную картину. Островки магнитного поля имеют интенсивность 0,2-0,3 гаусса, то есть они соизмеримы по величине с магнитным полем Земли.
Магнитные аномалии особенно сильно проявлены в южном полушарии, в районе гигантского метеоритного кратера Эллада диаметром 600 км. Они сильно вытянуты в широтном направлении и представляют собой как бы полуцилиндры длиной до 1000 км с разными знаками. Аномалии частично экранируют поверхность планеты от «солнечного ветра» и космических излучений.
Гипотезу, объясняющую потерю магнитного поля, предложил недавно Джафар Аркани-Хамед из университета Торонто. Вместе с коллегами из канадских университетов Летбриджа и Йорка он провел моделирование системы, предполагающей захват Марсом крупного тела, вероятно из пояса астероидов. Предполагается, что это событие произошло 4 млрд. лет назад. Астероид стал спутником Марса и, создав конвекционные, или приливные, потоки в жидком ядре планеты, «включил» тем самым магнитное поле Марса.
Расчеты показали, что при совместном воздействии Солнца и Юпитера астероид мог выйти на орбиту вокруг Марса с радиусом 100 тыс. км. Снижение спутника до 50–75 тыс. км приводит к возникновению конвекционной нестабильности жидкого ядра, достаточной для запуска «динамо-машины», и созданию единого магнитного поля планеты.
Продолжительность работы этой электрической машины могла меняться от нескольких миллионов лет в случае совпадения направления вращения Марса и спутника, до 400 млн. лет – в обратном варианте. Дальнейшее снижение спутника привело к его разрушению на пределе Роша (2,44 радиуса планеты при равномерно распределенной плотности), исчезновению глобального магнитного поля и падению обломков на Марс. Естественно, это привело к глобальным изменениям климата. Природа локальных магнитных аномалий остается для специалистов загадочной, так как магнитность слишком высока для обычных пород.
Комментируя сообщения, посвященные этой теме, напомню, что еще в прошлом веке при поисках кимберлитовых трубок аэрогеофизическими методами нами были обнаружены сильные локальные магнитные аномалии в Восточной Сибири. Было установлено, что они возникли за счет концентрации новой минеральной разновидности – «стабильного маггемита».
Этот минерал представляет собой магнитную окись железа (Fe2O3). Его происхождение мы связали с образованием Попигайской астроблемы, известной огромными запасами алмаза и его модификации – минерала лонсдейлита (см. «НГ-науку» от 24.10.12). Алмаз и лонсдейлит возникли за счет залежей каменного угля, а стабильный маггемит – путем прокаливания древней красноцветной коры выветривания Якутии, состоящей из гидроксидов железа – Fe(OH)3.
Красноцветные железистые коры выветривания распространены только на двух планетах Солнечной системы – на Земле и... на Марсе. Их объединяют одинаковые условия образования: наличие свободного кислорода атмосферы, воды и тепла при обязательном наличии жизни. Кислород в нашей атмосфере появился 3 млрд. лет назад за счет фотосинтеза, дающего в современных условиях за 4–5 тыс. лет 1200 трлн. т кислорода – столько, сколько его содержится в атмосфере Земли.
Марс называют Красной планетой потому, что он покрыт толстым слоем красно-бурых оксидов и гидроксидов железа, превращенных в песок и пыль водой и ветром. Но эти красноцветы магнитны, поскольку удар упавшего спутника прокалил их и превратил лимонит в маггемит. Американцы установили в коре выветривания Марса до 10% этого минерала. Значит, сначала было глобальное окисление поверхности Марса, а уж потом – удар спутника и «омагничивание» гидроксидов железа. По нашим подсчетам, на окисление базальтов Марса ушло свободного кислорода в четыре-пять раз больше, чем его сейчас в атмосфере Земли. Надо учесть, что поверхность Марса составляет только 28% от поверхности Земли. Иначе говоря, глубинные породы Марса окислялись в течение миллиардов лет, и значит, столько же времени существовала и эволюционировала жизнь. Мы также считаем, что жизнь на Марсе погибла от падения на его поверхность крупного спутника в районе южного полюса, в области Эллада, где находятся огромный метеоритный кратер и наиболее интенсивные магнитные аномалии.
Антипод Эллады – участок северного полушария с группой гигантских вулканов, крупнейший из которых – Олимп высотой 26 км и диаметром 600 км. Возможно, их появление связано с мощным ударом, воздействовавшим на жидкое ядро, выбросившим вещество ядра в виде лавы и остановившим работу «динамо-машины» Марса.
Сейчас у Марса имеются два естественных спутника – Фобос (Страх) и Деймос (Ужас). Фобос вращается на расстоянии всего 5920 км от поверхности планеты, вблизи от предела Роша. Астрономы считают, что через 40 млн. лет он рухнет на Марс. Для третьего спутника Марса, уже прошедшего предел Роша и убившего жизнь на планете, мы еще в прошлом веке предложили название Танатос – Смерть.
Магнитные аномалии в районе Эллады мы связываем с концентрацией новообразованного маггемита в прокаленном ударом красноцветном железистом чехле Марса.
По аналогии с Марсом маггемит Восточной Сибири накапливается в речных отложениях и дает сильные магнитные аномалии в поле Земли. Высокая концентрация маггемита в районе южного полюса Марса вполне может объяснить локальные магнитные аномалии и пятнисто-мозаичную структуру магнитного поля Красной планеты.
Мы согласны с канадскими учеными, что спутник Марса действительно рухнул на его поверхность, но в отличие от них мы уверены, что катастрофа произошла значительно позже, когда черные базальты Марса уже покрылись красно-бурой железистой «ржавчиной». Третий спутник Марса, Танатос, упал, когда существовали жизнь, богатая кислородная атмосфера, речная сеть, железистая кора выветривания.
Возможно, не один, а все три спутника когда-то «включили» магнитное поле Марса. Но очевидно, что Танатос недавно «выключил» его, нарушив своим ударом конвекцию в жидком ядре планеты. Упавший спутник, судя по кратеру Эллада, был размером с Фобос. В результате удара Танатоса над планетой возникло гигантское плазменно-пылевое магнитное облако, взаимодействовавшее со знакопеременным «умиравшим» магнитным полем Марса. Железистая магнитная пыль осела на его поверхность.
Сепарация магнитного материала в магнитном поле создала многочисленные широтные магнитные аномалии разных знаков. Ударная волна прошла сквозь жидкое ядро, остановила «динамо-машину» Красной планеты и породила гигантские вулканы. При этом была потеряна плотная атмосфера планеты. Космос наглядно показал на примере Марса, что такое реальный апокалипсис. Хорошо, что Луна от нас удаляется. А если бы она приближалась?..
На наш взгляд, роль магнитного поля как защитного экрана при плотной атмосфере планеты преувеличена. По данным доктора физико-математических наук профессора В.П. Щербакова и Н.К. Сычевой, только последние 5 млн. лет Земля имеет сравнительно сильное магнитное поле. Низкое магнитное поле Земли существовало на значительной части неогена (геологический период, который начался 23 млн. лет назад и закончился примерно 2,6 млн. лет назад), а частично и еще раньше – в девонском периоде (420–360 млн. лет назад). То есть сотни миллионов лет жизнь на Земле успешно развивалась в условиях слабого магнитного поля, поскольку ее защищала атмосфера. Сходные процессы, видимо, происходили и на Марсе.
Главный же вывод, который можно сделать из всего сказанного, заключается в том, что канадские ученые тоже пришли к мысли о том, что третий спутник Марса существовал. Мы уже дали ему название – Танатос. Его падение на поверхность Красной планеты уничтожило всю марсианскую экосистему – атмосферу, теплый климат и высокоразвитую жизнь. Об этом свидетельствуют такие удивительные артефакты, как черепа ящеров и антропоидов в кратере Гусева, скелет ящерицы в кратере Гейла и многие другие.
Удар астероида пришелся на океан – глубокую впадину у южного полюса. Выбитый из своего ложа океан разлился по поверхности Марса и пропитал почвы солями – поваренной солью, сульфатами натрия, магния и кальция. Эти соли не случайно найдены марсоходами на поверхности Марса: они остались от бурных потоков, прокатившихся по планете.
Характер этих остатков и костных отщепов свидетельствует об отсутствии минерализации и «окаменения» костей. Танатос действительно рухнул на Марс, но апокалипсис, сопровождаемый гибелью экосистемы, произошел не миллиарды, а всего лишь тысячи лет назад.

Учёные из планетологического подразделения NASA предложили окружить Марс искусственным магнитным полем, с которым, по их мнению, на планете станет плотнее атмосфера. Это должно значительно упростить её будущее изучение и возможную колонизацию. С соответствующим докладом исследователи выступили на планетологической конференции Vision 2050 Workshop.

NASA хочет сделать Марсу искусственное магнитное поле. Оно защитит атмосферу и позволит космическим аппаратам легче садиться

Авторы доклада предлагают развернуть надувной (газоразвёртываемый) модуль в точке Лагранжа (L1) - таком месте между Марсом и Солнцем, где космический аппарат может без использования двигателей оставаться почти неограниченно долго. На космомодуле включат отклоняющие дипольные магниты, способные создать поле в 1–2 тесла (примерно такие же магниты стоят на Большом адронном коллайдере).

После этого поле образует "магнитный хвост", который закроет собой всю планету. Хотя "хвост" будет довольно слабым (малые доли тесла), этого в теории достаточно, так как и на поверхности Земли магнитное поле измеряется столь же малыми долями тесла.

Согласно NASA, защитная магнитосфера остановит потерю газов Марсом и плотность его атмосферы начнёт расти. При достижении ею плотности, равной земной, средняя температура поднимется с –63 градусов до +4 и полярные шапки растают. По оценкам планетологов, воды в них достаточно, чтобы создать моря умеренных размеров. Более плотная атмосфера также лучше тормозит спускаемые на парашютах аппараты и способствует меньшему уровню радиации на поверхности планеты

Авторы обходят стороной стоимость долговременного содержания космического модуля близ Марса, а также того, откуда он будет брать нужную энергию. Они не сравнивают этот вариант по соотношению "цена - эффективность" с иными проектами сходного типа, например выработки на Марсе элегаза. Даже небольшой концентрации этого газа достаточно, чтобы защитить поверхность планеты от ультрафиолета и создать сверхмощный парниковый эффект, который также растопит ледяные шапки (подняв при этом плотность атмосферы) и вернёт Марсу моря.

Концепция NASA основана на нескольких гипотезах, ни одна из которых на сегодня не доказана в полной мере. Во-первых, предполагается, что солнечный ветер был главным источником атмосферных потерь Марса. Это не очевидно, поскольку сегодня на Красной планете газовая оболочка состоит почти целиком из углекислого газа. Хотя часть его связана в ледовых шапках, газообразной компоненты хватает для поддержания давления в 100–150 раз ниже земного. Но если на Земле из атмосферы удалить все газы, кроме углекислого, то давление на ней упадёт в 250 раз - атмосфера станет гораздо разреженнее марсианской. Уже давно высказываются предположения, что главным газом на Марсе в прошлом был азот. Причины его потери вряд ли связаны с одним только солнечным ветром.

Другое предположение, стоящее за идеей искусственного магнитного поля, -гипотеза, что после его появления у Марса начнёт расти плотность атмосферы. Но это возможно только в том случае, если в неё откуда-то будет поступать газ. На Земле он приходит с вулканическими извержениями. Считается, что на Красной планете плохо с тектоникой плит и современной вулканической активностью. В таких условиях заметного роста плотности газовой оболочки не случится. На Венере также нет магнитного поля, а солнечный ветер вчетверо более сильный, чем на Марсе. Однако там есть извержения вулканов, поэтому углекислотная атмосфера на второй планете в 10 000 раз плотнее, чем на четвёртой.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта