Главная » Маринование грибов » Формула нахождения площади по точкам. Формула пика в школьном курсе планиметрии

Формула нахождения площади по точкам. Формула пика в школьном курсе планиметрии

ПЕРВУШКИН БОРИС НИКОЛАЕВИЧ

ЧОУ «Санкт-Петербургская Школа «Тет-а-Тет»

Учитель Математики Высшей категории

Площадь фигуры на листе в клетку. Формула Пика!

Здравствуйте, Дорогие друзья! Хочу рассказать вам о формуле, при помощи которой можно находить площадь фигуры построенной на листе в клетку (треугольник, квадрат, трапеция, прямоугольник, многоугольник). Это формула Пика.

Она секретной не является. Информация о ней в интернете имеется, но многим материал статьи будет крайне полезен. Об этой формуле обычно рассказывается применительно к нахождению площади треугольника. На примере треугольника мы её и рассмотрим.

В задачах, которые будут на ЕГЭ есть целая группа заданий, в которых дан многоугольник построенный на листе в клетку и стоит вопрос о нахождении площади. Масштаб клетки это один квадратный сантиметр.

ФОРМУЛА ПИКА

Площадь искомой фигуры можно найти по формуле:

М – количество узлов на границе треугольника (на сторонах и вершинах)

N – количество узлов внутри треугольника

*Под «узлами» имеется ввиду пересечение линий.

Найдём площадь треугольника:

Отметим узлы:

1 клетка = 1 см

M = 15 (обозначены красным)

N = 34 (обозначены синим)

Ещё пример. Найдём площадь параллелограмма:

Отметим узлы:

M = 18 (обозначены красным)

N = 20 (обозначены синим)

Найдём площадь трапеции:

Отметим узлы:

M = 24 (обозначены красным)

N = 25 (обозначены синим)

Найдём площадь многоугольника:

Отметим узлы:

M = 14 (обозначены красным)

N = 43 (обозначены синим)

Понятно, что находить площадь трапеции, параллелограмма, треугольника проще и быстрее по соответствующим формулам площадей этих фигур. Но знайте, что можно это делать и таким образом.

А вот когда дан многоугольник, у которого пять и более углов эта формула работает хорошо.

Теперь взгляните на следующие фигуры:

Это типовые фигуры, в заданиях стоит вопрос о нахождении их площади. Такие или подобные им будут на ЕГЭ. При помощи формулы Пика такие задачи решаются за минуту. Например, найдём площадь фигуры:

Отметим узлы:

M = 11 (обозначены красным)

N = 5 (обозначены синим)

Посмотреть решение

Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см. Ответ дайте в квадратных сантиметрах.

Посмотреть решение

Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см. Ответ дайте в квадратных сантиметрах.

Посмотреть решение

Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см. Ответ дайте в квадратных сантиметрах.

Посмотреть решение

Конечно, можно и эти «микрофигурки» дробить на более простые фигуры (треугольники, трапеции). Способ решения выбирать вам.

Рассмотрим подход оговоренный в статье "Площадь четырёхугольника. Универсальный способ ".

Найдём площадь фигуры:

Опишем около неё прямоугольник:

Из площади прямоугольника (в данном случае это квадрат) вычтем площади полученных простых фигур.

«Решение задач – практическое искусство, подобное

плаванию, катанию на лыжах или игре на фортепиано;

научиться ему можно, только подражая хорошим

образцам и постоянно практикуясь»

(Д. Пойя).


Австрийский математик,

родился в еврейской семье.

Мать Йозефа Шляйзингер,

отец Адольф Йозеф Пик.

Пик Георг

10.08.1859 - 13.07.1942


Биографическая справка

Георг Александр Пик

был одарённым ребёнком, обучал отец, возглавлявший частный институт. В 16 лет Георг закончил школу и поступил в Венский университет. В 20 лет получил право преподавать физику и математику. Шестнадцатого апреля 1880 года под руководством Лео Кёнигсбергера Пик защитил докторскую диссертацию «О классе абелевых интегралов». В Немецком университете в Праге в 1888 году Пик получил место экстраординарного профессора математики, затем в 1892-м стал ординарным профессором. В 19001901 годах занимал пост декана философского факультета. С его именем связаны матрица Пика, интерполяция Пика Неванлинны, лемма Шварца Пика. 13 июля 1942 года Пик был депортирован в созданный нацистами в северной Чехии лагерь Терезиенштадт, где умер две недели спустя в возрасте 82 лет.


Пик Георг Александров

открыл формулу в 1899 году

S = B + Г /2-1

S – площадь многоугольника ,

Г – количество узлов сетки

В – количество узлов сетки




S =15 – 3 – 3 - 5/2=6,5 S = 6 + 3 /2-1=6,5



S = 20 - 2 - 3 – 1- 3/2 - 5/2 = 10 S = 9 + 4 /2 – 1 = 10



S = 20 – 2 - 1 - 2 - 1 - 1 - 5/2 - 3= 7,5 S = 6 + 5 /2 – 1 = 7,5



Найдите площадь трапеции ABCD,

Г = 10, В = 5,

= В + Г/2 – 1 = 5 + 10/2 – 1 =9


Найдите площадь прямоугольника ABCD,

считая стороны квадратных клеток равными 1.

Г = 6, В = 8,

S = В + Г/2 – 1 = 8 + 6/2 – 1 = 10


Найдем площадь ромба ABCD,

считая стороны квадратных клеток равными 1.

Г = 4, В = 7,

S= В + Г/2 – 1 = 7+4/2-1 = 8


На клетчатой бумаге с клетками размером 1 см × 1 см изображен треугольник (трапеция) (см. рисунок).

Найдите его площадь в квадратных сантиметрах:


Площадь фигуры,

вычисленная по формуле Пика,

равна площади фигуры,

вычисленной по формулам геометрии.

В задачах о фигурах на клетчатой бумаге узел - это угол клеточки.

Библиографическое описание: Татьяненко А. А., Татьяненко С. А. Вычисление площадей фигур, изображенных на клетчатой бумаге // Юный ученый. — 2016. — №3..03.2019).





При подготовке к основному государственному экзамену я встретился с заданиями, в которых требуется вычислить площадь фигуры, изображенной на клетчатом листе бумаги. Как правило, эти задания не вызывают больших затруднений, если фигура представляет собой трапецию, параллелограмм или треугольник. Достаточно хорошо знать формулы вычисления площадей этих фигур, посчитать количество клеточек и вычислить площадь. Если фигура представляет собой некоторый произвольный многоугольник, то здесь необходимо использовать особые приемы. Меня заинтересовала данная тема. И естественно возникли вопросы: где в повседневной жизни могут возникнуть задачи на вычисление площадей на клетчатой бумаге? В чем особенность таких задач? Существуют ли другие методы или же универсальная формула для вычисления площадей геометрических фигур, изображенных на клетчатой бумаге?

Изучение специальной литературы и интернет источников, показало, что существует универсальная формула, позволяющая вычислить площадь фигуры, изображенной на клетке. Эта формула называется формулой Пика. Однако, в рамках школьной программы данная формула не рассматривается, несмотря на свою простоту в применении и получении результата. Более того, мною проведен опрос друзей и одноклассников (в двух формах: при личной беседе и в социальных сетях), в котором приняли участие 43 учащихся школ города Тобольска. Данный опрос показал, что всего один человек (учащийся 11 класса) знаком с формулой Пика для вычисления площадей.

Пусть задана прямоугольная система координат. В этой системе рассмотрим многоугольник, который имеет целочисленные координаты. В учебной литературе точки с целочисленными координатами называются узлами. Причем многоугольник не обязательно должен быть выпуклым. И пусть требуется определить его площадь.

Возможны следующие случаи.

1. Фигура представляет собой треугольник, параллелограмм, трапецию:

1) подсчитывая клеточки нужно найти высоту, диагонали или стороны, которые требуются для вычисления площади;

2) подставить найденные величины в формулу площади.

Например, требуется вычислить площадь фигуры, изображенной на рисунке 1 с размером клетки 1см на 1 см.

Рис. 1. Треугольник

Решение. Подсчитываем клеточки и находим: . По формуле получаем: .

2 Фигура представляет собой многоугольник

Если фигура представляет собой многоугольник то возможно использовать следующие методы.

Метод разбиения:

1) разбить многоугольник на треугольники, прямоугольники;

2) вычислить площади полученных фигур;

3) найти сумму всех площадей полученных фигур.

Например, требуется вычислить площадь фигуры, изображенной на рисунке 2 с размером клетки 1см на 1 см методом разбиения.

Рис. 2. Многоугольник

Решение. Способов разбиения существует множество. Мы разобьем фигуру на прямоугольные треугольники и прямоугольник как показано на рисунке 3.

Рис. 3. Многоугольник. Метод разбиения

Площади треугольников равны: , , , площадь прямоугольника - . Складывая площади всех фигур получим:

Метод дополнительного построения

1) достроить фигуру до прямоугольника

2) найти площади полученных дополнительных фигур и площадь самого прямоугольника

3) из площади прямоугольника вычесть площади всех «лишних» фигур.

Например, требуется вычислить площадь фигуры, изображенной на рисунке 2 с размером клетки 1см на 1 см методом дополнительного построения.

Решение. Достроим нашу фигуру до прямоугольника как показано на рисунке 4.

Рис. 4. Многоугольник. Метод дополнения

Площадь большого прямоугольника равна , прямоугольника, расположенного внутри - , площади «лишних» треугольников - , , тогда площадь искомой фигуры .

При вычислении площадей многоугольников на клетчатой бумаге возможно использовать еще один метод, который носит название формула Пика по фамилии ученого ее открывшего.

Формула Пика

Пусть у многоугольника, изображённого на клетчатой бумаге только целочисленные вершины. Точки у которых обе координаты целые называются узлами решетки. Причем, многоугольник может быть как выпуклым, так и невыпуклым.

Площадь многоугольника с целочисленными вершинами равна , где B - количество целочисленных точек внутри многоугольника, а Г - количество целочисленных точек на границе многоугольника.

Например, для многоугольника, изображенного на рисунке 5.

Рис. 5. Узлы в формуле Пика

Например, требуется вычислить площадь фигуры, изображенной на рисунке 2 с размером клетки 1см на 1 см по формуле Пика.

Рис. 6. Многоугольник. Формула Пика

Решение. По рисунку 6: В=9, Г=10, тогда по формуле Пика имеем:

Ниже приведены примеры некоторых задач, разработанных автором на вычисление площадей фигур, изображенных на клетчатой бумаге.

1. В детском саду дети сделали аппликации родителям в подарок (рис.7). Найдите площадь аппликации. Размер каждой клетки равен 1см 1см.

Рис. 7. Условие задачи 1

2. Один гектар еловых насаждений может задерживать в год до 32 т пыли, сосновых - до 35 т, вяза - до 43 т, дуба - до 50 т. бука - до 68 т. Посчитайте, сколько тонн пыли задержит ельник за 5 лет. План ельника изображен на рисунке 8 (масштаб 1 см. - 200 м.).

Рис. 8. Условие задачи 2

3. В орнаментах хантов и манси, преобладают геометрические мотивы. Часто встречаются стилизованные изображения животных. На рисунке 9 изображен фрагмент мансийского орнамента «Заячьи ушки». Вычислите площадь закрашенной части орнамента.

Рис. 9. Условие задачи 3

4. Требуется покрасить стену заводского здания (рис. 10). Рассчитайте требуемое количество водоэмульсионной краски (в литрах). Расход краски: 1 литр на 7 кв. метров Масштаб 1см - 5м.

Рис. 10. Условие задачи 4

5. Звездчатый многоугольник - плоская геометрическая фигура, составленная из треугольных лучей, исходящих из общего центра, сливающихся в точке схождения. Особого внимания заслуживает пятиконечная звезда - пентаграмма. Пентаграмма - это символ совершенства, ума, мудрости и красоты. Это простейшая форма звезды, которую можно изобразить одним росчерком пера, ни разу не оторвав его от бумаги и при этом ни разу же не пройдя дважды по одной и той же линии. Нарисуйте пятиконечную звездочку не отрывая карандаша от листа клетчатой бумаги, так, чтобы все углы получившегося многоугольника находились в узлах клетки. Вычислите площадь полученной фигуры.

Проанализировав математическую литературу и разобрав большое количество примеров по теме исследования, я пришел к выводу, что выбор метода вычисления площади фигуры на клетчатой бумаге зависит от формы фигуры. Если фигура представляет собой треугольник, прямоугольник, параллелограмм или трапецию, то удобно воспользоваться всем известными формулами для вычисления площадей. Если фигура представляет собой выпуклый многоугольник, то возможно использовать как метод разбиения, так и дополнения (в большинстве случаях удобнее - метод дополнения). Если фигура представляет собой невыпуклый или звездчатый многоугольник, то удобнее применить формулу Пика.

Поскольку формула Пика является универсальной формулой для вычисления площадей (если вершины многоугольника находятся в узлах решетки), то ее можно использовать для любой фигуры. Однако, если многоугольник занимает достаточно большую площадь (или клетки мелкие), то велика вероятность допустить ошибку в подсчетах узлов решетки. Вообще, в ходе исследования, я пришел к выводу, что при решении подобных задач в ОГЭ лучше воспользоваться традиционными методами (разбиения или дополнения), а результат проверить по формуле Пика.

Литература:

  1. Вавилов В. В., Устинов А. В. Многоугольники на решетках. - М.: МЦНМО, 2006. - 72 с.
  2. Васильев И. Н. Вокруг формулы Пика// Научно-популярный физико-математический журнал «Квант». - 1974. - № 12. Режим доступа: http://kvant.mccme.ru/1974/12/vokrug_formuly_pika.htm
  3. Жарковская Н., Рисс Е. Геометрия клетчатой бумаги. Формула Пика. // Первое сентября. Математика. - 2009. -№ 23. - с.24,25.

Формула Пика

Сажина Валерия Андреевна, учащаяся 9 класса МАОУ «СОШ№11» г Усть-Илимск Иркутской области

Руководитель: Губарь Оксана Михайловна, учитель математики высшей квалификационной категории МАОУ «СОШ№11» г Усть-Илимск Иркутской области

2016 год

Введение

При изучении темы геометрии «Площади многоугольников», я решила узнать: существует ли способ нахождения площадей, отличный от тех, которые мы изучали на уроках?

Таким способом является формула Пика. Л. В. Горина в «Материалах для самообразования учащихся» так описывала данную формулу: «Ознакомление с формулой Пика особенно актуально накануне сдачи ЕГЭ и ГИА. С помощью этой формулы можно без проблем решать большой класс задач, предлагаемых на экзаменах, - это задачи на нахождение площади многоугольника, изображённого на клетчатой бумаге. Маленькая формула Пика заменит целый комплект формул, необходимых для решения таких задач. Формула Пика будет работать «одна за всех…»!».

В материалах ЕГЭ мне встретились задачи с практическим содержанием на нахождение площади земельных участков. Я решила проверить, применима ли данная формула для нахождения площади территории школы, микрорайонов города, области. А так же рационально ли ее применение для решения задач.

Объект исследования: формула Пика.

Предмет исследования: рациональность применение формулы Пика при решении задач.

Цель работы: обосновать рациональность использования формулы Пика при решении задач на нахождение площади фигур, изображённых на клетчатой бумаге.

Методы исследования: моделирование, сравнение, обобщение, аналогии, изучение литературных и Интернет-ресурсов, анализ и классификация информации.

Подобрать необходимую литературу, проанализировать и систематизировать полученную информацию;

Рассмотреть различные методы и приёмы решения задач на клетчатой бумаге;

Проверить экспериментальным путем рациональность использования формулы Пика;

Рассмотреть применение данной формулы.

Гипотеза: если применить формулу Пика для нахождения площадей многоугольника, то можно найти площадь территории, а решение задач на клетчатой бумаге будет более рационально.

Основная часть

Теоретическая часть

Клетчатая бумага (точнее - ее узлы), на которой мы часто предпочитаем рисовать и чертить, является одним из важнейших примеров точечной решетки на плоскости. Уже эта простая решетка послужила К. Гауссу отправной точкой для сравнения площади круга с числом точек с целыми координатами, находящихся внутри него. То, что некоторые простые геометрические утверждения о фигурах на плоскости имеют глубокие следствия в арифметических исследованиях, было в явном виде замечено Г. Минковским в 1896 г., когда он впервые для рассмотрения теоретико-числовых проблем привлек геометрические методы .

Нарисуем на клетчатой бумаге какой-нибудь многоугольник (Приложение 1, рисунок 1). Попробуем теперь рассчитать его площадь. Как это сделать? Наверное, проще всего разбить его на прямоугольные треугольники и трапецию, площади которых уже нетрудно вычислить и сложить полученные результаты.

Использованный способ несложен, но очень громоздок, кроме того он годится не для всяких многоугольников. Так следующий многоугольник нельзя разбить на прямоугольные треугольники, так как мы это проделали в предыдущем случае (Приложение 2, рисунок 2). Можно, например, попробовать дополнить его до «хорошего», нужного нам, то есть до такого, площадь которого мы сможем вычислить описанным способом, потом из полученного числа вычесть площади добавленных частей.

Однако оказывается, что есть очень простая формула, позволяющая вычислить площади таких многоугольников с вершинами в узлах квадратной сетки.

Эту формулу открыл австрийский математик Пик Георг Александров (1859 – 1943 г.г.) в 1899 году. Кроме этой формулы Георг Пик открыл теоремы Пика, Пика – Жюлиа, Пика – Невалины, доказал неравенство Шварца – Пика.

Эта формула оставалась незамеченной в течение некоторого времени после того, как Пик её опубликовал, однако в 1949 г. польский математик Гуго Штейнгауз включил теорему в свой знаменитый «Математический калейдоскоп». С этого времени теорема Пика стала широко известна. В Германии формула Пика включена в школьные учебники.

Она является классическим результатом комбинаторной геометрии и геометрии чисел.

Доказательство формулы Пика

Пусть АВСD – прямоугольник с вершинами в узлах и сторонами, идущими по линиям сетки (Приложение 3, рисунок 3).

Обозначим через В - количество узлов, лежащих внутри прямоугольника, а через Г - количество узлов на его границе. Сместим сетку на полклетки вправо и полклетки

вниз. Тогда территорию прямоугольника можно «распределить» между узлами следующим образом: каждый из В узлов «контролирует» целую клетку смещённой сетки, а каждый из Г узлов – 4 граничных не угловых узла – половину клетки, а каждая из угловых точек – четверть клетки. Поэтому площадь прямоугольника S равна

S = В + + 4 · = В + - 1 .

Итак, для прямоугольников с вершинами в узлах и сторонами, идущими по линиям сетки, мы установили формулу S = В + - 1 . Это и есть формула Пика.

Оказывается, эта формула верна не только для прямоугольников, но и для произвольных многоугольников с вершинами в узлах сетки.

Практическая часть

Нахождение площади фигур геометрическим методом и по формуле Пика

Я решила убедиться в том, что формула Пика верна для всех рассмотренных примеров.

Оказывается, что если многоугольник можно разрезать на треугольники с вершинами в узлах сетки, то для него верна формула Пика.

Я рассмотрела некоторые задачи на клетчатой бумаге с клетками размером 1 см1 см и провела сравнительный анализ по решению задач (Таблица№1).

Таблица№1 Решение задач различными способами.

Рисунок

По формуле геометрии

По формуле Пика

Задача №1

S=S пр -(2S 1 +2S 2 )

S пр =4*5=20 см 2

S 1 =(2*1)/2=1 см 2

S 2 =(2*4)/2=4 см 2

S=20-(2*1+2*4)=10 см 2

Ответ :10 см ².

В = 8, Г = 6

S = 8 + 6/2 – 1 = 10 (см²)

Ответ: 10 см².

Задача №2

a=2, h=4

S=a*h=2*4=8 см 2

Ответ : 8 см ².

В = 6, Г = 6

S = 6 + 6/2 – 1 = 8 (см²)

Ответ: 8 см².

Задача №3

S=S кв -(S 1 +2S 2 )

S кв =4 2 =16 см 2

S 1 =(3*3)/2=4,5см 2

S 2 =(1*4)/2=2см 2

S =16-(4,5+2*2)=7.5 см 2

В = 6, Г = 5

S = 6 + 5/2 – 1 = 7,5 (см²)

Ответ: 7,5 см².

Задача №4

S=S пр -(S 1 +S 2+ S 3 )

S пр =4 * 3=12 см 2

S 1 =(3*1)/2=1,5 см 2

S 2 =(1*2)/2=1 см 2

S 3 =(1+3)*1/2=2 см 2

S=12-(1,5+1+2)=7.5 см 2

В = 5, Г = 7

S = 5 + 7/2 – 1 = 7,5 (см²)

Ответ: 7,5 см².

Задача № 5.

S=S пр -(S 1 +S 2+ S 3 )

S пр =6 * 5=30 см 2

S 1 =(2*5)/2=5 см 2

S 2 =(1*6)/2=3 см 2

S 3 =(4*4)/2=8 см 2

S=30-(5+3+8)=14 см 2

Ответ: 14 см²

В = 12, Г = 6

S = 12 + 6/2 – 1 = 14 (см²)

Ответ: 14 см²

Задача №6.

S тр =(4+9)/2*3=19,5 см 2

Ответ: 19,5 см 2

В = 12, Г = 17

S = 12 + 17/2 – 1 = 19,5 (см²)

Ответ: 19,5 см 2

Задача №7. Найдите площадь лесного массива (в м²), изображённого на плане с квадратной сеткой 1 × 1(см) в масштабе 1 см – 200 м

S= S 1 +S 2+ S 3

S 1 =(800*200)/2=80000 м 2

S 2 =(200*600)/2=60000 м 2

S 3 =(800+600)/2*400=

280000 м 2

S= 80000+60000+240000=

420000м 2

Ответ: 420 000 м²

В = 8, Г = 7. S = 8 + 7/2 – 1 = 10,5 (см²)

1 см² - 200² м²; S = 40000 · 10,5 = 420 000 (м²)

Ответ: 420 000 м²

Задача №8 . Найдите площадь поля (в м²), изображённого на плане с квадратной сеткой 1 × 1(см) в масштабе

1 см – 200 м.

S = S кв -2(S тр + S трап )

S кв =800 * 800=640000 м 2

S тр =(200*600)/2=60000м 2

S трап =(200+800)/2*200=

100000м 2

S =640000-2(60000+10000)=

320000 м 2

Ответ: 320 000 м²

Решение. Найдём S площадь четырёхугольника, изображённого на клетчатой бумаге по формуле Пика: S = В + - 1

В = 7, Г = 4. S = 7 + 4/2 – 1 = 8 (см²)

1 см² - 200² м²; S = 40000 · 8 = 320 000 (м²)

Ответ: 320 000 м²

Задача №9 . Найдите площадь S сектора, считая стороны квадратных клеток равными 1. В ответе укажите .

Сектор является одной четвертой частью круга и, следовательно, его площадь равна одной четвертой площади круга. Площадь круга равна π R 2 , где R – радиус круга. В нашем случае R =√5 и, следовательно, площадь S сектора равна 5π/4. Откуда S /π=1,25.

Ответ. 1,25.

Г= 5, В= 2, S = В + Г/2 – 1= 2 + 5/2 – 1= 3,5, ≈ 1,11

Ответ. 1,11.

Задача №10. Найдите площадь S кольца, считая стороны квадратных клеток равными 1. В ответе укажите .

Площадь кольца равна разности площадей внешнего и внутреннего кругов. Радиус R внешнего круга равен

2 , радиус r внутреннего круга равен 2. Следовательно, площадь кольца равна 4 и, следовательно, . Ответ:4.

Г= 8, В= 8, S = В + Г/2 – 1= 8 + 8/2 – 1=11, ≈ 3,5

Ответ:3,5

Выводы: Рассмотренные задания аналогичны заданию из вариантов контрольно-измерительных материалов ЕГЭ по математике (задачи №5,6),.

Из рассмотренных решений задач я увидела, что некоторые из них, например задачи № 2,6, легче решить, применяя геометрические формулы, так как высоту и основание можно определить по рисунку. Но в большинстве задач требуется разбиение фигуры на более простые (задача №7) или достраивание до прямоугольника (задачи №1,4,5), квадрата (задачи №3,8).

Из решения задач №9 и №10 я увидела, что применение формулы Пика к фигурам, которые не являются многоугольниками, даёт приближённый результат.

Для того, чтобы проверить рациональность применения формулы Пика, я провела исследование на предмет затраченного времени (Приложение 4, таблица №2).

Вывод: из таблицы и диаграммы (Приложение 4, диаграмма 1) видно, что при решении задач с помощью формулы Пика, времени затрачивается гораздо меньше.

Нахождение площади поверхности пространственных форм

Проверим применимость этой формулы к пространственным формам (Приложение 5, рисунок 4).

Найти площадь полной поверхности прямоугольного параллелепипеда, считая стороны квадратных клеток равными 1.

Это недостаток формулы.

Применение формулы Пика для нахождения площади территории

Решая задачи с практическим содержанием, (задачи №7,8; таблица №1), я решила применить данный способ для нахождения площади территории нашей школы, микрорайонов города Усть-Илимска, Иркутской области.

Ознакомившись с «Проектом границ земельного участка МАОУСОШ№11 г.Усть-Илимска» (Приложение 6),, я нашла площадь территории нашей школы и сравнила с площадью по проекту границ земельного участка (Приложение 9, таблица 3).

Рассмотрев карту правобережной части Усть-Илимска (Приложение 7),, я вычислила площади микрорайонов и сравнила с данными из «Генерального плана г. Усть-Илимска Иркутской области». Результаты представила в таблице (Приложение 9, таблица 4).

Рассмотрев карту Иркутской области (Приложение 7),, я нашла площадь территории и сравнила с данными из Википедии . Результаты представила в таблице (Приложение 9, таблица 5).

Проанализировав результаты, я пришла к выводу: по формуле Пика эти площади можно найти гораздо проще, но результаты приблизительные.

Из проведенных исследований наиболее точное значение я получила при нахождении площади территории школы (Приложение 10, диаграмма 2). Большее расхождение в результатах получилось при нахождении площади Иркутской области (Приложение 10, диаграмма 3). Это связано с тем. Что не все границы области являются сторонами многоугольников, и вершины не являются узловыми точками.

Заключение

В результате моей работы я расширила свои знания о решении задач на клетчатой бумаге, определила для себя классификацию исследуемых задач.

При выполнении работы были решены задачи на нахождение площади многоугольников, изображённых на клетчатой бумаге двумя способами: геометрическим и с помощью формулы Пика.

Анализ решений и эксперимент по определению затраченного времени показал, что применение формулы даёт возможность решать задачи на нахождение площади многоугольника, более рационально. Это позволяет экономить время на ЕГЭ по математике.

Нахождение площади различных фигур, изображённых на клетчатой бумаге, позволило сделать вывод, что использование формулы Пика для вычисления площади кругового сектора и кольца нецелесообразно, так как она даёт приближённый результат, и, что формула Пика не применяется для решения задач в пространстве.

Так же в работе были найдены площади различных территорий по формуле Пика. Можно сделать вывод: использование формулы для нахождения площади различных территорий возможно, но результаты получаются приблизительными.

Выдвинутая мной гипотеза подтвердилась.

Я пришла к выводу, что тема, которая меня заинтересовала, достаточно многогранна, задачи на клетчатой бумаге многообразны, методы и приёмы их решения также разнообразны. Поэтому я решила продолжить работу в этом направлении.

Литература

    Волков С.Д.. Проект границ земельного участка, 2008 г, с. 16.

    Горина Л.В., Математика. Все для учителя, М:Наука, 2013 г.. №3, с. 28.

    Прокопьева В.П., Петров А.Г., Генеральный план города Усть-Илимска Иркутской области, Госстрой России, 2004 г.. с. 65.

    Рисс Е. А. , Жарковская Н. М. , Геометрия клетчатой бумаги. Формула Пика. - Москва, 2009, № 17, с. 24-25.

    Смирнова И. М. ,. Смирнов В. А, Геометрия на клетчатой бумаге. – Москва, Чистые пруды, 2009, с. 120.

    Смирнова И. М. , Смирнов В. А. , Геометрические задачи с практическим содержанием. – Москва, Чистые пруды, 2010, с. 150

    Задачи открытого банка заданий по математике ФИПИ, 2015.

    Карта города Усть-Илимска.

    Карта Иркутской области.

    Википедия.

Нарисуем на клетчатой бумаге какой-нибудь многоугольник. Например, такой, как показан на рисунке 1.

Попробуем теперь рассчитать его площадь. Как это сделать? Наверное, проще всего разбить его на прямоугольные треугольники и прямоугольники, площади которых уже нетрудно вычислить и сложить полученные результаты. Использованный мною способ несложен, но очень громоздок, кроме того он годится не для всяких многоугольников.

Рассмотрим невырожденный простой целочисленный многоугольник (т.е. он связный -- любые две его точки могут быть соединены непрерывной кривой, целиком в нем содержащейся, и все его вершины имеют целые координаты, его граница -- связная ломаная без самопересечений, и он имеет ненулевую площадь). Для вычисления площади такого многоугольника можно воспользоваться следующей теоремой:

Теорема Пика. Пусть -- число целочисленных точек внутри многоугольника, -- количество целочисленных точек на его границе, -- его площадь. Тогда справедлива формула Пика :

Пример. Для многоугольника на рисунке 1 (желтые точки), (синие точки, не забудьте о вершинах!), поэтому квадратных единиц.

Доказательство теоремы Пика. Сначала заметим, что формула Пика верна для единичного квадрата. Действительно, в этом случае мы имеем и

Рассмотрим прямоугольник со сторонами, лежащими на линиях решетки. Пусть длины его сторон равны и. Имеем в этом случае и, по формуле Пика,

Рассмотрим теперь прямоугольный треугольник с катетами, лежащими на осях координат. Такой треугольник получается из прямоугольника со сторонами и, рассмотренного в предыдущем случае, разрезанием его по диагонали. Пусть на диагонали лежат целочисленных точек. Тогда для этого случая и получаем, что

Теперь рассмотрим произвольный треугольник. Его можно получить, отрезав от прямоугольника несколько прямоугольных треугольников и, возможно, прямоугольник (см. рисунки 2 и 3). Поскольку и для прямоугольника, и для прямоугольного треугольника формула Пика верна, мы получаем, что она будет справедлива и для произвольного треугольника.

Остается сделать последний шаг: перейти от треугольников к многоугольникам. Любой многоугольник можно разбить на треугольники (например, диагоналями). Поэтому нужно просто доказать, что при добавлении любого треугольника к произвольному многоугольнику формула Пика остается верной.

Пусть многоугольник и треугольник имеют общую сторону. Предположим, что для формула Пика справедлива, докажем, что она будет верна и для многоугольника, полученного из добавлением. Так как и имеют общую сторону, то все целочисленные точки, лежащие на этой стороне, кроме двух вершин, становятся внутренними точками нового многоугольника. Вершины же будут граничными точками. Обозначим число общих точек через и получим

Число внутренних целочисленных точек нового многоугольника,

Число граничных точек нового многоугольника.

Из этих равенств получаем

Так как мы предположили, что теорема верна для и для по отдельности, то

Тем самым, формула Пика доказана.

Эту формулу открыл австрийский математик Пик Георг Александров (1859 - 1943 г.г.) в 1899 году. Кроме этой формулы Георг Пик открыл теоремы Пика, Пика - Жюлиа, Пика - Невалины, доказал неравенство Шварца - Пика. В Приложении 1 можно увидеть рассмотренные мною нестандартные задачи на применение формулы Пика.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта