Главная » Маринование грибов » Какой белок входит в состав хроматина. Хромосома и хроматин: что это и чем они отличаются? От чего зависит конденсация вещества наследственности

Какой белок входит в состав хроматина. Хромосома и хроматин: что это и чем они отличаются? От чего зависит конденсация вещества наследственности

Кариоплазма

Кариоплазма (ядерный сок, нуклеоплазма) - основная внутренняя среда ядра, она занимает все пространство между ядрышком, хроматином, мембранами, всевозможными включениями и другими структурами. Кариоплазма под электронным микроскопом имеет вид гомогенной или мелкозернистой массы с низкой электронной плотностью. В ней во взвешенном состоянии находятся рибосомы, микротельца, глобулины и различные продукты метаболизма.

Вязкость ядерного сока примерно такая же, как вязкость основного вещества цитоплазмы. Кислотность ядерного сока, определенная путем микроинъекции индикаторов в ядро, оказалась несколько выше, чем у цитоплазмы.

Кроме того, в ядерном соке содержатся ферменты, участвующие в синтезе нуклеиновых кислот в ядре и рибосомы. Ядерный сок не окрашивается основными красителями, поэтому его называют ахроматиновым веществом, или кариолимфой, в отличие от участков, способных окрашиваться, - хроматина.

Хроматин

Главный компонент ядер -- хроматин, является структурой, выполняющей генетическую функцию клетки, в хроматиновой ДНК заложена практически вся генетическая информация.

Эукариотические хромосомы, выглядят как резко очерченные структуры только непосредственно до и во время митоза - процесса деления ядра в соматических клетках. В покоящихся, неделящихся эукариотических клетках хромосомный материал, называемый хроматином, выглядит нечетко и как бы беспорядочно распределен по всему ядру. Однако, когда клетка готовится к делению, хроматин уплотняется и собирается в свойственное данному виду число хорошо различимых хромосом.

Хроматин был выделен из ядер и проанализирован. Он состоит из очень тонких волокон. Главными компонентами хроматина являются ДНК и белки, среди которых основную массу составляют гистоны и негистоновые белки.В среднем в хроматине около 40% приходится на ДНК и около 60% - на белки, среди которых специфические ядерные белки-гистоны составляют от 40 до 80% от всех белков, входящих в состав выделенного хроматина. Кроме того, в состав хроматиновой фракциям входят мембранные компоненты, РНК, углеводы, липиды, гликопротеиды.

Хроматиновые волокна в хромосоме свернуты и образуют множество узелков и петель. ДНК в хроматине очень прочно связана с белками, называемыми гистонами, функция которых состоит в упаковке и упорядочении ДНК в структурные единицы - нуклеосомы. В хроматине содержится также ряд негистоновых белков. В отличие от эукариотических, бактериальные хромосомы не содержат гистонов; в их состав входит лишь небольшое количество белков, способствующих образованию петель и конденсации (уплотнению) ДНК.

При наблюдении многих живых клеток, особенно растительных, или же клеток после фиксации и окраски внутри ядра выявляются зоны плотного вещества, которое хорошо окрашиваются разными красителями, особенно основными. Способность хроматина воспринимать основные (щелочные) красители указывает на его кислотные свойства, которые определяются тем, что в состав хроматина входит ДНК в комплексе с белками. Такими же свойствами окрашиваемости и содержанием ДНК обладают и хромосомы, которые можно наблюдать во время митотического деления клеток.

В отличие от прокариотических клеток ДНК-содержащий материал хроматина эукариот может пребывать в двух альтернативных состояниях: деконденсированном в интерфазе и в максимально уплотненном во время митоза, в составе митотических хромосом.

В неделящихся (интерфазных) клетках хроматин может равномерно заполнять объем ядра или же располагаться отдельными сгустками (хромоцентры). Нередко он особенно четко обнаруживается на периферии ядра (пристеночный, маргинальный, примембранный хроматин) или образует внутри ядра переплетения довольно толстых (около 0,3 мкм) и длинных тяжей в виде внутриядерной сети.

Хроматин интерфазных ядер представляет собой несущие ДНК тельца (хромосомы), которые теряют в это время свою компактную форму, разрыхляются, деконденсируются. Степень такой деконденсации хромосом может быть различной в ядрах разных клеток. Когда хромосома или ее участок полностью деконденсированы, эти зоны называют диффузным хроматином. При неполном разрыхлении хромосом в интерфазном ядре видны участки конденсированного хроматина (иногда называемого гетерохроматином). Многочисленными работами показано, что степень деконденсации хромосомного материала -- хроматина, в интерфазе может отражать функциональную нагрузку этой структуры. Чем более диффузен хроматин интерфазного ядра, тем выше в нем синтетические процессы. При синтезе РНК меняется структура хроматина. Падение синтеза ДНК и РНК в клетках обычно сопровождается увеличением зон конденсированного хроматина.

Максимально конденсирован хроматин во время митотического деления клеток, когда он обнаруживается в виде телец -- хромосом. В этот период хромосомы не несут никаких синтетических нагрузок, в них не происходит включения предшественников ДНК и РНК.

Исходя из этого, можно считать, что хромосомы клеток могут находиться в двух структурно-функциональных состояниях: в рабочем, частично или полностью деконденсированном, когда с их участием в интерфазном ядре происходят процессы транскрипции и редупликации, и в неактивном - в состоянии метаболического покоя при максимальной их конденсации, когда они выполняют функцию распределения и переноса генетического материала в дочерние клетки.

Эухроматин и гетерохроматин

Степень структуризации, конденсации хроматина в интерфазных ядрах может быть выражена в разной мере. Так, в интенсивно делящихся и в мало специализированных клетках ядра имеют диффузную структуру, в них кроме узкого периферического ободка конденсированного хроматина встречается небольшое число мелких хромоцентров, основная же часть ядра занята диффузным, деконденсированным хроматином. В то же время в высокоспециализированных клетках или в клетках, заканчивающих свой жизненный цикл, хроматин представлен в виде массивного периферического слоя и крупных хромоцентров, блоков конденсированного хроматина. Чем больше в ядре доля конденсированного хроматина, тем меньше метаболическая активность ядра. При естественной или экспериментальной инактивации ядер происходит прогрессивная конденсация хроматина и, наоборот, при активации ядер увеличивается доля диффузного хроматина.

Однако при метаболической активации не всякие участки конденсированного хроматина могут переходить в диффузную форму. Еще в начале 1930-х годов Э. Гейтцем было замечено, что в интерфазных ядрах существуют постоянные участки конденсированного хроматина, наличие которого не зависит от степени дифференцированности ткани или от функциональной активности клеток. Такие участки получили название гетерохроматина, в отличие от остальной массы хроматина - эухроматина (собственно хроматина). По этим представлениям, гетерохроматин - компактные участки хромосом, которые в профазе появляются раньше других частей в составе митотических хромосом и в телофазе не деконденсируются, переходя в интерфазное ядро в виде интенсивно красящихся плотных структур (хромоцентров). Постоянно конденсированными зонами чаще всего являются центромерные и теломерные участки хромосом. Кроме них постоянно конденсированными могут быть некоторые участки, входящие в состав плечей хромосом -- вставочный, или интеркалярный, гетерохроматин, который в ядрах также представлен в виде хромоцентров. Такие постоянно конденсированные участки хромосом в интерфазных ядрах сейчас принято называть конститутивным (постоянным) гетерохроматином. Необходимо отметить, что участки конститутивного гетерохроматина обладают целым рядом особенностей, которые отличают его от остального хроматина. Конститутивный гетерохроматин генетически не активен; он не транскрибируется, реплицируется позже всего остального хроматина, в его состав входит особая (сателлитная) ДНК, обогащенная высокоповторяющимися последовательностями нуклеотидов, он локализован в центромерных, теломерных и интеркалярных зонах митотических хромосом. Доля конститутивного хроматина может быть неодинаковой у разных объектов. Функциональное значение конститутивного гетерохроматина до конца не выяснено. Предполагается, что он несет ряд важных функций, связанных со спариванием гомологов в мейозе, со структуризацией интерфазного ядра, с некоторыми регуляторными функциями.

Вся остальная, основная масса хроматина ядра может менять степень своей компактизации в зависимости от функциональной активности, она относится к эухроматину. Эухроматические неактивные участки, которые находятся в конденсированном состоянии, стали называть факультативным гетерохроматином, подчеркивая необязательность такого его состояния.

В дифференцированных клетках всего лишь около 10% генов находится в активном состоянии, остальные гены инактивированы и входят в состав конденсированного хроматина (факультативный гетерохроматин). Это обстоятельство объясняет, почему большая часть хроматина ядра структурирована.

ДНК хроматина

В препарате хроматина на долю ДНК приходится обычно 30-40%. Эта ДНК представляет собой двухцепочечную спиральную молекулу, подобную чистой выделенной ДНК в водных растворах. ДНК хроматина обладает молекулярной массой 7-9·106. В составе хромосом длина индивидуальных линейных (в отличие от прокариотических хромосом) молекул ДНК может достигать сотен микрометров и даже нескольких сантиметров. Общее количество ДНК, входящее в ядерные структуры клеток, в геном организмов, колеблется.

ДНК эукариотических клеток гетерогенна по составу, содержит несколько классов последовательностей нуклеотидов: часто повторяющиеся последовательности (>106 раз), входящие во фракцию сателлитной ДНК и не транскрибирующиеся; фракция умеренно повторяющихся последовательностей (102--105), представляющих блоки истинных генов, а также короткие последовательности, разбросанные по всему геному; фракция уникальных последовательностей, несущая информацию для большинства белков клетки. Все эти классы нуклеотидов связаны в единую гигантскую ковалентную цепь ДНК.

Основные белки хроматина - гистоны

В клеточном ядре ведущая роль в организации расположения ДНК, в ее компактизации и регулировании функциональных нагрузок принадлежит ядерным белкам. Белки в составе хроматина очень разнообразны, но их можно разделить на две группы: гистоны и негистоновые белки. На долю гистонов приходится до 80% всех белков хроматина. Их взаимодействие с ДНК происходит за счет солевых или ионных связей и неспецифично в отношении состава или последовательностей нуклеотидов в молекуле ДНК. В эукариотической клетке содержится всего 5--7 типов молекул гистонов. В отличие от гистонов так называемые негистоновые белки большей частью специфически взаимодействуют с определенными последовательностями молекул ДНК, очень велико разнообразие типов белков, входящих в эту группу (несколько сотен), велико разнообразие функций, которые они выполняют.

Гистоны - белки, характерные только для хроматина, - обладают рядом особых качеств. Это основные или щелочные белки, свойства которых определяются относительно высоким содержанием таких основных аминокислот, как лизин и аргинин. Именно положительные заряды на аминогруппах лизина и аргинина обусловливают соленую или электростатическую связь этих белков с отрицательными зарядами на фосфатных группах ДНК.

Гистоны - относительно небольшие по молекулярной массе белки. Классы гистонов отличаются друг от друга по содержанию разных основных аминокислот. Для гистонов всех классов характерно кластерное распределение основных аминокислот -- лизина и аргинина, на N- и С-концах молекул. Срединные участки молекул гистонов образуют несколько (3-4) б-спиральных участков, которые компактизуются в глобулярную структуру в изотонических условиях. Богатые положительными зарядами неспирализованные концы белковых молекул гистонов и осуществляют их связь друг с другом и с ДНК.

В процессе жизнедеятельности клеток могут происходить посттрансляционные изменения (модификации) гистонов: ацетилирование и метилирование некоторых остатков лизина, что приводит к потере числа положительных зарядов, и фосфорилирование сериновых остатков, приводящее к появлению отрицательного заряда. Ацетилирование и фосфорилирование гистонов могут быть обратимыми. Эти модификации значительно меняют свойства гистонов, их способность связываться с ДНК.

Гистоны синтезируются в цитоплазме, транспортируются в ядро и связываются с ДНК во время ее репликации в S-периоде, т.е. синтезы гистонов и ДНК синхронизированы. При прекращении клеткой синтеза ДНК гистоновые информационные РНК за несколько минут распадаются и синтез гистонов останавливается. Включившиеся в хроматин гистоны очень стабильны, имеют низкую скорость замены.

Функции белков гистонов

1. Количественное и качественное состояние гистонов влияет на степень компактности и активности хроматина.

2. Структурная -- компактизирующая -- роль гистонов в организации хроматина.

Для того чтобы огромные сантиметровые молекулы ДНК уложить по длине хромосомы, имеющей размер всего несколько микрометров, молекула ДНК должна быть скручена, компактизована с плотностью упаковки, равной 1: 10 000. В процессе компактизации ДНК существуют несколько уровней упаковки, первые из которых прямо определяются взаимодействием гистонов с ДНК

Хроматином называют сложную смесь веществ, из которых построены хромосомы эукариот. Основными компонентами хроматина являются ДНК, гистоны и негистоновые белки, образующие высокоупорядоченные в пространстве структуры. Соотношение ДНК и белка в хроматине составляет ~1:1, а основная масса белка хроматина представлена гистонами. Гистоны образуют семейство высококонсервативных основных белков, которые разделяются на пять больших классов, названных H1, H2A, H2B, H3 и H4 . Размер полипептидных цепей гистонов лежит в пределах ~220 (H1) и 102 (H4) аминокислотных остатков. Гистон H1 сильно обогащен остатками Lys , для гистонов H2A и H2B характерно умеренное содержание Lys, полипептидные цепи гистонов H3 и H4 богаты Arg . Внутри каждого класса гистонов (за исключением H4) на основании аминокислотных последовательностей различают несколько субтипов этих белков. Такая множественность особенно характерна для гистонов класса H1 млекопитающих. В этом случае различают семь субтипов, названных H1.1–H1.5, H1 o и H1t.

Рис. I.2. Схематическое изображение петельно-доменного уровня компактизации хроматина

а – фиксация петли хромомера на ядерном матриксе с помощью MAR/SAR-последовательностей и белков;б – "розетки", образованные из петли хромомера;в – конденсация петель "розеток" с участием нуклеосом и нуклеомеров

Важным результатом взаимодействия ДНК с белками в составе хроматина является ее компактизация. Суммарная длина ДНК, заключенной в ядре клеток человека, приближается к 1 м, тогда как средний диаметр ядра составляет 10 мкм. Длина молекулы ДНК, заключенной в одной хромосоме человека, в среднем равняется ~4 см. В то же время длина метафазной хромосомы составляет ~4 мкм. Следовательно, ДНК метафазных хромосом человека компактизована по длине, по крайней мере, в 10 4 раз. Степень компактизации ДНК в интерфазных ядрах значительно ниже и неравномерна в отдельных генетических локусах. С функциональной точки зрения различают эухроматин и гетерохроматин . Эухроматин характеризуется меньшей по сравнению с гетерохроматином компактизацией ДНК, и в нем главным образом локализуются активно экспрессирующиеся гены. В настоящее время широко распространено мнение о генетической инертности гетерохроматина. Поскольку его истинные функции сегодня нельзя считать установленными, эта точка зрения по мере накопления знаний о гетерохроматине может измениться. Уже сейчас в нем находят активно экспрессирующиеся гены.

Гетерохроматизация определенных участков хромосом часто сопровождается подавлением транскрипции имеющихся в них генов. В процесс гетерохроматизации могут быть вовлечены протяженные участки хромосом и даже целые хромосомы. В соответствии с этим считается, что регуляция транскрипции генов эукариот в основном происходит на двух уровнях. На первом из них компактизация или декомпактизация ДНК в хроматине может приводить к длительной инактивации или активации протяженных участков хромосом или даже целых хромосом в онтогенезе организма. Более тонкая регуляция транскрипции активированных участков хромосом достигается на втором уровне при участии негистоновых белков, включающих многочисленные факторы транскрипции.

Структурная организация хроматина и хромосом эукариот. Вопрос о структурной организации хроматина в интерфазных ядрах в настоящее время далек от своего разрешения. Это связано, прежде всего, со сложностью и динамичностью его структуры, которая легко меняется даже при незначительных экзогенных воздействиях. Большинство знаний о структуре хроматина было получено in vitro на препаратах фрагментированного хроматина, структура которого значительно отличается от таковой в нативных ядрах. В соответствии с распространенной точкой зрения различают три уровня структурной организации хроматина у эукариот: 1) нуклеосомная фибрилла ; 2) соленоид , или нуклеомер ; 3) петельно-доменная структура , включающая хромомеры .

Нуклеосомные фибриллы. В определенных условиях (при низкой ионной силе и в присутствии двухвалентных ионов металлов) в изолированном хроматине удается наблюдать регулярные структуры в виде протяженных фибрилл диаметром 10 нм, состоящих из нуклеосом. Эти фибриллярные структуры, в которых нуклеосомы расположены как бусы на нитке, рассматриваются в качестве низшего уровня упаковки ДНК эукариот в хроматине. Нуклеосомы, входящие в состав фибрилл, расположены более или менее равномерно вдоль молекулы ДНК на расстоянии 10–20 нм друг от друга. В состав нуклеосом входят четыре пары молекул гистонов: H2a, H2b, H3 и H4, а также одна молекула гистона H1. Данные по структуре нуклеосом в основном получены с использованием трех методов: рентгеноструктурного анализа низкого и высокого разрешения кристаллов нуклеосом, межмолекулярных сшивок белок–ДНК и расщепления ДНК в составе нуклеосом с помощью нуклеаз или радикалов гидроксила. На основании таких данных А. Клугом была построена модель нуклеосомы, в соответствии с которой ДНК (146 п.о.) в B-форме (правозакрученная спираль с шагом 10 п.о.) намотана на гистоновый октамер, в центральной части которого расположены гистоны Н3 и Н4, а на периферии – Н2а и Н2b. Диаметр такого нуклеосомного диска составляет 11 нм, а его толщина – 5,5 нм. Структура, состоящая из гистонового октамера и намотанной на него ДНК, получила название нуклеосомной к ó ровой частицы. Кó ровые частицы отделены друг от друга сегментами линкерной ДНК . Общая длина участка ДНК, включенного в нуклеосому животных, составляет 200 (15) п.о.

Полипептидные цепи гистонов содержат структурные домены нескольких типов. Центральный глобулярный домен и гибкие выступающие N- и С-концевые участки, обогащенные основными аминокислотами, получили название плеч (arm). С-концевые домены полипептидных цепей, участвующие в гистон–гистоновых взаимодействиях внутри кó ровой частицы, находятся преимущественно в виде -спирали с протяженным центральным спиральным участком, вдоль которого с двух сторон уложено по одной более короткой спирали. Все известные места обратимых посттрансляционных модификаций гистонов, происходящих на протяжении клеточного цикла или во время дифференцировки клеток, локализованы в гибких основных доменах их полипептидных цепей (табл. I.2). При этом N-концевые плечи гистонов H3 и H4 являются самыми консервативными участками молекул, а гистоны в целом – одними из наиболее эволюционно консервативных белков. С помощью генетических исследований дрожжей S. cerevisiae было установлено, что небольшие делеции и точковые мутации в N-концевых частях генов гистонов сопровождаются глубокими и разнообразными изменениями фенотипа дрожжевых клеток. Это указывает на чрезвычайную важность целостности молекул гистонов в обеспечении правильного функционирования эукариотических генов.

В растворе гистоны Н3 и Н4 могут существовать в виде стабильных тетрамеров (Н3) 2 (Н4) 2 , а гистоны Н2А и Н2В – в виде стабильных димеров. Постепенное повышение ионной силы в растворах, содержащих нативный хроматин, приводит к освобождению сначала димеров Н2А/Н2В, а затем тетрамеров Н3/Н4.

Дальнейшее уточнение тонкой структуры нуклеосом в кристаллах было проведено недавно в работе К. Люгера с соавт. (1997 г.) с помощью рентгеноструктурного анализа высокого разрешения. Было установлено, что выпуклая поверхность каждого гистонового гетеродимера в составе октамера огибается сегментами ДНК длиной 27–28 п.о., расположенными по отношению друг к другу под углом 140 о, которые разделены линкерными участками длиной в 4 п.о.

В соответствии с современными данными пространственная структура ДНК в составе кó ровых частиц несколько отличается от B-формы: двойная спираль ДНК перекручена на 0,25–0,35 п.о./виток двойной спирали, что приводит к образованию шага спирали, равному 10,2 п.о./виток (у В-формы в растворе – 10,5 п.о./виток). Стабильность комплекса гистонов в составе кó ровой частицы определяется взаимодействием их глобулярных частей, поэтому удаление гибких плеч в условиях мягкого протеолиза не сопровождается разрушением комплекса. N-концевые плечи гистонов, по-видимому, обеспечивают их взаимодействие со специфическими участками ДНК. Так, N-концевые домены гистона Н3 контактируют с участками ДНК на входе в кó ровую частицу и выходе из нее, тогда как соответствующий домен гистона Н4 связывается с внутренней частью ДНК нуклеосомы.

Упомянутые выше исследования структуры нуклеосом высокого разрешения показывают, что центральная часть сегмента ДНК длиной в 121 п.о. в составе нуклеосомы образует дополнительные контакты с гистоном H3. При этом N-концевые части полипептидных цепей гистонов H3 и H2B проходят через каналы, образуемые малыми бороздками соседних супервитков ДНК нуклеосомы, а N-концевая часть гистона H2A контактирует с малой бороздкой внешней части супервитка ДНК. В совокупности данные высокого разрешения показывают, что ДНК в составе коровых частиц нуклеосом огибает гистоновые октамеры неравномерно. Кривизна нарушается в местах взаимодействия ДНК с поверхностью гистонов, и такие изломы наиболее заметны на расстоянии 10–15 и 40 п.о. от центра супервитка ДНК.

Хроматин представляет собой белки (негистоновые и гистоновые) и комплекс нуклеиновых кислот (РНК и ДНК), которые своей совокупностью образуют в пространстве высокоупорядоченные структуры - хромосомы эукариот.

В хроматине соотношение белка и ДНК - приблизительно 1:1, основная масса белка представлена гистонами.

Виды хроматина

По своей структуре хроматин неоднороден. Условно весь хроматин подразделяется на две функциональные категории:

1) неактивная - гетерохроматин - содержит в себе в данный момент несчитываемую генетическую информацию;

2) активная - эухроматин - именно с него производится считывание генетической информации.

Соотношение содержания гетерохроматина и эухроматина постоянно находится в подвижной стадии. Зрелые клетки, к примеру крови, имеют ядра, характеризующиеся конденсированным, наиболее плотным хроматином, лежащим глыбками.

В ядрах соматических женских клеток глыбки хроматина сближены с мембраной ядра - это женский хроматин половой клетки.

Половой мужской хроматин представлен глыбкой в мужских соматических клетках, светящийся при окраске флюорохромами. Половой хроматин дает возможность устанавливать по клеткам, полученным из околоплодной жидкости беременной женщины, пол будущего ребенка.

Строение хроматина

Хроматин - нуклеопротеид клеточного ядра, который является основной составляющей хромосом.

Состав хроматина:

Гистоны - 30-50%;

Негистоновые белки - 4-33%;

ДНК - по массе 30-40%;

В зависимости от природы объекта, а также от способа выделения хроматина размеры молекул ДНК, число РНК, негистоновых белков колеблются в широких пределах.

Функции хроматина

Хроматин и хромосома по химической организации (комплекс ДНК с белками) друг от друга не отличаются, они переходят взаимно друг в друга.

В интерфазе различать отдельные хромосомы не представляется возможным. Они слабоспирализованны, образуют разрыхленный хроматин, распределяющийся по всему объему ядра. Как раз разрыхление структуры и считается требуемым условием для транскрипции, передачи информации наследственного характера, имеющейся в ДНК.

Кариотип

Кариотип (от карио... и греч. tэpos - образец, форма, тип), хромосомный набор, совокупность признаков хромосом (их число, размеры, форма и детали микроскопического строения) в клетках тела организма того или иного вида. Понятие кариотип введено сов. генетиком Г. А. Левитским (1924). Кариотип - одна из важнейших генетических характеристик вида, т.к. каждый вид имеет свой кариотип, отличающийся от кариотипа близких видов (на этом основана новая отрасль систематики - так называемая кариосистематика).



8.Особенности морфологического и функционального строения хромосом. Гетеро- и эухроматин. (один ответ на 2 вопроса).

Хромосомы: структура и классификация

Хромосомы (греч. – chromo – цвет, soma – тело) – это спирализованный хроматин. Их длина 0,2 – 5,0 мкм, диаметр 0,2 – 2 мкм.

Метафазная хромосома состоит из двух хроматид , которые соединяются центромерой (первичной перетяжкой ). Она делит хромосому на два плеча . Отдельные хромосомы имеют вторичные перетяжки . Участок, который они отделяют, называется спутником , а такие хромосомы – спутничными. Концевые участки хромосом называются теломеры . В каждую хроматиду входит одна непрерывная молекула ДНК в соединении с белками-гистонами. Интенсивно окрашивающиеся участки хромосом – это участки сильной спирализации (гетерохроматин). Более светлые участки – участки слабой спирализации (эухроматин).

Типы хромосом выделяют по расположению центромеры.

1. Метацентрические хромосомы – центромера расположена посередине, и плечи имеют одинаковую длину. Участок плеча около центромеры называется проксимальным, противоположный – дистальным.

2. Субметацентрические хромосомы – центромера смещена от центра и плечи имеют разную длину.

3. Акроцентрические хромосомы – центромера сильно смещена от центра и одно плечо очень короткое, второе плечо очень длинное.

В клетках слюнных желез насекомых (мух дрозофил) встречаются гигантские, политенные хромосомы (многонитчатые хромосомы).

Для хромосом всех организмов существует 4 правила:

1. Правило постоянства числа хромосом . В норме организмы определенных видов имеют постоянное, характерное для вида число хромосом. Например: у человека 46, у собаки 78, у мухи дрозофилы 8.

2. Парность хромосом . В диплоидном наборе в норме каждая хромосома имеет парную хромосому – одинаковую по форме и по величине.



3. Индивидуальность хромосом . Хромосомы разных пар отличаются по форме, строению и величине.

4. Непрерывность хромосом . При удвоении генетического материала хромосома образуется от хромосомы.

Набор хромосом соматической клетки, характерный для организма данного вида, называется кариотипом .

1. Хромосомы, одинаковые в клетках мужского и женского организмов, называются аутосомами

идиограммой

Классификацию хромосом проводят по разным признакам.

1. Хромосомы, одинаковые в клетках мужского и женского организмов,называются аутосомами . У человека в кариотипе 22 пары аутосом. Хромосомы, различные в клетках мужского и женского организмов, называются гетерохромосомами, или половыми хромосомами . У мужчины это Х и Y хромосомы, у женщины – Х и Х.

2. Расположение хромосом по убывающей величине называется идиограммой . Это систематизированный кариотип. Хромосомы располагаются парами (гомологичные хромосомы). Первая пара – самые большие, 22-я пара – маленькие и 23-я пара – половые хромосомы.

3. В 1960г. была предложена Денверская классификация хромосом. Она строится на основании их формы, размеров, положения центромеры, наличия вторичных перетяжек и спутников. Важным показателем в этой классификации является центромерный индекс (ЦИ). Это отношение длины короткого плеча хромосомы ко всей ее длине, выраженное в процентах. Все хромосомы разделены на 7 групп. Группы обозначаются латинскими буквами от А до G.

Группа А включает 1 – 3 пары хромосом. Это большие метацентрические и субметацентрические хромосомы. Их ЦИ 38-49%.

Группа В . 4-я и 5-я пары – большие метацентрические хромосомы. ЦИ 24-30%.

Группа С . Пары хромосом 6 – 12: средней величины, субметацентрические. ЦИ 27-35%. В эту группу входит и Х-хромосома.

Группа D . 13 – 15-я пары хромосом. Хромосомы акроцентрические. ЦИ около 15%.

Группа Е . Пары хромосом 16 – 18. Сравнительно короткие, метацентрические или субметацентрические. ЦИ 26-40%.

Группа F . 19 – 20-я пары. Короткие, субметацентрические хромосомы. ЦИ 36-46%.

Группа G . 21-22-я пары. Маленькие, акроцентрические хромосомы. ЦИ 13-33%. К этой группе относится и Y-хромосома.

4. Парижская классификация хромосом человека создана в 1971 году. С помощью этой классификации можно определять локализацию генов в определенной паре хромосом. Используя специальные методы окраски, в каждой хромосоме выявляют характерный порядок чередования темных и светлых полос (сегментов). Сегменты обозначают по названию методов, которые их выявляют: Q – сегменты – после окрашивания акрихин-ипритом; G – сегменты – окрашивание красителем Гимза; R – сегменты – окрашивание после тепловой денатурации и другие. Короткое плечо хромосомы обозначают буквой p, длинное – буквой q. Каждое плечо хромосомы делят на районы и обозначают цифрами от центромеры к теломеру. Полосы внутри районов нумеруют по порядку от центромеры. Например, расположение гена эстеразы D – 13p14 – четвертая полоса первого района короткого плеча 13-й хромосомы.

Функция хромосом : хранение, воспроизведение и передача генетической информации при размножении клеток и организмов.

Клеток эукариот и входит в состав нуклеоида у прокариот . Именно в составе хроматина происходит реализация генетической информации , а также репликация и репарация ДНК .

Основную массу хроматина составляют белки гистоны . Гистоны являются компонентом нуклеосом , - надмолекулярных структур, участвующих в упаковке хромосом. Нуклеосомы располагаются довольно регулярно, так что образующаяся структура напоминает бусы. Нуклеосома состоит из белков четырех типов: H2A, H2B, H3 и H4. В одну нуклеосому входят по два белка каждого типа - всего восемь белков. Гистон H1, более крупный, чем другие гистоны, связывается с ДНК в месте её входа на нуклеосому.

Нить ДНК с нуклеосомами образует нерегулярную соленоид -подобную структуру толщиной около 30 нанометров , так называемую 30 нм фибриллу . Дальнейшая упаковка этой фибриллы может иметь различную плотность. Если хроматин упакован плотно его называют конденсированным или гетерохроматином , он хорошо видим под микроскопом. ДНК, находящаяся в гетерохроматине не транскрибируется , обычно это состояние характерно для незначащих или молчащих участков. В интерфазе гетерохроматин обычно располагается по периферии ядра (пристеночный гетерохроматин). Полная конденсация хромосом происходит перед делением клетки.

Если хроматин упакован неплотно, его называют эу- или интерхроматином . Этот вид хроматина гораздо менее плотный при наблюдении под микроскопом и обычно характеризуется наличием транскрипционной активности. Плотность упаковки хроматина во многом определяется модификациями гистонов - ацетилированием и фосфорилированием

Считается, что в ядре существуют так называемые функциональные домены хроматина (ДНК одного домена содержит приблизительно 30 тысяч пар оснований), то есть каждый участок хромосомы имеет собственную «территорию». Вопрос пространственного распределения хроматина в ядре изучен пока недостаточно. Известно, что теломерные (концевые) и центромерные (отвечающие за связывание сестринских хроматид в митозе) участки хромосом закреплены на белках ядерной ламины .

Схема конденсации хроматина

Примечания

См. также

  • Белки группы polycomb ремоделируют хроматин

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Хроматин" в других словарях:

    - (от греч. chroma, род. падеж chromatos цвет, краска), нуклеопротеидные нити, из к рых состоят хромосомы клеток эукариот. Термин введён В. Флеммингом (1880). В цитологии под X. подразумевают дисперсное состояние хромосом в интерфазе клеточного… … Биологический энциклопедический словарь

    ХРОМАТИН, вещество хромосом, находящееся в ядре клетки. Оно состоит из ДНК и некоторого количества РНК, а также гистонов и негистоновых белков. В процессе метаболизма ядра клетки хроматин распространяется и образует пространство, в котором может… … Научно-технический энциклопедический словарь

    хроматин - а, м. chromatine f. биол. Основное вещество ядра животной и растительной клетки, способное окрашиваться. Уш. 1940. Лекс. Брокг.: хроматин; СИС 1937: хромати/н … Исторический словарь галлицизмов русского языка

    Вещество (нуклеопротеид) клеточного ядра, составляющее основу хромосом; окрашивается основными красителями. В процессе клеточного деления конденсируется, образуя компактные структуры хромосомы, видимые в микроскоп. Различают гетерохроматин и… … Большой Энциклопедический словарь

    ХРОМАТИН, хроматина, мн. нет, муж. (от греч. chroma цвет) (биол.). Основное вещество ядра животной и растительной клетки, способное окрашиваться. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    Сущ., кол во синонимов: 3 гетерохроматин (2) зухроматин (2) нуклеопротеид … Словарь синонимов

    ХРОМАТИН - ХРОМАТИН, интенсивно воспринимающее гист. краски вещество, заключенное в ядрах клеток животных и растений. Главной его белковой составной частью являются повидимому т. н. иуклеопроттды (см.), хотя вопрос о точном определении хим. состава X.… … Большая медицинская энциклопедия

    хроматин - Является комплексом ДНК с гистонами, из которого состоят хромосомы Тематики биотехнологии EN chromatin … Справочник технического переводчика

    Хроматин - * храмацін * chromatin комплекс ДНК и хромосомных белков (гистоновых и негистоновых), т. н. нуклеопротеидный комплекс, в ядрах эукариотных клеток. Х. служит для упаковки относительно большого количества ДНК в сравнительно малый объем ядра.… … Генетика. Энциклопедический словарь

    - (гр. chroma (chromatos) цвет) биол. вещество клеточного ядра, хорошо окрашивающееся (в противоп, ахроматину) при гистологической обработке. Новый словарь иностранных слов. by EdwART, 2009. хроматин хроматина, мн. нет, м. [от греч. chroma –… … Словарь иностранных слов русского языка

Хроматин – основной компонент клеточного ядра – достаточно легко получить из выделенных интерфазных ядер и из выделенных митотических хромосом. Для этого используют его свойство переходить в растворенное состояние при экстракции водными растворами с низкой ионной силой или просто деионизованной водой. При этом участки хроматина набухают и переходят в гель. Чтобы такие препараты перевести в настоящие растворы, необходимы сильные механические воздействия: встряхивание, перемешивание, дополнительная гомогенизация. Это, конечно, приводит к частичному разрушению исходной структуры хроматина, дробит его на мелкие фрагменты, но практически не меняет его химического состава.

Фракции хроматина, полученные из разных объектов, обладают довольно однообразным набором компонентов. Было найдено, что суммарный химический состав хроматина из интерфазных ядер и митотических хромосом мало отличаются друг от друга. Главными компонентами хроматина являются ДНК и белки, среди которых основную массу составляют гистоны и негистоновые белки (см табл. 3).

Таблица 3. Химический состав хроматина. Содержание белков и РНК дано по отношению к ДНК

В среднем в хроматине около 40% приходится на ДНК и около 60 % на белки, среди которых специфические ядерные белки-гистоны , составляют от 40 до 80% от всех белков, входящих в состав выделенного хроматина. Кроме того в состав хроматиновой фракциии входят мембранные компоненты, РНК, углеводы, липиды, гликопротеиды. Вопрос о том, насколько эти минорные компоненты входят в структуру хроматина еще не решен. Так, например, РНК может представлять собой транскрибируемую РНК, которая еще не потеряла связь с матрицей ДНК. Другие же минорные компоненты могут представлять собой вещества соосажденных фрагментов ядерной оболочки.

В структурном отношении хроматин представляет собой нитчатые комплексные молекулы дезоксирибонуклеопротеида (ДНП), которые состоят из ДНК, ассоциированной с гистонами (см. рис. 57). Поэтому укоренилось другое название хроматина – нуклеогистон . Именно за счет ассоциации гистонов с ДНК образуются очень лабильные, изменчивые нуклеиново-гистоновые комплексы, где отношения ДНК: гистон равно примерно единице, т.е. они присутствуют в равных весовых количествах. Эти нитчатые фибриллы ДНП и есть элементарные хромосомные или хроматиновые нити, толщина которых в зависимости от степени упаковки ДНК может колебаться от 10 до 30 нм. Эти фибриллы ДНП могут в свою очередь дополнительно компактизоваться с образованием более высоких уровней структуризации ДНП, вплоть до митотической хромосомы. Роль некоторых негистоновых белков заключается именно в образовании высоких уровней компактизации хроматина.

ДНК хроматина

В препарате хроматина на долю ДНК приходится обычно 30-40%. Эта ДНК представляет собой двухцепочечную спиральную молекулу подобно чистой выделенной ДНК в водных растворах. Об этом говорят многие экспериментальные данные. Так, при нагревании растворов хроматина наблюдается повышение оптической плотности раствора, так называемый гиперхромный эффект, связанный с разрывом межнуклеотидных водородных связей между цепями ДНК, подобно тому, что происходит при нагревании (плавлении) чистой ДНК.

Вопрос о размере, длине молекул ДНК в составе хроматина имеет важное значение для понимания структуры хромосомы в целом. При стандартных методах выделения ДНК хроматина обладает молекулярной массой 7-9 х 10 6 , что значительно меньше молекулярной массы ДНК из кишечной палочки (2,8 х 10 9). Такую сравнительно малую молекулярную массу ДНК из препаратов хроматина можно объяснить механическими повреждениями ДНК в процессе выделения хроматина. Если же выделять ДНК в условиях, исключающих встряхивание, гомогенизацию и другие воздействия, то удается из клеток получить молекулы ДНК очень большой длины. Длина молекул ДНК из ядер и хромосом эукариотических клеток может быть изучена с помощью метода светооптической радиоавтографии, подобно тому как это изучалось на прокариотических клетках.

Было обнаружено, что в составе хромосом длина индивидуальных линейных (в отличие от прокариотических хромосом) молекул ДНК может достигать сотен микрометров и даже нескольких сантиметров. Так, у разных объектов были получены молекулы ДНК от 0,5 мм до 2 см. Эти результаты показали, что есть близкое совпадение между расчетной длиной ДНК на хромосому и радиоавтографическим наблюдением.

После мягкого лизиса клеток эукариот можно прямо определять молекулярные массы ДНК физико-химическими методами. Было показано, что максимальная молекулярная масса молекулы ДНК дрозофилы равна 41 х 10 9 , что соответствует длине около 2 см. У некоторых дрожжей на хромосому приходится молекула ДНК с молекулярной массой 1 х 10 8 -10 9 , которая имеет размеры около 0,5 мм.

Такие длинные ДНК представляют собой одну молекулу, а не несколько более коротких, сшитых гуськом с помощью белковых связок, как считали некоторые исследователи. К этому заключению пришли после того, как оказалось, что длина молекул ДНК не изменяется после обработки препаратов протеолитическими ферментами.

Общее количество ДНК, входящее в ядерные структуры клеток, в геном организмов, колеблется от вида к виду, хотя у микроорганизмов количество ДНК на клетку значительно ниже, чем у беспозвоночных, высших растений и животных. Так, у мыши на ядро приходится почти в 600 раз больше ДНК, чем у кишечной палочки. Сравнивая количество ДНК на клетку у эукариотических организмов, трудно уловить какие-либо корреляции между степенью сложности организма и количеством ДНК на ядро. Примерно одинаковое количество ДНК имеют такие различные организмы как лен, морской еж, окунь (1,4-1,9 пг) или рыба голец и бык (6,4 и 7 пг).

Значительны колебания количества ДНК в больших таксономических группах. Среди высших растений количество ДНК у разных видов может отличаться в сотни раз, так же, как и среди рыб, в десятки раз отличается количество ДНК у амфибий.

У некоторых амфибий в ядрах количество ДНК больше, чем в ядрах человека в 10-30 раз, хотя генетическая конституция человека несравненно сложнее, чем у лягушек. Следовательно, можно предполагать, что «избыточное» количество ДНК у более низко организованных организмов либо не связано с выполнением генетической роли, либо число генов повторяется то или иное число раз.

Таблица 4 . Содержание ДНК в клетках некоторых объектов (пг, 10 -12 г)

Разрешить эти вопросы оказалось возможным на основании изучения кинетики реакции ренатурации или гибридизации ДНК. Если фрагментированные молекулы ДНК в растворах подвергнуть тепловой денатурации, а затем инкубировать их при температуре несколько более низкой, чем та, при которой происходит денатурация, то идет восстановление исходной двуспиральной структуры фрагментов ДНК за счет воссоединения комплементарных цепей – ренатурация. Для ДНК вирусов и прокариотических клеток было показано, что скорость такой ренатурации прямо зависит от величины генома; чем больше геном, чем больше количество ДНК на частицу или клетку, тем больше нужно времени для случайного сближения комплементарных цепей и специфической реассоциации большего числа разных по нуклеотидной последовательности фрагментов ДНК (рис. 53). Характер кривой реассоциации ДНК прокариотических клеток указывает на отсутствие повторяющихся последовательностей оснований в геноме прокариот; все участки их ДНК несут уникальные последовательности, число и разнообразие которых отражает степень сложности генетической композиции объектов и, следовательно, их общей биологической организации.

Совсем другая картина реассоциации ДНК наблюдается у эукариотических организмов. Оказалось, что в состав их ДНК входят фракции, которые ренатурируют с гораздо более высокой скоростью, чем можно было бы предполагать на основании размера их генома, а также фракция ДНК, ренатурирующая медленно, подобно уникальным последовательностям ДНК прокариот. Однако для эукариот требуется значительно большее время для ренатурации этой фракции, что связано с общим большим размером их генома и с большим числом различных уникальных генов.

В той части ДНК эукариотов, которая отличается высокой скоростью ренатурации, различают две подфракции: 1) фракцию с высоко или часто повторяющимися последовательностями, где сходные участки ДНК могут быть повторены 10 6 раз; 2) фракцию умеренно повторяющихся последовательностей, встречающихся в геноме 10 2 -10 3 раз. Так, у мыши во фракцию ДНК с часто повторяющимися последовательностями входит 10% от общего количества ДНК на геном и 15% приходится на фракцию с умеренно повторяющимися последовательностями. Остальные 75% от всей ДНК мыши представлены уникальными участками, соответствующими большому числу различных неповторяющихся генов.

Фракции с часто повторяющимися последовательностями могут обладать иной плавучей плотностью, чем основная масса ДНК, и поэтому могут быть выделены в чистом виде, как так называемые фракции сателлитной ДНК . У мыши эта фракция имеет плотность, равную 1,691 г/мл, а основная часть ДНК - 1,700 г/мл. Эти различия плотности определяются различиями в нуклеотидном составе. Например, у мыши в этой фракции имеется 35% Г и Ц пар, а в основном пике ДНК - 42%.

Как оказалось, сателлитная ДНК, или фракция ДНК с часто повторяющимися последовательностями, не участвует в синтезе основных типов РНК в клетке, не связана с процессом синтеза белка. Этот вывод сделан был на основании того, что ни один из типов РНК клетки (тРНК, иРНК, рРНК) не гибридизируется с сателлитными ДНК. Следовательно, на этих ДНК нет последовательностей, отвечающих за синтез клеточных РНК, т.е. сателлитные ДНК не являются матрицами для синтеза РНК, не участвуют в транскрипции.

Существует гипотеза о том, что высокоповторяющиеся последовательности, не участвующие непосредственно в синтезе белков, могут нести информацию, играющую важную структурную роль в сохранении и функционировании хромосом. К ним могут быть отнесены многочисленные участки ДНК, связанные с белками остова интерфазного ядра (см. ниже), участки начала репликации или транскрипции, а также участки ДНК, регулирующие эти процессы.

Методом гибридизации нуклеиновых кислот прямо на хромосомах (in situ ) была изучена локализация этой фракции. Для этого на изолированной сателлитной ДНК с помощью бактериальных ферментов синтезировали меченую 3 Н-уридином РНК. Затем цитологический препарат с хромосомами подвергали такой обработке, при которой происходит денатурация ДНК (повышенная температура, щелочная среда и др.). После этого на препарат помещали меченную 3 Н РНК и добивались гибридизации между ДНК и РНК. Радиоавтографически было обнаружено, что большая часть метки локализуется в зоне первичных перетяжек хромосом, в зоне их центромерных участков. Метка обнаруживалась также и в других участках хромосом, но очень слабо (рис. 54).

За последние 10 лет сделаны большие успехи в изучении центромерных ДНК , особенно у дрожжевых клеток. Так у S. cerevisiae центромерная ДНК состоит из повторяющихся участков по 110 п.н. Она состоит из двух консервативных участков (I и III) и центрального элемента (II), обогащенного АТ-парами оснований. Сходное строение ДНК центромеры имеют хромосомы дрозофилы. Центромерная ДНК человека (альфоидная сателлитная ДНК) состоит из тандема мономеров по 170 п.н., организованных в группы димеров или пентамеров, которые в свою очередь образуют большие последовательности по 1-6 х 10 3 п.н. Такая самая большая единица повторена 100-1000 раз. С этой специфической центромерной ДНК комплексируются особые центромерные белки, участвующие в образовании кинетохора , структуры, обеспечивающей связь хромосом с микротрубочками веретена и в движении хромосом в анафазе (см. ниже).

ДНК с высокоповторяющимися последовательностями обнаружена также в теломерных участках хромосом многих эукариотических организмов (от дрожжей до человека). Здесь чаще всего встречаются повторы, в которые входят 3-4 гуаниновых нуклеотида. У человека теломеры содержат 500-3000 повторов TTAGGG. Эти участки ДНК выполняют особую роль - ограничивать хромосому с концов и предотвращать ее укорачивание в процессе многократной репликации.

Недавно было найдено, что высокоповторяющиеся последовательности ДНК интерфазных хромосом связываются специфически с белками - ламинами, подстилающими ядерную оболочку, и участвуют в заякоревании растянутых деконденсированных интерфазных хромосом, тем самым определяют порядок в локализации хромосом в объеме интерфазного ядра.

Сделано предположение, что сателлитная ДНК может участвовать в узнавании гомологичных районов хромосом при мейозе. По другим предположениям, участки с часто повторяющимися последовательностями играют роль разделителей (спейсеров) между различными функциональными единицами хромосомной ДНК, например между репликонами (см. ниже).

Как оказалось, фракция умеренно повторяющихся (от 10 2 до 10 5 раз) последовательностей принадлежит к пестрому классу участков ДНК, играющих важную роль в процессах создания аппарата белкового синтеза. В эту фракцию входят гены рибосомных ДНК, которые могут быть повторены у разных видов от 100 до 1000 раз. В эту фракцию входят многократно повторенные участки для синтеза всех тРНК. Более того, некоторые структурные гены, ответственные за синтез определенных белков, также могут быть многократно повторены, представлены многими копиями. Такими являются гены для белков хроматина - гистонов, повторяющихся до 400 раз.

Кроме того, в эту фракцию входят участки ДНК с разными последовательностями (по 100-400 нуклеотидных пар), также многократно повторенными, но рассеянными по всему геному. Их роль еще не до конца ясна. Высказывается предположение, что такие участки ДНК могут представлять собой акцепторные или регуляторные участки разных генов.

Итак, ДНК эукариотических клеток гетерогенна по составу, содержит несколько классов последовательностей нуклеотидов: часто повторяющиеся последовательности (> 10 6 раз), входящие во фракцию сателлитной ДНК и не транскрибирующиеся; фракция умеренно повторяющихся последовательностей (10 2 -10 5), представляющих блоки истинных генов, а также короткие последовательности, разбросанные по всему геному; фракция уникальных последовательностей, несущая информацию для большинства белков клетки.

Исходя из этих представлений становятся понятными те различия в количестве ДНК, которые наблюдаются у разных организмов: они могут быть связаны с неодинаковой долей тех или иных классов ДНК в геноме организмов. Так, например, у амфибии Amphiuma (у которой ДНК в 20 раз больше, чем у человека) на долю повторяющихся последовательностей приходится до 80% от всей ДНК, у луков - до 70, у лосося - до 60% и т.п. Истинное же богатство генетической информации должна отображать фракция уникальных последовательностей. Не нужно забывать, что в нативной, нефрагментированной молекуле ДНК хромосомы все участки, включающие уникальные, умеренно и часто повторяющиеся последовательности, связаны в единую гигантскую ковалентную цепь ДНК.

Молекулы ДНК гетерогенны не только по участкам разной нуклеотидной последовательности, но и различны в отношении их синтетической активности.

Репликация эукариотических ДНК

Бактериальная хромосома реплицируется как одна структурная единица, имеющая одну стартовую точку репликации и одну точку терминации. Таким образом бактериальная циклическая ДНК является одним репликоном . От стартовой точки репликация идет в двух противоположных направлениях, так что по мере синтеза ДНК образуется так называемый глазок репликации, ограниченный с двух сторон репликационными вилками, что хорошо видн при электронномикроскопическом изучении вирусных и бактериальных реплицирующихся хромосом.

У эукариотических клеток организация репликации иного характера – полирепликоннная.. Как уже говорилось, при импульсном включении 3 НТ множественная метка появляется практически во всехмитотических хромосомах. Это означает, что одновременно в интерфазной хромосоме существует множество мест репликации и множество автономных точек начала репликации. Более подробно это явление было изучено с помощью радиоавтографии меченых молекул, выделенных ДНК (рис. 55).Если клетки были импульсно мечены 3 НТ, то в световом микроскопе на автографах выделенных ДНК можно видеть участки восстановленного серебра в виде пунктирных линий. Это небольшие отрезки ДНК, которые успели реплицироваться, а между ними расположены участки нереплицированной ДНК, которая не оставила радиоавтографа и поэтому остается невидимой. По мере увеличения времени контакта 3 НТ с клеткой величина таких отрезков возрастает, а расстояние между ними уменьшается. Из этих экспериментв можно точно рассчитать скорость репликации ДНК у эукариотических организмов. Скорость движения репликационной вилки оказалась равной 1-3 т.п.н. в мин у млекопитающих, около 1 т.п.н. в мин у некоторых растений, что намного ниже скорости репликации ДНК у бактерий (50 т.п.н. в мин.). В этих же экспериментах была прямо доказана полирепликонная структура ДНК хромосом эукариот: по длине хромосомной ДНК, вдоль нее, располагается множество независимых участков репликации – репликонов. По расстоянию между средними точками смежных метящихся репликонов, т.е. по расстоянию между двумя соседними стартовыми точками репликации, можно узнать величину отдельных репликонов. В среднем величина репликонову высших животных составляет около 30 мкм или 100 т.п.н. Следовательно, в гаплоидном наборе млекопитающих должно быть 20 000-30 000 репликонов. У низших эукариот величина репликонов меньше, около 40 т.п.н. Так у дрозофилы на геном приходится 3500 репликонов, а у дрожжей – 400. Как говорилось, синтез ДНК в репликоне идет в двух противоположных направлениях. Это легко доказывается радиоавтографически: если клеткам после импульсной метки дать продолжить синтезировать ДНК некоторое время в среде без 3 НТ, то произойдет падение включения его в ДНК, будет происходить как бы разбавление метки, и на радиоавтографе можно будет видеть симметричное, с двух сторон реплицируемого участка, уменьшение количества зерен восстановленного серебра.

Реплицирующиеся концы или вилки в репликоне прекращают движение, когда встретятся с вилками соседних репликонов (в терминальной точке, общей для соседних репликонов). В этом месте реплицированные участки соседних репликонов объединяются в единые ковалентные цепи двух новосинтезированных молекул ДНК. Функциональное подразделение ДНК хромосом на репликоны совпадает со структурным подразделением ДНК на домены или петли, основания которых, как уже упоминалось, скреплены белковыми связками.

Таким образом весь синтез ДНК на отдельной хромосоме протекает за счет независимого синтеза на множестве отдельных репликонов, с последующим соединением концов соседних отрезков ДНК. Биологический смысл этого свойства становится ясным при сравнении синтеза ДНК у бактерий и эукариот. Так бактериальная монорепликонная хромосома длиной в 1600 мкм синтезируется со скоростью около получаса. Если бы сантиметровая молекула ДНК хромосомы млекопитающих реплицировалась тоже как монорепликонная структура, то на это ушло бы около недели (6 суток). Но если в такой хромосоме расположено несколько сот репликонов, то для полной ее репликации понадобится всего около часа. На самом же деле время репликации ДНК у млекопитающих составляет 6-8 часов. Это связано с тем, что не все репликоны отдельной хромосомы включаются одновременно.

В некоторых случаях наблюдается одновременное включение всех репликонов или же появление дополнительных точек начала репликации, что дает возможность закончить синтез всех хромосом за минимально короткое время. Это явление происходит на ранних этапах эмбриогенеза некоторых животных. Так известно, что при дроблении яиц шпорцевых лягушек Xenopus laevis синтез ДНК занимает всего 20 минут, тогда как в культуре соматических клеток этот процесс продолжается около суток. Аналогичная картина наблюдается у дрозофилы: на ранних эмбриональных стадиях весь синтез ДНК в ядре занимает 3,5 минуты, а в клетках культуры ткани – 600 минут. При этом в клетках культуры величина репликонов оказалась почти в 5 раз больше, чем у эмбрионов.

Синтез ДНК по длине отдельной хромосомы происходит неравномерно. Было обнаружено, что в индивидуальной хромосоме активные репликоны собраны в группы, репликативные единицы, которые включают в себя 20-80 точек начала репликации. Это следовало из анализа радиоавтографов ДНК, где наблюдалась именно такая сблоченность реплицирующихся отрезков. Другим основанием для представления о существовании блоков или кластеров репликонов или репликационных единиц были эксперименты с включением в ДНК аналога тимидина - 5’-бромдезоксиуридина (BrdU). Включение BrdU в интерфазный хроматин приводит к тому, что во время митоза, участки с BrdU конденсируются в меньшей степени (недостаточная конденсация), чем те участки, где включался тимидин. Поэтому те участки митотических хромосом в которые включился BrdU, будут слабо окрашиваться при дифференциальной окраске. Это позволяет на синхронизированных культурах клеток выяснить последовательность включения BrdU, т.е. последовательность синтеза ДНК по длине одной взятой хромосомы. Оказалось, что происходит включение предшественника в большие участки хромосомы. Включение разных участков происходит строго последовательно в течение S-периода. Каждая хромосома характеризуется высокой стабильностью порядка репликации по своей длине, имеет свой специфический рисунок репликации.

Кластеры репликонов, объединенные в репликационные единицы, связаны с белками ядерного матрикса (см. ниже), которые вместе с ферментами репликации образуют т.н. кластеросомы – зоны в интерфазном ядре, в которых идет синтез ДНК.

Порядок, в котором активируются репликационные единицы, может, вероятно, определяться структурой хроматина в этих участках. Так, например, зоны конститутивного гетерохроматина (вблизи центромеры) реплицируются обычно в конце S-периода, также в конце S-периода удваивается часть факультативного гетерохроматина (например, X-хромосома самок млекопитающих). Особенно четко во времени последовательность репликации участков хромосом коррелирует с рисунком дифференциальной окраски хромосом: R-сегменты относятся к ранореплицирующимся, G-сегменты соответствуют участкам хромосом с поздней репликацией. C-сегменты (центромера) – места самой поздней репликации.

Так как в разных хромосомах величина и число разных групп дифференциально окрашенных сегментов различно, то это создает картину асинхронного начала и завершения репликации разных хромосом в целом. Во всяком случае, последовательность начала и окончания репликации отдельных хромосом в наборе не беспорядочная. Существует строгая последовательность репродукции хромосом относительно других хромосом в наборе.

Длительность процесса репликации отдельных хромосом прямо не зависит от их размеров. Так крупные хромосомы человека группы А (1-3) оказываются мечеными в течение всего S-периода, так же как и более короткие хромосомы группы В (4-5).

Таким образом, синтез ДНК в геноме эукариот начинается почти одновременно на всех хромосомах ядра в начале S-периода. Но при этом происходит последовательное и асинхронное включение разных репликонов как в разных участках хромосом, так и в разных хромосомах. Последовательность репликации того или иного участка генома строго детерминирована генетически. Это последнее утверждение доказывается не только картиной включения метки в разные отрезки S-периода, но также тем, что существует строгая последовательность появления в ходе S-периода пиков чувствительности определенных генов к мутагенам.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта