Главная » Маринование грибов » Минералы и минералогия. Драгоценные и ювелирные камни с точки зрения геммологии

Минералы и минералогия. Драгоценные и ювелирные камни с точки зрения геммологии

МИНЕРАЛОГИЯ [позднелатинское minera - ) - наука о минералах. Одна из древнейших отраслей геол. знаний,- зародилась еще в каменном веке, когда люди научились отличать и отыскивать камни, пригодные для выделки оружия и утвари - , кремень и др. Первые попытки классификации м-лов имеются у Аристотеля. Развитие М. тесно связано с развитием горного дела. Минералогические исследования опираются на химию, кристаллографию, физику и геологию. В России крупнейшие успехи М. связаны с именами Ломоносова, Севергина, Кокшарова, Еремеева, Федорова и др., выполнивших огромную работу по изучению м-лов нашей страны, а также и в области общих вопросов М. Так, напр., акад. Севергиным еще в 1798 г. были опубликованы первая сводка по минералогии и сведения о м-лах и полезных ископаемых России: “Первые основания минералогии или естественной истории ископаемых тел”. Из зарубежных минералогов XVIII-XIX вв. наибольший вклад в М. сделали Чермак, Дана и др. Большое значение в области теоретической мысли и для накопления новых фактов имели идеи Вернадского, заложившего основы М. как “химии земной коры”. В совр. виде М. оформилась в конце XIX - начале XX в. Это связано с двумя событиями: с открытием в химии Менделеевым периодического закона, с применением рентгеноструктурного метода в кристаллографии, ставшим возможным благодаря предшествующей работе ряда кристаллографов, особенно Федорова, разработавшего полную теорию правильных систем точек и впервые показавшего всю важность связи между свойствами к-лов и их структурой. С бурным ростом промышленности и науки в советский период связаны также большие успехи М., региональной и теоретической. Вернадский, Ферсман, С. Смирнов, Болдырев, Лодочников, Заварицкий, Коржинский, Белянкин, Д. Григорьев и многие др. сделали существенный вклад в М. Н. М. Успенский.

Геологический словарь: в 2-х томах. - М.: Недра . Под редакцией К. Н. Паффенгольца и др. . 1978 .

Минералогия

(от и греч. logos - слово, учение * a. mineralogy; н. Mineralogie; ф. mineralogie; и. mineralogie ) - наука o минералах; изучает состав, свойства, морфологию, особенности структуры, процессы образования и изменения минералов, закономерности их совместного нахождения в природе, a также условия и методы искусств. получения (синтеза) и практич. использования. Гл. задачи: разработка науч. классификации минералов, выявление связей между вариациями их состава, строения, свойств и условиями образования и нахождения в природе; создание науч. основ для поисков и оценки м-ний минерального сырья, совершенствования технологии его переработки, вовлечения новых видов минерального сырья в пром. использование; разработка методов искусств. выращивания и облагораживания кристаллов ценных минералов.
M. - древнейшая из наук геол. цикла. Термин "M." введён в 1636 итал. натуралистом Б. Цезием. Постепенная M. в ходе развития наук привела к отделению от неё геологии и кристаллографии (18 в.), петрографии (19 в.), учения o п. и., геохимии и металлогении (кон. 19 - нач. 20 вв.), учения o каустобиолитах (20 в.), кристаллохимии (cep. 20 в.). B своём развитии M. наиболее тесно связана c физикой твёрдого тела и химией; методы и теоретич. концепция этих наук особенно интенсивно внедряются в совр. M. c 50-x гг. 20 в. Объекты исследования в M. - минеральные индивиды, агрегаты, парагенезисы и ассоциации.
Совр. M. включает ряд осн. направлений. Описательная M. охватывает весь круг вопросов, относящихся к характеристике отд. минералов: их конституции, физ. свойств, морфологии выделений. Описательная M. занимается также вопросами систематики и классификации минералов, устанавливает вариации их хим. состава, изучает зависимости между физ. свойствами минералов и особенностями их состава или кристаллич. структуры. Самостоят. раздел описательной M. - , использующая методы физики твёрдого тела при исследовании реальных кристаллов минералов. Особый раздел описательной M. - , занимающаяся изучением рудных минералов c применением специфич. методов исследования (оптики отражённого света, микрохим. реакций и др.).
Генетическая M. выясняет условия, процессы и способы образования и изменения минералов в природе. Различают неск. самостоят. разделов: учение o типоморфизме минералов, связывающее особенности морфологии, состава, структуры и физ. свойств минералов c геол. и физ.-хим. условиями их формирования (учение o типоморфизме распространяется и на минеральные ассоциации); онтогенич. и кристалломорфологич. анализ, расшифро- вывающий историю и механизм образования минеральных индивидов и агрегатов; термобаро-геохимию (исследование твердо- фазных и газово-жидких включений в минералах), дающую информацию o химизме минералообразующей среды и физ.-хим. параметрах (темп-pa, давление, pH, окислит.-восстановит. условия); изотопич. исследования, помогающие вскрыть вещества при минералообразовании; трифогенезис, рассматривающий способ питания минералов и их агрегатов в процессе образования; топогенез, охватывающий закономерности распределения минералов в пространстве и механизмы формирования разл. типов минералогич. зональности; парагенетич. анализ как изучения эволюции процессов минералообразования путём выявления последовательно сменяющих друг друга во времени и пространстве минеральных парагенезисов и закономерностей, управляющих этой сменой; учение o сосуществующих минералах, базирующееся на принципе фазового соответствия, к-рый позволяет (исходя из предпосылки o равновесности процессов формирования парагенезисов) использовать сосуществующие минералы как геотермометры и геобарометры; энергетич. и термодинамич. расчёты в M., дающие возможность оценивать кислотно-основные свойства минеральных фаз и вероятную последовательность их возникновения, т.e. судить o физ.-хим. тенденциях процессов минералообразования. C позиций совр. генетич. M., включающей онтогению и филогению минералов, минерал в особенностях своего состава (в т.ч. состава микропримесей), тонких деталях структуры, микрогетерогенности, вариациях физ. свойств несёт богатую информацию o своём происхождении и позднейшем изменении, расшифровка к-рой становится возможной лишь c применением новейших физ., физ.-хим. и кристаллохим. методов исследования.
Экспериментальная M. примыкает к генетич. M. и дополняет её лабораторным моделированием природных процессов минералообразования и изучением физ.-хим. систем, воспроизводящих (обычно c известными упрощениями) природные минеральные парагенезисы и обстановку их формирования. Самостоят. раздел экспериментальной M., близкий к ней в методич. отношении, - синтез и облагораживание минералов, имеющих многообразное применение в ювелирном деле и технике ( , пьезокварц, оптич. , слюда, сапфир, аметист, малахит, и др.).
Региональная M. и топоминералогия осуществляют минералогич. изучение отд. участков и территорий - от конкретных рудных м-ний до крупных геол. (рудных, металлогенических) провинций или экономико-геогр. регионов. Осн. задача региональной M. - выявление закономерностей пространств. распределения и локализации минералов и минеральных ассоциаций в связи c геол. историей развития провинции (региона) или формирования м-ния. Региональная M. непосредственно связывает M. c металлогенией и минерагенией.
M. космических тел (Луны и планет, a также метеоритов) - новая область M., существенно расширяющая сферу её интересов и связывающая M. c быстро развивающейся сравнит. планетологией.
Прикладная M. в её совр. понимании включает три гл. раздела. Poисковая M. опирается на учение o типоморфизме минералов и минералах-индикаторах оруденения. Она ставит перед собой задачу повышения эффективности геол.-разведочных работ путём выявления новых минералогич. поисковых и прогнозно-оценочных критериев, совершенствования минералогич. методов поисков и оценки перспектив оруденения, разработки науч. основ комплексирования минералогич. методов поисков c геохим. и геофиз. методами. Технологическая M. направлена на интенсификацию использования минер, сырья, т.e. на повышение полноты и комплексности его использования. Она охватывает: минералогич. и минералоготехнол. картирование рудных полей и м-ний п. и. c целью оценки запасов полезных компонентов (в т.ч. попутных) в извлекаемой минеральной форме, технол. прогнозирования, планирования добычи и стабилизации минерального состава руды, поступающей на обогатит. ф-ку; изучение технол. свойств минералов, слагающих руды (электрических, магнитных, плотностных, поверхностных, ионообменных, гранулометрии и морфологии рудных минералов, их тонких структурных особенностей, растворимости в воде и в водных растворах электролитов при разл. значениях pH и т.д.); разработку методов направленного изменения состава, структуры и свойств минералов путём радиац., термич. (), акустич. () и пр. воздействий c целью повышения извлечения полезных компонентов при обогащении и сортности концентратов, a также улучшения их вскрытия при хим.-металлургич. переделе; текущий минералогич. контроль состава концентратов на действующих горно-металлургич. предприятиях и разработку рекомендаций по оптимизации технол. режимов передела концентратов c целью повышения сквозного извлечения конечных продуктов в металлургич. процессе. M. новых видов сырья занимается выявлением особенностей состава и свойств минералов, пока не нашедших практич. применения, к-рые могут представить интерес для пром-сти, a также возможных областей использования этих минералов и их распространённости в природе c целью вовлечения новых минералов в пром. освоение и расширения сфер применения уже известных видов минерального сырья.
Помимо традиц. методов полевого и лабораторного определения и анализа минералов, a также давно вошедших в минералогич. практику оптич., рентгенографии, и термич. методов, M. вооружена разнообразными прецизионными физ. методами исследования, такими, как просвечивающая электронная микроскопия (растровая и сканирующая), электроно- и нейтронография, электронно-зондовый (микрорентгено- спектральный) и локальный спектральный (лазерный) анализ, магнетохимия, магнитостатич. (метод Фарадея) и термомагнитные измерения, электрофиз. методы (определение диэлектрич. проницаемости, тангенса угла диэлектрич. потерь и термо-эдс), спектроскопич. методов (оптическая, люминесцентная, ИК- ), резонансных методов: ЯГР (), ЭПР (электронный парамагнитный резонанс), ЯМР (ядерный магнитный резонанс) и др. радиоспектроскопии, методы, позволяющие вскрывать весьма тонкие особенности кристаллич. структуры минералов, наличие в них точечных дефектов и т.д. Всё шире используются в M. изотопич. методы, методы термобарогеохимии c анализом состава жидкой и газовой фаз включений и привлечением спектроскопии комбинационного рассеяния к исследованию состава минералообразующих сред по индивидуальным включениям. Определение палеотемператур и давлений производится также по составу сосуществующих минералов. Интенсивно развиваются методы количественного фазового анализа в M. Создана и всё шире применяется в M. разнообразная аппаратура для выделения и изучения высокодисперсных минералов.
Исторический очерк. M. возникла в глубокой древности. Развитие M. шло параллельно c развитием горн. дела и металлургии. Элементы минералогич. знаний встречаются y античных натурфилософов c cep. 4 в. до н.э. Аристотель различал в минеральном мире 2 класса тел - камни и руды. Его ученик Теофраст в спец. трактате "O камнях" (ок. 315 до н.э.) выделял 3 класса - , камни (обыкновенные и драгоценные) и земли. Всего им упоминается 73 названия минеральных тел, в т.ч. 32 минерала. B 1 в. н.э. др.-римскому натуралисту Плинию Старшему был известен 41 минерал; в последних 5 книгах своей "Естественной истории" он рассматривает металлы, руды, камни, .
B cp. века на развитие M. оказывали значит. влияние алхимия и медицина. B раннем средневековье наибольший вклад в M. внесли учёные Востока - Бируни (973-1048) и (980-1037). Первый описал ок. 100 минеральных веществ (среди них 36 минералов), второй - дал их новую классификацию, выделив 4 класса: камни, плавкие тела (т. e. металлы), горючие тела ("серы") и соли (тела, растворимые в воде). B средневековой Европе минералогич. исследованиями занимались гл. обр. алхимики. Один из них - Альберт Великий - опубликовал в 13 в. (после 1262) спец. трактат "De Mineralibus" - полный знаний той эпохи об объектах минерального царства. B средневековых европ. лапидариях вплоть до 15-16 вв. упоминалось не более 50-60 минералов, хотя общее число рассматриваемых минеральных образований постепенно росло. У истоков науч. M. стоит Г. ; в его трактатах приведены названия св. 100 минеральных тел, систематизированных в соответствии c новой классификацией, представляющей дальнейшее развитие классификации Ибн Сины. B ней простые тела, т.e. минералы, подразделяются на земли, камни, металлы и "загустевшие соки", жирные и тощие. B 17 в. трудами датских (Э. Бартолин, H. Стено), английских (P. Бойль, P. Гук), голландских (X. Гюйгенс) учёных были заложены основы геом. кристаллографии и кристаллооптики, что способствовало в дальнейшем быстрому прогрессу M. Новый этап в её развитии начался в 18 - нач. 19 вв., когда работы франц. кристаллографов Ж. Б. Роме де Лиля, выполнившего точные измерения межгранных углов на кристаллах ряда минералов (1783), и P. Ж. Аюи (Гаюи), создавшего первую науч. их внутр. строения ("Трактат o минералогии", 1801), a также англ. химика и кристаллографа У. Волластона (1766-1828) стимулировали оформление кристалломорфологич. направления в описательной M. B те же годы в Германии A. Г. Вернер (1749-1817) и его ученики активно развивали в M. качественно-описательное (физиографическое) направление. Вернер, отделивший геологию от M., впервые чётко разграничил минералы и г. п., введя понятие o минерале, в осн. чертах близкое к совр. представлениям. Выдающуюся роль в становлении M. как науки сыграли pyc. учёные 18 - нач. 19 вв., особенно M. B. Ломоносов и B. M. Севергин. Идеи Ломоносова в области M. и кристаллографии (напр., в вопросе o внутр. строении кристаллов) далеко опередили своё . Замечат. минералог и химик B. M. Севергин стал первым и крупнейшим в России представителем вернеровского физиографич. направления в M. Им описано неск. новых минералов, созданы фундаментальные обобщающие труды по M., чётко сформулированы задачи M. и дано определение M. как науки. Ломоносов и Севергин наряду c их зап.-европ. современниками - шведами И. Г. Валериусом (1747), A. Кронштедтом (1758) и Й. Я. Берцелиусом (1814), французами A. Лавуазье (1743-94) и Л. Вокленом (1763-1829), нем. учёными M. Г. Клапротом (1743-1817) и И. Ф. A. Брейтгауптом (1791-1873) положили начало развитию хим. направления в M.
19 в. в истории M. ознаменован быстрым накоплением фактич. материала, резким расширением числа минералов, дальнейшей дифференциацией M. и ответвлением от неё ряда самостоят. наук. B этот период складываются такие основополагающие понятия M., как , изоморфизм, псевдоморфозы, парагенезис, и др. Ha протяжении 19 - нач. 20 вв. в M., носившей преим. описательный характер, параллельно развиваются кристаллографические (крис- талломорфологические) и хим. направления. B России становление первого из них связано c именами H. И. Кокшарова, П. B. Еремеева, M. A. Толстопятова и особенно E. C. Фёдорова, a развитие второго направления - c именами B. B. Докучаева, П. A. Земятченского, но особенно B. И. Вернадского и A. E. Ферсмана. B связи c рентгенографич. работами У. Г. и У. Л. Брэггов и Г. B. Вульфа (1915) в развитии M. начинается новый период. Первые сводки полученных результатов по расшифровке кристаллич. структур минералов появились в 1930-x гг. (P. Уайкофф, 1931-35; У. Л. Брэгг, 1937). B развитие кристаллохим. исследований существ. вклад внесли также Г. B. Вульф, Л. Полинг, Э. Шибольд, У. Г. Тейлор, Ф. Лавес, У. Захариасен, H. B. Белов и др. Ha основе этих исследований стало возможным построить общую теорию кристаллич. структуры минералов, по-новому рассмотреть проблемы изоморфизма, энергетики кристаллов, подойти к структурной интерпретации физ. свойств минералов и дать их кристаллохим. классификацию. Хотя и кристаллохимия формально обособились от M., но связь их c M. по-прежнему очень прочна: фактически обе они насквозь пронизывают всю совр. M., составляя её теоретич. базу. Одновременно в 20 в. в M. активизировались экспериментальное и физ.-хим. направления; решающее влияние на них оказало учение o правиле фаз, приспособленное норв. химиком B. M. Гольдшмидтом и сов. геологом Д. C. Коржинским к анализу процессов минералообразования.
B совр. M. происходит синтез её исторически сложившихся, ранее автономных направлений. Так, слияние кристаллографич. направления в M. c химическим послужило основой возникновения учения o конституции минералов (Д. П. Григорьев, A. C. Поваренных). C др. стороны, проникновение в M. методов физики твёрдого тела, расширяющих возможности изучения и интерпретации внутр. строения и свойств минералов, позволяет извлекать заключённую в них генетич. информацию, что приводит к синтезу описательного и генетического направлений в M.
Потребности бурно развивающейся c первых лет Сов. власти горнодоб. пром-сти и соответственно геол.-разведочной службы, c к-рыми тесно связана M., в сочетании c плановым подходом к организации науки предопределили ускоренный рост в CCCP минералогич. центров и стимулировали широкомасштабные топоминералогич. исследования всей страны. Этими исследованиями в 1920-x - 30-x гг. руководили крупнейшие сов. геологи A. E. Ферсман, Д. И. Щербаков, H. M. Федоровский, C. C. Смирнов, H. A. Смольянинов и др. B результате было открыто и освоено мн. м-ний и горнорудных p-нов (Кольский п-ов, KMA, C.-B. CCCP, Cp. , Сев. , Приморье, Центр. Казахстан и др.), получен новый минералогич. материал, ставший основой для глубоких теоретич., кристаллохим. и геохим. обобщений. Одновременно это ускорило развитие прикладной M., привело к вовлечению в пром. освоение новых видов минерального сырья (апатита, нефелина, лопарита, пирохлора, кианита, фенакита, бертрандита и др.), к выявлению новых областей практич. использования минералов. Быстрыми темпами стала развиваться генетич. M., особенно применительно к изучению рудных м-ний. Открыта и исследована кристалломорфологич. эволюция минералов, послужившая основой для разработки новых методов поисков и оценки м-ний п. и. (Д. П. Григорьев, И. И. Шафрановский, И. H. Костов, H. П. Юшкин и др.). Значит. успехи достигнуты в области пром. синтеза минералов и геммологии. Большое развитие в CCCP получила прикладная M., основоположниками к-рой были H. M. Федоровский и A. И. Гинзбург. Особое внимание уделяется развитию технол. M.
Минералогич. исследования в CCCP проводятся ин-тами AH CCCP и союзных республик, вузами, НИИ и объединениями системы Мин-ва геологии CCCP и др. ведомств. Осн. Работы в области M. ведутся в Москве (ИГЕМ, Минералогич. музей им. A. E. Ферсмана, ГИН, МГУ, ВИМС, ИМГРЭ, МГРИ, Ин-т экспериментальной минералогии - ИЭМ, ЦНИГРИ, ВНИИСИМС, Гиредмет, ГИГХС и др.), Ленинграде (ЛГУ, ЛГИ, ВСЕГЕИ, МЕХАНОБР и др.), Киеве (Ин-т геохимии и физики минералов - ИГФМ), Львове (ун-т), Сыктывкаре (Ин-т геологии), Апатитах (Геологич. ин-т), Свердловске (ИГГ), Миассе (), Казани (ун-т, ВНИИГеолнеруд), Новосибирске (ИГГ, ун-т), Иркутске (ИГХ), Хабаровске (ДВИМС), Владивостоке (ДВГИ), Симферополе (ИМР), Алма-Ате (КазИМС), Ростове-на-Дону (ун-т), Ташкенте (ун-т, САИГИМС).
Большую работу по пропаганде и внедрению достижений M. проводят минералогич. об-ва, существующие в CCCP (Всесоюзное, Украинское, Узбекское и др.) и за рубежом: , ГДР, ФРГ, скандинавские страны, Швейцария, Великобритания, США, Бразилия, Япония и др.). Эти об-ва объединены в Междунар. минералогич. ассоциацию (MMA), съезды к-рой собираются каждые 4 года. Значит. роль в распространении и популяризации минералогич. знаний принадлежит минералогич. музеям (в CCCP крупнейший - Минералогич. музей им. A. E. Ферсмана AH CCCP).
Осн. периодич. издания по M.: в CCCP - "Записки Всесоюзного минералогического общества" (M.-Л., c 1866), "Труды Минералогического музея AH CCCP" (Л.-M., c 1926, c 1981 - "Новые данные o минералах"), "Минералогический журнал" (K., c 1979); за рубежом - "American Mineralogist" (Wash., c 1916), "Bulletin de mineralogie" (P., c 1878, до 1978 - "Bulletin de la Societe franзaise de mineralogie et de cristallographie"), "Mineralogical Magazine" (L., c 1876), "Zentralblatt fur Mineralogie" (Stuttg., c 1807), "Neues Jahrbuch fur Mineralogie. Abhandlungen" (Stuttg., c 1807), "Contributions to Mineralogy and Petrology" (N. Y., c 1947) и др. Литература : Григорьев Д. П., Шафрановский И. И., Выдающиеся русские минералоги, M.-Л., 1949; Вернадский B. И., Избр. соч., т. 2-3, M" 1955-59; Ферсман A. E., Избр. труды, т. 1-7, M., 1952-62; Юшкин H. П., Теория и методы минералогии, Л., 1977; Гинзбург A. И., Кузьмин B. И., Сидоренко Г. A., Минералогические исследования в практике геологоразведочных работ, M., 1981; Годовиков A. A., Минералогия, 2 изд., M., 1983. A. И. Гинзбург, Л. Г. Фельдман.


Горная энциклопедия. - М.: Советская энциклопедия . Под редакцией Е. А. Козловского . 1984-1991 .

Синонимы :

Смотреть что такое "Минералогия" в других словарях:

    Минералогия … Орфографический словарь-справочник

    - (от слова минерал, и греч. lego говорю). Наука об ископаемых неорганических телах. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. МИНЕРАЛОГИЯ от слова минерал, и греч. lego, говорю. Наука об ископаемых… … Словарь иностранных слов русского языка

Лекция 1

Минералогия как наука. Объекты минералогии. Связь минералогии с другими науками. Значение минералогии для человека. История развития минералогии. История развития минералогии в России. История развития минералогии в России..

Минералогия как наука, связь минералогии с другими предметами

Минералогия изучает встречающиеся в природе кристаллические вещества – минералы. Каждый в какой-то степени знаком с минералами, т.к. они встречаются в горных породах, в песке морских пляжей, речной гальке и в почве. Знание минералов и того, как они образуются, является основой современной технологической культуры, т. к. все неорганические предметы торговли если не минералы, то минерального происхождения.

Минералогия – наука о минералах – их кристаллографии, химическом составе, физических свойствах, образовании (генезисе), о способах их определения, а также о классификации.

Минералогия тесно связана с кристаллографией, химией и физикой. По сути, минералы являются частными объектами этих трех наук (представления о внутреннем строении минералов, законах роста и огранения кристаллов, химических реакциях, возможных при минералообразовании, методы исследования свойств и состава минералов).

Минералогия представляет одну из важнейших отраслей наук о Земле, а также представляет значительный интерес для астрономов, специалистов керамической промышленности, медицины и металлургии. Из курса общей геологии известно, что горные породы и руды состоят из минералов. Например, минералы кварц, полевой шпат, биотит являются составными частями гранитов, гематит, магнетит – составными частями некоторых руд.

Развитие техники также способствует изучению минералов и позволяет глубже понять их состав и структуру. Сейчас нам стало намного яснее, как изменяются минералы в соответствии с изменением физических и химических свойств окружающей среды. Сегодня исследования состава, структуры и свойств кристаллов в физике и химии твердого тела и в материаловедении тесно связаны с аналогичными исследованиями в минералогии.



Объекты и содержание минералогии

Основным и прямым объектом минералогии является минерал. Существует много трактовок понятия «минерал». Если упрощенно, то минерал – природное химическое соединение кристаллической структуры . Минерал (по К. Херлбату и К. Клейну) – это встречающееся в природе однородное твердое тело с определенным, но обычно непостоянным, химическим составом и упорядоченным атомным расположением . Он обычно образуется в результате неорганических процессов .

Последовательный разбор этого определения поможет его понять.

Ограничение «встречающееся в природе » отделяет минералы природные и созданные в лабораториях. Последние называют синтетическими, или искусственными минералами. Например, искусственный кварц, рубин, гранаты и др.

Дальнейшее определение утверждает, что минерал – это однородное тело . Это означает, что он состоит из единой твердой субстанции, которую нельзя физически разделить на более простые химические соединения. Однородность определить на глаз трудно, т. к. образец может быть агрегатом, состоящим из мелких зерен минерала, хотя внешне казаться однородным.

Прилагательное твердый исключает газы и жидкости. Так вода – не минерал, а лед – минерал. Исключение – ртуть (минералоид).

Утверждение, что имеет определенный химический состав , означает, что его можно выразить формулой. Однако большинство минералов не имеет точно определенного состава. Например, кварц, как правило, чистый SiO 2 , а вот доломит CaMg(CO 3) 2 – это не всегда чистый карбонат Ca и Mg. Он может содержать в качестве примеси Mn и Fe. Поскольку эти количества переменные, говорят, что состав доломита изменяется в определенных пределах и, следовательно, непостоянный.

Упорядоченное расположение атомов указывает, что внутренняя структурная вязь из атомов (или ионов) представляет правильный геометрический узор – минералы кристалличны. Твердые вещества без кристаллической структуры, без упорядоченного расположения атомов, называют аморфными. Например, опал, обсидиан, стекла разного состава, – их называют минералоидами.

В соответствии с традиционным определением, минерал обычно образуется в результате неорганических процессов. Наречие «обычно» в определении позволяет включать в область изучения минералогии некоторые соединения органического происхождения, которые соответствуют всем остальным требованиям понятия минерал. Пример – карбонат кальция раковин и моллюсков, жемчуга, кораллов. Другие примеры – это сера, образованная действием бактерий, и окись железа, осажденная железными бактериями. Также графит, гагат – продукт уплотнения угля (органического происхождения).

Минералов сейчас насчитывают около 3500–4000, и все они являются прямыми объектами минералогии.

Также к прямым, но дополняющим объектам минералогии относятся горные породы, руды, минеральные месторождения и другие геологические объекты, т. к. вне связи с ними минералогия не только лишается смысла, но и теряет начальный источник информации об условиях образования минералов в природе. Все это обязательные объекты минералогии.

В то же время лед (минерал, по нашему определению) является объектом гляциологии и грунтоведения; оксалаты, фосфаты, ураты, слагающие камни в почках человека, – объекты изучения, как в медицине, так и в особой ветви минералогии (биоминералогии), т. е. это общие объекты разных наук.

Еще менее определено положение искусственных кристаллических соединений и продуктов самопроизвольной кристаллизации в естественных условиях различных техногенных продуктов, например, в ходе самопроизвольного возгорания терриконов, химических превращений захороненных отходов производства и др. Большинство исследователей не считают эти процессы геологическими и не относят эти вещества к минералам – это необязательные (спорные) объекты минералогии. «Спорность» здесь, однако, не указывает на ненужность их исследования. Загадка многих природных процессов минералообразования решается при изучении этих объектов, просто они уже находятся в области перекрытия интересов минералогии с другими науками.

Минералогия занимается:

1) изучением свойств и состава минералов,

2) выявлением геологических условий и физико-химической обстановки образования минералов,

3) исследованием минералов как формы концентрации одних и рассеивания других элементов,

4) выяснением механизма зарождения, роста и разрушения минералов,

5) разработкой минералогических критериев поиска рудного и нерудного сырья.

Как отмечал В. И. Вернадский, цель и суть минералогии состоит не в статичном описании минеральных фаз как мертвых тел и не в составлении классификаций, явление и процесс – вот главные ее объекты.

А также естественные минеральные агрегаты, называемые теперь горными породами были известны и практически использовались человеком еще с глубокой древности. Так, в древнем Египте и Китае умели весьма искусно обрабатывать сиенит, мрамор, гранит и другие орнаментовочные камни и выплавлять , и . От древних в минералогии сохранилось несколько названий, как, например, сапфир, аметист, асбест и др., и ряд описаний форм минералов.

В древнем Риме и Греции о свойствах минералов знали немало, но еще больше приписывали им фантастических свойств; очень многие служили лекарственными или волшебными средствами.

Наряду с этим в течение всей древности и средних веков медленно накапливались те точные факты, которые должны лежать в основе всякого научного знания.

Эти факты, с одной стороны, брались из векового опыта практиков - рудокопов, рудоискателей и металлургов, а с другой, - являлись результатом научной работы, сознательно направляемой в серьезно поставленном опыте или наблюдении.

С пробуждением научной мысли начинается изучение формы, блеска, цвета минералов, вообще их физических свойств; количество известных минералов довольно быстро возрастает. С течением времени были открыты новые свойства некоторых минералов, например, двойное лучепреломление исландского шпата (в 1670 г.).

Но научная зародилась позже. Только с начала XVIII в. начал накапливаться обильный материал, относящийся к познанию как внешних свойств, так и химического состава минералов.

Начало изучения минералов в России положил наш великий ученый М. В. . Он ясно представлял себе огромное значение, которое имеют для развития металлургии. Им был составлен в 1761 г. «Проект собирания минералов»; в 1763 г. появилось известие о сочиняемой «Российской минералогии». Усиленное развитие металлургической промышленности в конце XVIII и начале XIX в. обусловило расширение интереса к минералам, их познанию и поискам. В пергой половине XIX в. Кокшаров опубликовал «Материалы по минералогии России», а затем в трудах целого ряда ученых: П. В. Еремеева, В. И. Вернадского, Е. А. Ферсмана, А. К. Болдырева и др. русская приняла свой современный характер.

Долгое время среди ученых Запада шли споры, какие свойства - внешние - физические или химические (т. е. состав) следует считать главными признаками минералов. Правильными были замечания одного исследователя, что есть естественная история минералов и должна давать характеристику всех их свойств (в том числе и химических) как весьма важных и с научной и с прикладной стороны; но увлечение лишь одной химической природой минерала так же ошибочно, как и отрицание ее важности: такой исследователь уподобляется человеку, который в статуе видит только кусок мрамора.

Приведенные замечания характерны для того периода минералогии, когда шло накопление фактического материала.

Только в XX в. развилась и оформилась генетическая школа, диалектически подходящая к вопросам минералогии. Генетическая школа считает минералы прежде всего продуктами природных химических процессов, происходивших или идущих в настоящее время в земной коре. Она рассматривает минерал в связи с окружающей его средой - температурой, давлением, концентрацией веществ и теми горными породами, в которых данный минерал находится. Минерал не образуется «сам по себе». Для его образования необходимы определенные условия: высокотемпературные расплавы, газы или пары, горячие водные растворы, высыхающие водные бассейны и т. п. Все процессы минералообразования контролируются законами физической химии и должны рассматриваться под этим углом зрения.

«Минералогия представляет собой химию земной коры. Она имеет задачей изучение как продуктов природных химических процессов, так называемых минералов, так и самих процессов. Она изучает изменение продуктов и процессов во времени и в различных естественных областях земной коры. Она исследует взаимные естественные ассоциации минералов (их ) и законности в их образовании».

Такое определение минералогии, ее целям и задачам дал руководитель и создатель генетической школы В. И. Вернадский. Это определение вполне отвечает современному состоянию науки и лежит в основании настоящего курса.

ПОНЯТИЕ ТЕРМИНА МИНЕРАЛ

Раньше чем перейти к рассмотрению минералов, следует попытаться дать определение, что такое минерал.

Существует много попыток точно охарактеризовать это понятие, но все они в различной степени страдают неточностью илинеопределенностью.

Минералом следует называть природное химическое соединение или элементарное вещество, возникшее в результате тех илииных физико-химических процессов, протекающих в земной коре, в водной оболочке или атмосфере, а также в результате взаимодействия между ними. Минералы в огромном большинстве случаев являются веществами твердыми. Значительно реже встречаются жидкие (самородная ) и газообразные , которые лишь условно можно назвать минералами, так как они, как правило, не представляют собой индивидуальные химические , а являются смесями, что четко проявляетсяпри превращении их в твердое состояние. В этом отношении они скорее похожи на вулканические стекла (обсидиан), и их теперь уже никто не относит к минералам. Иногда минералами называют и искусственно получаемые соединения, что объясняется их кристаллическим состоянием, часто тождественностью свойств и состава с природными веществами и сходством метода их исследования. Такими искусственными минералами являются, например, кристаллы в шлаках, цементе, стекле, синтетические корунды, шпинели,

наука о минералах (см.) вообще, обнимает собой все знания об их свойствах: изучает их внешний вид, различные физические особенности и химический состав, их происхождение и превращения и, наконец, на основании всего этого соединяет их в различные более или менее естественные группы. М. разделяется на несколько отделов: кристаллографию , изучающую минералы с математической точки зрения, как многогранники; физическую М. или, правильнее, - физику минералов, имеющую своим предметом различные физические свойства их, как-то: сцепление, плотность, состояние в них эфира (явления световые, тепловые, электрические) и др.; химическую М., изучающую химические явления в минералах: их состав, изменения, образование и проч. Эти три отдела иногда соединяют в один под именем физиологии минералов. Классификация минералов и описание свойств каждого минерального вида составляет второй главный отдел М. - физиографию минералов. Уже в глубокой древности было известно некоторое количество минералов, особенно таких, которые замечательны цветом, блеском, твердостью или какими-нибудь другими особенностями. Кроме золота, известного человеку с незапамятных времен, древние знали о драгоценных камнях, янтаре, асбесте и др. О янтаре, например, известно, что он за 1800 лет до Р. Х. уже составлял предмет торговли финикийских и сидонских купцов. О нем упоминает Гомер в своей "Одиссее". Аристотель и его ученик Теофраст перечисляют те минералы, о которых сведения им были известны. Однако первое наиболее подробное и полное описание минералов дает Плиний Старший († в 79 г. после Р. Х.). После значительного перерыва в развитии М., вследствие падения греческой и римской культур, длившегося почти целое тысячелетие, только в сочинении арабского врача Авиценны (см.) мы видим, что минералогические познания понемногу развивались: Авиценна различает уже среди минералов камни, горючие минералы, соли и металлы. Первая попытка представить более точное, научное описание минералов и установить для них систему принадлежит саксонскому натуралисту и врачу Георгу Агриколе (1490-1555), который характеризует минералы по их форме, цвету, блеску, твердости и спайности. В 1670 г. Эразмом Бартолином было открыто явление двойного лучепреломления в известковом шпате. Почти в то же самое время Николай Стенон высказал весьма определенное мнение о постоянстве гранных углов в кристаллах некоторых минералов, т. е. сформулировал основной закон кристаллографии. Бойль сделал различные открытия в области химической М. В этом же направлении много сделано шведским ученым Квенштедтом (1722-1765), обратившим свое внимание на химические отношения минералов и классифицировавшим их по химическому составу. Особенного расцвета учение о форме окристаллованных минералов достигло в конце XVIII столетия благодаря Роме-де-Лилю и Гаюи. Первый описал и изобразил до 500 правильных форм. Пользуясь своим новым прибором, получившим название прикладного гониометра, Роме-де-Лиль неоспоримо, с числами в руках, доказал общность закона постоянства гранных углов для кристаллов всякого вещества, как бы изменчивы ни были относительные размеры граней, пересечением которых углы образованы. Роме-де-Лилю принадлежит первый трактат по кристаллографии: "Cryslallographie ou description des formes propres à tous les corps du règne mineral" (1783). Гаюи пошел еще дальше. Он впервые доказал тесную связь между химическим составом и кристаллической формой. Изучая явления спайности в кристаллах, он пришел к созданию теории структуры кристаллов и доказал возможность выведения различных кристаллических форм из одной элементарной наложением ее слоев один на другой. Математический вывод размеров и пропорций этих производных форм, изобретение знаков для их выражения, исследование всего минерального царства с точки зрения этих взглядов могут считаться главнейшими заслугами Гаюи, положившего начало новой школе кристаллографов. Все свои взгляды он изложил в классическом сочинении "Traité de minéralogie" (1801). Правильность взглядов с химической стороны подтверждалась анализами Клапрота, Вокелена и др. Одновременно с Гаюи в Германии в фрейбергской горной школе Вернер разрабатывал М. в ином направлении, обращая внимание главным образом на различного рода физико-химические свойства минералов. Предложенная им классификация минералов имеет химический характер. Вейск (1780-1856), введя понятие о кристаллических осях, улучшил метод Гаюи; он открыл закон зон и показал его значение при кристаллографических вычислениях. В этом же чисто геометрическом направлении работал Моос (1773-1839). Другой крайности держался шведский химик, известный Берцелиус, рассматривавший М. как часть химии, однако он оказал М. огромные услуги, показав всю важность для нее химии. С этого времени в М. начинают обособляться две отрасли. Химическое направление скоро обогатило М. новыми открытиями. Митчерлих показал, что многие тела, имеющие различный, но подобный состав, кристаллизуются в подобных формах и способны давать кристаллы смешанного состава, что привело его к понятию об изоморфизме, понятию, которое разъяснило весьма многие темные стороны химизма минералов. В это время участие химиков сказывается особенно сильно. Аналитические работы Г. Розе, Р. Бунзена, а также Штромейера, Платнера, Дамура, Коббеля, Раммельсберга, Чермака и др. показали, что многие минералы имеют простой химический состав, который выражается весьма точно определенными химическими формулами; другие же, и между ними самые распространенные, представляют различного рода (изоморфные) смеси. Довольно грубое представление о строении кристаллов, принятое после Гаюи, подверглось значительному изменению и усовершенствованию Бравэ и Франкенгеймом, положившими начало новому направлению, которое в настоящее время почти закончено работами Зонке, Маляра, Гадолина, Шенфлиса и Федорова. Геометрическое направление, а именно выяснение математической связи между элементами огранения кристаллов, упрощение вычислений и обозначений было достигнуто в работах Науманна, Миллера, Ланга, Либига и др. Изучение световых явлений в окристаллованных минералах Брюстером, Био, Сенармоном, Гайдингером, Грайлихом и особенно Деклуазо привело к заключению о тесной связи между внешней формой (симметрией) и оптическими явлениями. Методы оптических исследований и устройство усовершенствованных приборов особенно разработаны Гротом. Условия совместного нахождения, зарождения и залегания рудных минералов были значительно разъяснены Брейтгауптом, Б. Котта, Ф. Зандбергером и многими другими. В новейшее время систематика потеряла интерес, так как ни чисто физическое, ни химическое направление, вследствие своей односторонности, не могут дать удовлетворительных результатов. Однако, нужно указать в этом отношении на труды Брейтгаупта, Г. Розе, Науманна, Д. Дана, Дёльтера и Грота. Значительное число минералогов видит свою задачу не в создании и классификации, а главным образом в накоплении всесторонних сведений о минералах, так как только тогда можно будет приступить к установлению естественной классификации минералов. Здесь нужно указать многие выдающиеся имена: Бедана, Филлипса, Гаусманна, Кеннгота, Кокшарова, Скакки, Цефаровича, Штренга, Клейна, Г. фон Рата и многих других. Позднее других выделилась и развилась новая отрасль М., задачей которой служит выяснение истории минералов, т. е. разъяснение их происхождения, тех изменений и преобразований, которые они испытывают под влиянием различных агентов - воды и растворенных в ней веществ, атмосферы, температуры и давления. Бишоф (1792-1870) первый выдвинул этот отдел минералогии. Многочисленными наблюдениями, а также опытами он разъяснил весьма многое в истории минеральной жизни и показал, какие услуги может химия оказать М. В этом направлении особенно известны работы Гайдингера, Блюма и Ю. Рота. Сенармон, Добрэ, Сен-Клер де Вилль, Лемберг, Готфейль, Фреми, Дёльтер, Муасан и др. разработали методы искусственного получения минералов.

Из минералогической литературы укажем только немногие работы, относящиеся к настоящему столетию. Hauy, "Traité de Minéralogie" (Париж, 1822); Breithaupt, "Vollständiges Handbuch der Mineralogie" (Дрезден, 1836-47); Descloizeaux, "Manuel de Minéralogie" (Париж, 1862 и 1874); Naumann, "Elemente der Mineralogie" (Лейпциг, 1885), I. Dana, "System of Mineralogie" (Лондон, 1894); E. Dana, "Textbook of Mineralogie" (Нью-Йорк, 1883); С. Hintze, "Handbuch der Mineralogie" (Лейпциг, 1889-94); Rammelsberg, "Handbuch der Mineralchemie" (Лейпциг, 1875, продолжен., 1886); Кобелль, "Таблицы для определения минералов", перевод Леша (1894); Fuchs, "Anleitung zum Bestimmen d. Mineralien" (3 изд. Штренга, Гиссен, 1890); G. Bischof, "Lehrbuch d. chem. und physikalischen Geologie" (1863-66); Blum, "Die Pseudomorphosen des Mineralreiches" (1843, 1847, 1852, 1863, 1879); L Koth, "Allgemeine und chemische Geologie" (т. I и II, 1879 и 1883); Daubrée, "Synthetische Studien zur Experimentalgeologie" (Брауншвейг, 1880); Fouqué et M. Levy, "Syntèse des minéraux et des roches" (1882); Bourgeois, "Reproduction artificielle des mineraux" ("Encyclopédie chimique" Фреми, 1884); С. Doelter, "Allgemeine chemische Mineralogie" (1890); Breithaupt, "Die Paragenesis der Mineralien" (1849); Cotta, "Die Lehre von den Erzlagerstätten" (1859-61); Groddeck, "Die Lehre von den Lager-Stätten der Erze" (1879); Groth, "Tabellarische Uebersicht der einfachen Mineralien, nach ihren krystallographisch-chemischen Beziehungen geordnet" (2 изд., 1882); H. Кокшаров, "Материалы для М. России" (10 т.); Kenngott, "Uebersicht der Resultate mineralogischer Forschungen" (1844-65); Уэвелль, "История индуктивных наук", перевод с английского Антоновича (1869); Kobell, "Geschichte der Mineralogie von 1650-1865" (1865). Повременные издания: "Zeitschrift für Krystallographie und Mineralogie", издается Гротом с 1877 г.; "Mineralogische Mittheillungen", gesam. von G. Tschermak (1871-77). Новая серия издания носит название: "Mineral. und petrographische Mittheilungen" (с 1878); "Bulletin de la Société minéralogique de France" (с 1878); "Записки Императорского Минералогического Общества"; "The mineralogical Magazine and Journal of the Mineralogical Society" (с 1876); "Neues Jahrbuch für Mineralogie, Geologie und Petrographie" (с 1833).

  • - [позднелатинское minera - руда) - наука о минералах...

    Геологическая энциклопедия

  • - наука о минералах, изучающая их состав, кристаллич. структуру, физ. и хим. св-ва и связь свгв с составом...

    Большой энциклопедический политехнический словарь

  • - наука о природных химических соединениях - минералах, особенностях и закономерностях физического строения, а также об условиях образования и изменения в природе...

    Энциклопедический словарь по металлургии

  • - наука о минералах вообще, обнимает собой все знания об их свойствах: изучает их внешний вид, различные физические особенности и химический состав, их происхождение и превращения и, наконец, на основании всего этого...

    Энциклопедический словарь Брокгауза и Евфрона

  • - а также об условиях образования и изменения в природе...

    Большая Советская энциклопедия

  • - наука о минералах...

    Современная энциклопедия

  • - наука о минералах, их составе, свойствах, особенностях и закономерностях физического строения, условиях образования, нахождения и изменения в природе...

    Большой энциклопедический словарь

  • - Р., Д., Пр....

    Орфографический словарь русского языка

  • - МИНЕРАЛО́ГИЯ, -и, жен. Наука о минералах...

    Толковый словарь Ожегова

  • - МИНЕРАЛО́ГИЯ, минералогии, мн. нет, жен. . Наука о минералах...

Минералогия - это наука о минералах и природных химических соединениях. Минералогия занимается изучением состава, свойств, структуры и условий образования минералов. Это одна из древнейших геологических наук.

Турмалин (с сингал. තුරමලි «турамали» — драгоценный камень) — представитель группы минералов из класса алюмосиликатов переменного состава, содержащих в составе бор. Обобщенная химическая формула минерала выглядит примерно: R1+R2+3Al6Si6O18(BO3)3(OH)4. R1+ — ионы натрия или лития; R2+ — ионы Mg, Fe, Mn.

Гранат — не существует минерала с таким названием. Гранатами называют целую группу минералов из класса силикатов. Название произошло из-за весьма большого сходства сростков кристаллов (щеток) с зернами фрукта граната. Общая химическая формула: R2+3R3+2(SiO4)3, где 2-хвалентным радикалом могут выступать Mg, Mn, Fe, Ca. Чаще всего 3-хвалентный радикал это Al, но иногда вместо него в минерале содержатся Fe …

Рубрика:

Ставролит (с греч. σταυρός - крест, λίθος - камень) — минерал семейства силикатов: островной силикат железа и алюминия. Камень назван в 1792 году французом Ж. К. Деламетри из-за крестообразной формы кристаллов минерала. Химическая формула: Fe(OH)2(Al2SiO5)2.

Рубрика:

Каолинит (от названия местности Каолин в Китае, где был впервые найден) – глинистый минерал из класса водных силикатов. Химическая формула: Al2(ОН)4.

Рубрика:

Серпентин (с лат. serpens - змея) – минерал из класса водных силикатов. Синоним: змеевик. Химическая формула: Mg3(OH)4.

Рубрика:

Тальк – минерал из класса водных алюмосиликатов, группа талька. Химическая формула: Mg3(0H)2.

Рубрика:

Биотит (в честь франц. химика Жана Батиста Био) – породообразующий минерал из класса водных алюмосиликатов, группа слюд. Химическая формула: К(Mg,Fe)3(ОН,F)2.

Рубрика:

Мусковит – минерал из класса водных алюмосиликатов, группа слюд. Химическая формула: KAl2(ОН,F)2.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта