Главная » Маринование грибов » Момент количества движения материальной системы. Момент количества движения материальной точки относительно центра и оси

Момент количества движения материальной системы. Момент количества движения материальной точки относительно центра и оси

Момент количества движения моме́нт коли́чества движе́ния

(кинетический момент, момент импульса, угловой момент), мера механического движения тела или системы тел относительно какого-либо центра (точки) или оси. Для вычисления момента количества движения K материальной точки (тела) справедливы те же формулы, что и для вычисления момента силы, если заменить в них вектор силы на вектор количества движения mv , т. е. K = [r ·mv ], где r - расстояние до оси вращения. Сумма моментов количества движения всех точек системы относительно центра (оси) называется главным моментом количества движения системы (кинетическим моментом) относительно этого центра (оси). При вращательном движении твёрдого тела главный момент количества движения относительно оси вращения z I z на угловую скорость ω тела, т. е. K z = I z ω.

МОМЕНТ КОЛИЧЕСТВА ДВИЖЕНИЯ

МОМЕ́НТ КОЛИ́ЧЕСТВА ДВИЖЕ́НИЯ (кинетический момент, момент импульса, угловой момент), мера механического движения тела или системы тел относительно какого-либо центра (точки) или оси. Для вычисления момента количества движения К материальной точки (тела) справедливы те же формулы, что и для вычисления момента силы (см. МОМЕНТ СИЛЫ) , если заменить в них вектор силы на вектор количества движения mv , в частности K 0 = [r ·mv ]. Сумма моментов количества движения всех точек системы относительно центра (оси) называется главным моментом количества движения системы (кинетическим моментом) относительно этого центра (оси). При вращательном движении твердого тела главный момент количества движения относительно оси вращения z тела выражается произведением момента инерции (см. МОМЕНТ ИНЕРЦИИ) I z на угловую скорость w тела, т. е. К Z = I z w.


Энциклопедический словарь . 2009 .

Смотреть что такое "момент количества движения" в других словарях:

    - (кинетический момент, угловой момент), одна из мер механич. движения материальной точки или системы. Особенно важную роль М. к. д. играет при изучении вращат. движения. Как и для момента силы, различают М. к. д. относительно центра (точки) и… … Физическая энциклопедия

    - (кинетический момент Момент импульса, угловой Момент), мера механического движения тела или системы тел относительно какого либо центра (точки) или оси. Для вычисления момента количества движения К материальной точки (тела) справедливы те же… … Большой Энциклопедический словарь

    Момент импульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси… … Википедия

    момент количества движения - кинетический момент, одна из мер механического движения материальной точки или системы. Особенно важную роль момент количества движения играет при изучении вращательного движения. Как и для момента силы, различают момент… … Энциклопедический словарь по металлургии

    момент количества движения - judesio kiekio momentas statusas T sritis Standartizacija ir metrologija apibrėžtis Dydis, lygus dalelės padėties vektoriaus iš tam tikro taško į dalelę ir jos judesio kiekio vektorinei sandaugai, t. y. L = r · p; čia L – judesio kiekio momento… …

    момент количества движения - judesio kiekio momentas statusas T sritis Standartizacija ir metrologija apibrėžtis Materialiojo taško arba dalelės spindulio vektoriaus ir judesio kiekio vektorinė sandauga. Dažniausiai apibūdina sukamąjį judesį taško arba ašies, iš kurios yra… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    момент количества движения - judesio kiekio momentas statusas T sritis fizika atitikmenys: angl. angular moment; moment of momentum; rotation moment vok. Drehimpuls, m; Impulsmoment, n; Rotationsmoment, n rus. момент импульса, m; момент количества движения, m; угловой момент … Fizikos terminų žodynas

    Кинетический момент, одна из мер механического движения материальной точки или системы. Особенно важную роль М. к. д. играет при изучении вращательного движения (См. Вращательное движение). Как и для момента силы (См. Момент силы),… … Большая советская энциклопедия

    - (кинетич. момент, момент импульса, угловой момент), мера механич. движения тела или системы тел относительно к. л. центра (точки) или осн. Для вычисления М. к. д. К материальной точки (тела) справедливы те же формулы, что и для вычисления момента … Естествознание. Энциклопедический словарь

    То же, что момент импульса … Большой энциклопедический политехнический словарь

Книги

  • Теоретическая механика. Динамика металлоконструкций электронная книга
  • Теоретическая механика. Динамика и аналитическая механика , В. Н. Шинкин. Рассмотрены основные теоретические и практические вопросы динамики материальной системы и аналитической механики по следующим темам: геометрия масс, динамика материальной системы и твердого…

Хотя до сих пор. мы рассматривали только специальный случай твердого тела, свойства момента и его математическое выражение интересны даже тогда, когда тело не твердое. Можно доказать очень интересную теорему: подобно тому как внешняя сила равна скорости изменения величины р, которая называется полным импульсом системы частиц, так и момент силы равен скорости изменения некоторой величины L , называемой моментом количества движения, или угловым моментом группы частиц.
Чтобы доказать это, рассмотрим систему частиц, на которую действуют силы, и посмотрим, что произойдет с системой в результате действия вращающих моментов, созданных этими силами. Для начала давайте возьмем только одну частицу. Такая частица с массой m и осью О изображена на фиг. 18.3. Она не обязательно должна вращаться по окружности вокруг оси О, а может двигаться и по эллипсу, подобно планете вокруг Солнца, или по какой-нибудь другой кривой.

Главное то, что она движется, что на нее действует сила, которая ускоряет ее в соответствии с обычными законами: x -компонента силы равна массе, умноженной на х-компоненту ускорения, и т. д. Но посмотрим теперь, как действует момент силы. Он, как вы знаете, равен xF y - yF x , а х- и y -компоненты силы в свою очередь равны массе, умноженной соответственно на х- и y -компоненту ускорения, так что

Хотя сразу и не_видно, что это выражение является производной от какой-то простой величины, но на самом деле оно

равно производной от xm(dy/ dt)-ym(dx/ dt)\ Действительно,

Оказывается, таким образом, что момент силы равен скорости изменения со временем некоторой величины! Давайте обратим внимание на эту величину и прежде всего дадим ей имя. Она будет называться моментом количества движения, или угловым моментом, и обозначаться буквой L

Хотя во всех наших рассмотрениях мы не принимали в расчет теорию относительности, тем не менее второе выражение для L верно и при учете ее. Итак, мы нашли, что у обычного импульса также существует вращательный ана- лог - угловой момент, который связан с компонентами импульса точно так же, как и момент силы связан с компонентами силы! Так что если мы хотим вычислить момент количества движения относительно какой-то оси, то должны взять тангенциальную составляющую импульса и умножить ее на радиус. Другими словами, угловой момент показывает, насколько быстро движется частица вокруг какого-то центра, ведь он учитывает только тангенциальную часть импульса. Более того, чем дальше от центра удалена линия, по которой направлен импульс, тем больше будет угловой момент. Точно так же, поскольку геометрия в этом случае та же, что и в случае момента силы, существует плечо импульса (оно, разумеется, не совпадает с плечом силы, действующей на частицу), которое равно расстоянию линии импульса от оси. Таким образом, угловой момент равен просто величине импульса, умноженного на его плечо. Точно так же, как и для момента силы, для углового момента мы можем написать следующие три формулы:

Момент количества движения, как и момент силы, зависит от положения оси, относительно которой он вычисляется.
Прежде чем перейти к рассмотрению более чем одной частицы, применим полученные выше результаты к движению планеты вокруг Солнца. В каком направления действует сила? Конечно, по направлению к Солнцу. А какой при этом будет момент силы? Разумеется, все зависит от того, в каком месте мы выберем ось, однако результат получится совсем простым, если в качестве точки вращения выбрать само Солнце. Поскольку момент силы равен силе, умноженной на ее плечо, или компоненте силы, перпендикулярной к радиусу r , умноженной на r , то в этом случае нет никакой тангенциальной составляющей силы, а поэтому момент силы относительно оси, проходящей через Солнце, равен нулю. Следовательно, момент количества движения должен оставаться постоянным. Давайте-ка посмотрим, что это означает. Произведение тангенциальной компоненты скорости на массу и радиус, будучи моментом количества движения, должно оставаться постоянным, потому что скорость его изменения есть момент силы, который в нашем случае равен нулю. Это означает что остается постоянным произведение тангенциальной компоненты скорости на радиус, поскольку масса-то уж, конечно, не изменяется. Но такая величина, характеризующая движение планеты, уже вычислялась нами раньше. Предположим, что мы взяли маленький промежуток времени ∆ t. Какое расстояние пройдет планета при своем движении из точки Р в толку Q (фиг. 18.3)? Как велика площадь той области, которую «заметает» прямая, соединяющая планету с Солнцем? Пренебрегая площадью QQ’P, которая очень мала по сравнению с OPQ, находим, что площадь этой области равна половине основания PQ, умноженного на высоту OR. Другими словами, «заметенная» площадь равна половине произведения скорости на ее плечо. Так что скорость изменения этой площади пропорциональна моменту количества движения, который остается постоянным. Итак, мы получим, что закон Кеплера о равных площадях за равные промежутки времени является просто словесным описанием закона сохранения момента количества движения, когда моменты внешних сил отсутствуют.

В некоторых задачах в качестве динамической характеристики движущейся точки вместо самого количества движения рассматривают его момент относительно какого-либо центра или оси. Эти моменты определяются также как и моменты силы.

Моментом количеством движения материальной точки относительно некоторого центра О называется вектор, определяемый равенством

Момент количества движения точки называют также кинетическим моментом .

Момент количества движения относительно какой-либо оси , проходящий через центр О, равен проекции вектора количества движения на эту ось .

Если количество движения задано своими проекциями на оси координат и даны координаты точки в пространстве, то момент количества движения относительно начала координат вычисляется следующим образом:

Проекции момента количества движения на оси координат равны:

Единицей измерения количества движения в СИ является – .

Конец работы -

Эта тема принадлежит разделу:

Динамика

Лекция.. краткое содержание введение в динамику аксиомы классической механики.. введение..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Системы единиц
СГС Си Техническая [L] см м м [M]

Дифференциальные уравнения движения точки
Основное уравнение динамики можно записать так

Основные задачи динамики
Первая или прямая задача: Известна масса точки и закон ее движения, необходимо найти действующую на точку силу. m

Наиболее важные случаи
1. Сила постоянна.

Количество движения точки
Количеством движения материальной точки называется вектор, равный произведению м

Элементарный и полный импульс силы
Действие силы на материальную точку в течении времени

Теорема об изменении количества движения точки
Теорема. Производная по времени от количества движения точки равна действующей на точку силе. Запишем основной закон динамики

Теорема об изменении момента количества движения точки
Теорема. Производная по времени от момента количества движения точки, взятого относительно какого-нибудь центра, равна моменту действующей на точку силы относительно того же

Работа силы. Мощность
Одна из основных характеристик силы, оценивающих действие силы на тело при некотором его перемещении.

Теорема об изменении кинетической энергии точки
Теорема. Дифференциал кинетической энергии точки равен элементарной работе силы, действующей на точку.

Принцип Даламбера для материальной точки
Уравнение движения материальной точки относительно инерциальной системы отсчета под действием приложенных активных сил и сил реакции связей имеет вид:

Динамика несвободной материальной точки
Несвободной материальной точкой называется точка, свобода движения которой ограничена. Тела, ограничивающие свободу движения точки, называются связями

Относительное движение материальной точки
Во многих задачах динамики движение материальной точки рассматривается относительно системы отсчета, движущейся относительно инерциальной системы отсчета.

Частные случаи относительного движения
1. Относительное движение по инерции Если материальная точка движется относительно подвижной системы отсчета прямолинейно и равномерно, то такое движение называется относительны

Геометрия масс
Рассмотрим механическую систему, которая состоит из конечного числа материальных точек с массами

Моменты инерции
Для характеристики распределения масс в телах при рассмотрении вращательных движений требуется ввести понятия моментов инерции. Момент инерции относительно точки

Моменты инерции простейших тел
1. Однородный стержень 2. Прямоугольная пластина 3. Однородный круглый диск

Количество движения системы
Количеством движения системы материальных точек называется векторная сумма колич

Теорема об изменении количества движения системы
Эта теорема существует в трех различных формах. Теорема. Производная по времени от количества движения системы равна векторной сумме всех внешних сил, действующих н

Законы сохранения количества движения
1. Если главный вектор всех внешних сил системы равен нулю (), то количество движения системы постоянно

Теорема о движении центра масс
Теорема Центр масс системы движется так же, как и материальная точка, масса которой равна массе всей системы, если на точку действуют все внешние силы, приложенные к рассмат

Момент количества движения системы
Моментом количества движения системы материальных точек относительно некоторого

Момент количества движения твердого тела относительно оси вращения при вращательном движении твердого тела
Вычислим момент количества движения твердого тела относительно оси вращения.

Теорема об изменении момента количества движения системы
Теорема. Производная по времени от момента количества движения системы, взятого относительно какого-нибудь центра, равна векторной сумме моментов внешних сил, действующих на

Законы сохранения момента количества движения
1. Если главный момент внешних сил системы относительно точки равен нулю (

Кинетическая энергия системы
Кинетической энергией системы называют сумму кинетических энергий всех точек системы.

Кинетическая энергия твердого тела
1. Поступательное движение тела. Кинетическая энергия твердого тела при поступательном движении вычисляется так же, как и для одной точки, у которой масса равна массе этого тела.

Теорема об изменении кинетической энергии системы
Эта теорема существует в двух формах. Теорема. Дифференциал кинетической энергии системы равен сумме элементарных работ всех внешних и внутренних сил, действующих на систе

Момент количества движения материальной точки относительно некоторого центра О равен векторному произведению радиуса-вектора движущейся точки на количество движения , т. е.

Очевидно, что модуль момента количества движения равен

где - плечо вектора v относительно центра О (рис. 167).

Проектируя векторное равенство (153) на координатные оси, проходящие через центр О, получаем формулы для моментов количества движения материальной точки относительно этих осей:

В векторной форме теорема о моменте количества движения выражается так: производная по времени от момента количества движения материальной точки относительно какого-либо неподвижного центра О равна моменту действующей силы относительно того же центра, т. е.

Проектируя векторное равенство (156) на какую-либо из координатных осей, проходящих через центр О, получаем уравнение, выражающее ту же теорему в скалярной форме:

т. е. производная по времени от момента количества движения материальной точки относительно какой-либо неподвижной оси равна моменту действующей силы относительно той же оси.

Эта теорема имеет большое значение при решении задач в случае движения точки под действием центральной силы Центральной силой называется такая сила, линия действия которой все время проходит через одну и ту же точку, называемую центром этой силы. Если материальная точка движется под действием центральной силы F с центром в точке О, то

и, следовательно, . Таким образом, момент количества движения в данном случае остается постоянным по модулю и по направлению. Отсюда следует, что материальная точка под действием центральной силы описывает плоскую кривую, расположенную в плоскости, проходящей через центр силы.

Если известна траектория, которую описывает точка под действием центральной силы, то, пользуясь теоремой о моменте количества движения, можно найти эту силу как функцию расстояния от точки до центра силы.

Действительно, так как момент количества движения относительно центра силы остается постоянным, то, обозначая h плечо вектора относительно центра силы, имеем:

(158)

Для определения этой постоянной должна быть известна скорость точки в каком-либо месте траектории. С другой стороны, имеем (рис. 168):

где - радиус кривизны траектории, - угол между радиусом-вектором точки и касательной к траектории в этой точке.

Итак, имеем два уравнения (158) и (159) с двумя неизвестными v и F; остальные величины, входящие в эти уравнения, т. е. , являясь элементами заданной траектории, легко могут быть найдены. Таким образом, можно найти v и F как функции .

Пример 129. Точка М описывает эллипс под действием центральной силы F (рис. 169). Скорость в вершине А равна . Найти скорость в вершине В, если и .

Решение. Так как в данном случае

Пример 130. Точка М массы описывает окружность радиуса а, притягиваясь точкой А этой окружности (рис. 170).

Для вычисления М. к. д. k материальной точки относительно центра О или оси z справедливы все формулы, приведённые для вычисления момента силы, если в них заменить вектор F вектором количества движения mv . Т. о.,k o = [r · ], где r - радиус-вектор движущейся точки, проведённый из центра О , a k z равняется проекции вектора k o на ось z , проходящую через точку О . Изменение М. к. д. точки происходит под действием момента m o (F ) приложенной силы и определяется теоремой об изменении М. к. д., выражаемой уравнением dk o /dt = m o (F ). Когда m о (F ) = 0, что, например, имеет место для центральных сил, движение точки подчиняется Площадей закону.

Главный М. к. д . (или кинетический момент) механической системы относительно центра О или оси z равен соответственно геометрической или алгебраической сумме М. к. д. всех точек системы относительно того же центра или оси, т. е. K o = Σk oi , K z = Σk zi . Вектор K o может быть определён его проекциями K x , K y , K z на координатные оси. Для тела, вращающегося вокруг неподвижной оси z с угловой скоростью ω, K x = - I xz ω, K y = -I yz ω, K z = I z ω, где l z - осевой, а I xz , l yz - центробежные моменты инерции.

Если ось z является главной осью инерции для начала координат О, то K o = I z ω.

Изменение главного М. к. д. системы происходит под действием только внешних сил и зависит от их главного момента M o e . Эта зависимость определяется теоремой об изменении главного М. к. д. системы, выражаемой уравнением dK o /dt = M o e . Аналогичным уравнением связаны моменты K z и M z e . Если M o e = 0 или M z e = 0, то соответственно K o или K z будут величинами постоянными, т. е. имеет место закон сохранения М. к. д.

Билет 20

Общее уравнение динамики.

Общее уравнение динамики – при движении системы с идеальными связями в каждый данный момент времен сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы будет равна нулю. Уравнение использует принцип возможных перемещений и принцип Даламбера и позволяет составить дифференциальные уравнения движения любой механической системы. Дает общий метод решения задач динамики. Последовательность составления: а) к каждому телу прикладывают действующие на него задаваемые силы, а также условно прикладывают силы и моменты пар сил инерции; б) сообщают системе возможные перемещения; в) составляют уравнения принципа возможных перемещений, считая систему находящейся в равновесии.

Потенциальная сила. Работа потенциальной силы на конечном перемещении.

Потенциальная сила - сила, работа которой зависит только от начального и конечного положения точки её приложения и не зависит ни от вида траектории, ни от закона движения этой точки

Работа потенциальной силы равна разности значений силовой функции в конечной и начальной точках пути и от вида траектории движущейся точки не зависит.

Основным свойством потенциального силового поля и является то, что работа сил поля при движении в нем материальной точки зависит только от начального и конечного положений этой точки и ни от вида ее траектории, ни от закона движения не зависит.

Билет 21

Принцип виртуальных (возможных) перемещений.

Существуют две различные формулировки принципа возможных перемещений. В одной формулировке утверждается, что для равновесия материальной системы необходимо, чтобы равнялась нулю сумма элементарных работ всех внешних сил, приложенных к системе, на любом возможном перемещении.
В другой формулировке, наоборот, говорится, что система должна находиться в равновесии, чтобы сумма элементарных работ всех сил равнялась нулю. Такое определение этого принципа дается, например, в работе: “Виртуальная работа заданных сил, приложенных к системе с идеальными связями и находящейся в равновесии, равна нулю”.
Математически принцип возможных перемещений представляется в виде:
, (1)
где - скалярное произведение вектора силы и вектора виртуального перемещения.

Мощность пары сил

Парой сил называется система двух равных по модулю, параллельных и направленных в противоположные стороны сил, действующих на абсолютно твердое тело.

Мощность пары сил:

,

где омега Z – проекция угловой скорости на ось вращения.

Билет 22

1.Прнцип виртуальных перемещений
Рассмотрим виртуальное перемещение точки системы с номером i. Виртуальным перемещением δr i называется мысленное бесконечно малое перемещение точки, допускаемое связями без их разрушения в данное фиксированное мгновение времени.

Если связь одна и описывается уравнением (2), физически ясно, что связь не нарушится, когда вектор виртуального перемещения

где grad f - градиент функции (2) при фиксированном t , перпендикулярный поверхности связи в месте нахождения точки, равный

В вариационном исчислении бесконечно малые величины δr i , δx i , δy i , δz i называются вариациями функций r i , x i , y i , z i . Изменения координат точек или уравнений связи при неизменном времени находятся синхронным варьированием, которое осуществляется согласно левым частям формул (4) и (6).

То есть проекции δx i , δy i , δz i виртуального перемещения точки δr обращают в нуль первую вариацию уравнения связи при условии, что время не варьируется (синхронное варьирование):

(7)

Следовательно, виртуальное перемещение точки не характеризует ее движение, а определяет связь или, в общем случае, связи, наложенные на точку системы. Таким образом, виртуальные перемещения позволяют учесть эффект механических связей, не вводя реакции связей, как мы это делали раньше, и получать уравнения равновесия или движения системы в аналитическом виде, не содержащие неизвестных реакций связей.

2.Элементарная работа
Элементарная работа сил , действующих на абсолютно твердое тело, равна алгебраической сумме двух слагаемых: работы главного вектора этих сил на элементарном поступательном перемещении тела вместе с произвольно выбранным полюсом и работы главного момента сил, взятого относительно полюса, на элементарном вращательном перемещении тела вокруг полюса. [1 ]

Элементарная работа силы равна скалярному произведению силы на дифференциал радиуса-вектора точки приложения силы. [2 ]

Элементарная работа сил при этом зависит от выбора возможного перемещения системы. [3 ]

Элементарная работа силы при вращении тела, на которое сила действуе

Билет 23

1. Принцип виртуальных перемещений в обобщенных координатах.

Запишем принцип, выражая виртуальную работу активных сил системы в обобщенных координатах:

Так как на систему наложены голономные связи, вариации обобщенных координат не зависят между собой и не могут быть одновременно равны нулю. Поэтому последнее равенство выполнится только тогда, когда коэффициенты при δ j (j = 1 ÷ s) одновременно обращаются в нуль, то есть

2.Работа силы на конечном перемещении
Работа
силы на конечном перемещении определяется как интегральная сумма элементарных Работа и при перемещении M 0 M 1 выражается криволинейным интегралом:

Билет 24

1.уравнение Лагранжа второго рода.

Для вывода уравнений запишем принцип Даламбера-Лагранжа в обобщенных координатах в виде -Q j u = Q j (j = 1 ÷ s) .

Принимая во внимание, что Ф i = -m i a i = -m i dV i / dt , получаем:

(1)

(2)

Подставляя (2) в (1) получаем дифференциальное уравнение движения системы в обобщенных координатах, которое названо уравнением Лагранжа второго рода:

(3)

то есть, материальная система с голономными связями описывается уравнениями Лагранжа второго рода по всем s обобщенным координатам.

Отметим важные особенности полученных уравнений.

1. Уравнения (3) - это система обыкновенных дифференциальных уравнений второго порядка относительно s неизвестных функций q j (t), полностью определяющих движение системы.

2. Число уравнений равно числу степеней свободы, то есть движение любой голономной системы описывается наименьшим числом уравнений.

3. В уравнения (3) не нужно включать реакции идеальных связей, что позволяет, находя закон движения несвободной системы, выбором обобщенных координат исключить задачу определения неизвестных реакций связей.

4. Уравнения Лагранжа второго рода позволяют указать единую последовательность действий для решения многих задач динамики, которую часто называют формализмом Лагранжа.

2. Условие относительного покоя материальной точки получают из динамического уравнения Кориолиса, подставив в это уравнение значения относительного ускорения и кориолисовой силы инерции равные нулю:



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта