Главная » Маринование грибов » Тригонометрические уравнения и системы уравнений. Тригонометрические уравнения

Тригонометрические уравнения и системы уравнений. Тригонометрические уравнения

При решении многих математических задач , особенно тех, которые встречаются до 10 класса, порядок выполняемых действий, которые приведут к цели, определен однозначно. К таким задачам можно отнести, например, линейные и квадратные уравнения, линейные и квадратные неравенства, дробные уравнения и уравнения, которые сводятся к квадратным. Принцип успешного решения каждой из упомянутых задач заключается в следующем: надо установить, к какому типу относится решаемая задача, вспомнить необходимую последовательность действий, которые приведут к нужному результату, т.е. ответу, и выполнить эти действия.

Очевидно, что успех или неуспех в решении той или иной задачи зависит главным образом от того, насколько правильно определен тип решаемого уравнения, насколько правильно воспроизведена последовательность всех этапов его решения. Разумеется, при этом необходимо владеть навыками выполнения тождественных преобразований и вычислений.

Иная ситуация получается с тригонометрическими уравнениями. Установить факт того, что уравнение является тригонометрическим, совсем нетрудно. Сложности появляются при определении последовательности действий, которые бы привели к правильному ответу.

По внешнему виду уравнения порой бывает трудно определить его тип. А не зная типа уравнения, почти невозможно выбрать из нескольких десятков тригонометрических формул нужную.

Чтобы решить тригонометрическое уравнение, надо попытаться:

1. привести все функции входящие в уравнение к «одинаковым углам»;
2. привести уравнение к «одинаковым функциям»;
3. разложить левую часть уравнения на множители и т.п.

Рассмотрим основные методы решения тригонометрических уравнений.

I. Приведение к простейшим тригонометрическим уравнениям

Схема решения

Шаг 1. Выразить тригонометрическую функцию через известные компоненты.

Шаг 2. Найти аргумент функции по формулам:

cos x = a; x = ±arccos a + 2πn, n ЄZ.

sin x = a; x = (-1) n arcsin a + πn, n Є Z.

tg x = a; x = arctg a + πn, n Є Z.

ctg x = a; x = arcctg a + πn, n Є Z.

Шаг 3. Найти неизвестную переменную.

Пример.

2 cos(3x – π/4) = -√2.

Решение.

1) cos(3x – π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

x = ±3π/12 + π/12 + 2πn/3, n Є Z;

x = ±π/4 + π/12 + 2πn/3, n Є Z.

Ответ: ±π/4 + π/12 + 2πn/3, n Є Z.

II. Замена переменной

Схема решения

Шаг 1. Привести уравнение к алгебраическому виду относительно одной из тригонометрических функций.

Шаг 2. Обозначить полученную функцию переменной t (если необходимо, ввести ограничения на t).

Шаг 3. Записать и решить полученное алгебраическое уравнение.

Шаг 4. Сделать обратную замену.

Шаг 5. Решить простейшее тригонометрическое уравнение.

Пример.

2cos 2 (x/2) – 5sin (x/2) – 5 = 0.

Решение.

1) 2(1 – sin 2 (x/2)) – 5sin (x/2) – 5 = 0;

2sin 2 (x/2) + 5sin (x/2) + 3 = 0.

2) Пусть sin (x/2) = t, где |t| ≤ 1.

3) 2t 2 + 5t + 3 = 0;

t = 1 или е = -3/2, не удовлетворяет условию |t| ≤ 1.

4) sin (x/2) = 1.

5) x/2 = π/2 + 2πn, n Є Z;

x = π + 4πn, n Є Z.

Ответ: x = π + 4πn, n Є Z.

III. Метод понижения порядка уравнения

Схема решения

Шаг 1. Заменить данное уравнение линейным, используя для этого формулы понижения степени:

sin 2 x = 1/2 · (1 – cos 2x);

cos 2 x = 1/2 · (1 + cos 2x);

tg 2 x = (1 – cos 2x) / (1 + cos 2x).

Шаг 2. Решить полученное уравнение с помощью методов I и II.

Пример.

cos 2x + cos 2 x = 5/4.

Решение.

1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;

3/2 · cos 2x = 3/4;

2x = ±π/3 + 2πn, n Є Z;

x = ±π/6 + πn, n Є Z.

Ответ: x = ±π/6 + πn, n Є Z.

IV. Однородные уравнения

Схема решения

Шаг 1. Привести данное уравнение к виду

a) a sin x + b cos x = 0 (однородное уравнение первой степени)

или к виду

б) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (однородное уравнение второй степени).

Шаг 2. Разделить обе части уравнения на

а) cos x ≠ 0;

б) cos 2 x ≠ 0;

и получить уравнение относительно tg x:

а) a tg x + b = 0;

б) a tg 2 x + b arctg x + c = 0.

Шаг 3. Решить уравнение известными способами.

Пример.

5sin 2 x + 3sin x · cos x – 4 = 0.

Решение.

1) 5sin 2 x + 3sin x · cos x – 4(sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;

sin 2 x + 3sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.

2) tg 2 x + 3tg x – 4 = 0.

3) Пусть tg x = t, тогда

t 2 + 3t – 4 = 0;

t = 1 или t = -4, значит

tg x = 1 или tg x = -4.

Из первого уравнения x = π/4 + πn, n Є Z; из второго уравнения x = -arctg 4 + πk, k Є Z.

Ответ: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.

V. Метод преобразования уравнения с помощью тригонометрических формул

Схема решения

Шаг 1. Используя всевозможные тригонометрические формулы, привести данное уравнение к уравнению, решаемому методами I, II, III, IV.

Шаг 2. Решить полученное уравнение известными методами.

Пример.

sin x + sin 2x + sin 3x = 0.

Решение.

1) (sin x + sin 3x) + sin 2x = 0;

2sin 2x · cos x + sin 2x = 0.

2) sin 2x · (2cos x + 1) = 0;

sin 2x = 0 или 2cos x + 1 = 0;

Из первого уравнения 2x = π/2 + πn, n Є Z; из второго уравнения cos x = -1/2.

Имеем х = π/4 + πn/2, n Є Z; из второго уравнения x = ±(π – π/3) + 2πk, k Є Z.

В итоге х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Ответ: х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Умения и навыки решать тригонометрические уравнения являются очень важными, их развитие требует значительных усилий, как со стороны ученика, так и со стороны учителя.

С решением тригонометрических уравнений связаны многие задачи стереометрии, физики, и др. Процесс решения таких задач как бы заключает в себе многие знания и умения, которые приобретаются при изучении элементов тригонометрии.

Тригонометрические уравнения занимают важное место в процессе обучения математики и развития личности в целом.

Остались вопросы? Не знаете, как решать тригонометрические уравнения?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Уроки 54-55. Системы тригонометрических уравнений (факультативное занятие)

09.07.2015 9098 895

Цель: рассмотреть наиболее типичные системы тригонометрических уравнений и способы их решения.

I. Сообщение темы и цели уроков

II. Повторение и закрепление пройденного материала

1. Ответы на вопросы по домашнему заданию (разбор нерешенных задач).

2. Контроль усвоения материала (самостоятельная работа).

Вариант 1

Решите неравенство:

Вариант 2

Решите неравенство:

III. Изучение нового материала

На экзаменах системы тригонометрических уравнений встречаются гораздо реже тригонометрических уравнений и неравенств. Четкой классификации систем тригонометрических уравнений не существует. Поэтому условно разобьем их на группы и рассмотрим способы решения этих задач.

1. Простейшие системы уравнений

К ним отнесем системы, в которых или одно из уравнений является линейным, или уравнения системы могут быть решены независимо друг от друга.

Пример 1

Решим систему уравнений

Так как первое уравнение является линейным, то выразим из него переменную и подставим во второе уравнение: Используем формулу приведения и основное тригонометрическое тождество. Получим уравнение или Введем новую переменную t = sin у. Имеем квадратное уравнение 3 t 2 - 7 t + 2 = 0, корни которого t 1 = 1/3 и t 2 = 2 (не подходит, так как sin у ≤ 1). Вернемся к старой неизвестной и получим уравнение sin y = 1/3, решение которого Теперь легко найти неизвестную: Итак, система уравнений имеет решения где n ∈ Z .

Пример 2

Решим систему уравнений

Уравнения системы независимы. Поэтому можно записать решения каждого уравнения. Получим: Почленно сложим и вычтем уравнения этой системы линейных уравнений и найдем: откуда

Обратим внимание на то, что в силу независимости уравнений при нахождении х - у и х + у должны быть указаны разные целые числа n и k . Если бы вместо k было также поставлено n , то решения имели бы вид: При этом было бы потеряно бесконечное множество решений и, кроме того, возникла бы связь между переменными x и у: х = 3у (чего нет на самом деле). Например, легко проверить, что данная система имеет решение х = 5π и у = п (в соответствии с полученными формулами), которое при k = n найти невозможно. Поэтому будьте внимательнее.

2. Системы вида

Такие системы приводятся к простейшим при сложении и вычитании уравнений. При этом получим системы или Отметим очевидное ограничение: и Само же решение подобных систем сложностей не представляет.

Пример 3

Решим систему уравнений

Преобразуем сначала второе уравнение системы, используя равенство Получим: Подставим в числитель этой дроби первое уравнение: и выразим Теперь имеем систему уравнений Сложим и вычтем эти уравнения. Имеем: или Запишем решения этой простейшей системы: Складывая и вычитая эти линейные уравнения, находим:

3. Системы вида

Такие системы можно рассматривать как простейшие и решать их соответствующим образом. Однако есть и другой способ решения: преобразовать сумму тригонометрических функций в произведение и использовать оставшееся уравнение.

Пример 4

Решим систему уравнений

Сначала преобразуем первое уравнение, используя формулу для суммы синусов углов. Получим: Используя второе уравнение, имеем: откуда Выпишем решения этого уравнения: С учетом второго уравнения данной системы получаем систему линейных уравнений Из этой системы находим Такие решения удобно записать в более рациональном виде. Для верхних знаков имеем: для нижних знаков -

4. Системы вида

Прежде всего необходимо получить уравнение, содержащее только одну неизвестную. Для этого, например, выразим из одного уравнения sin у, из другого - cos у. Возведем в квадрат эти соотношения и сложим. Тогда получается тригонометрическое уравнение, содержащее неизвестную х. Решаем такое уравнение. Затем, используя любое уравнение данной системы, получаем уравнение для нахождения неизвестной у.

Пример 5

Решим систему уравнений

Запишем систему в виде Возведем в квадрат каждое уравнение системы и получим: Сложим уравнения этой системы: или Используя основное тригонометрическое тождество, запишем уравнение в виде или Решения этого уравнения cos x = 1/2 (тогда ) и cos x = 1/4 (откуда ), где n , k ∈ Z . Учитывая связь между неизвестными cos y = 1 – 3 cos x , получим: для cos x = 1/2 cos y = -1/2; для cos x = 1/4 cos y = 1/4. Необходимо помнить, что при решении системы уравнений проводилось возведение в квадрат и эта операция могла привести к появлению посторонних корней. Поэтому надо учесть первое уравнение данной системы, из которого следует, что величины sin x и sin у должны быть одного знака.

С учетом этого получим решения данной системы уравнений и где n , m , k , l ∈ Z . При этом для неизвестных х и у одновременно выбирают или верхние, или нижние знаки.

В частном случае система может быть решена преобразованием суммы (или разности) тригонометрических функций в произведение и последующим почленным делением уравнений друг на друга.

Пример 6

Решим систему уравнений

В каждом уравнении преобразуем сумму и разность функций в произведение и разделим каждое уравнение на 2. Получим: Так как ни один множитель в левых частях уравнений не равен нулю, то почленно разделим уравнения друг на друга (например, второе на первое). Получим: откуда Подставим найденное значение например, в первое уравнение: Учтем, что Тогда откуда

Получили систему линейных уравнений Складывая и вычитая уравнения этой системы, найдем и где n , k ∈ Z .

5. Системы, решаемые с помощью замены неизвестных

Если система содержит только две тригонометрические функции или приводится к такому виду, то удобно использовать замену неизвестных.

Пример 7

Решим систему уравнений

Так как в данную систему входят только две тригонометрические функции, то введем новые переменные а = tg х и b = sin у. Получим систему алгебраических уравнений Из первого уравнения выразим а = b + 3 и подставим во второе: или Корни этого квадратного уравнения b 1 = 1 и b 2 = -4. Соответствующие значения а1 = 4 и а2 = -1. Вернемся к старым неизвестным. Получим две системы простейших тригонометрических уравнений:

а) ее решение где n , k ∈ Z .

б) решений не имеет, так как sin у ≥ -1.

Пример 8

Решим систему уравнений

Преобразуем второе уравнение системы так, чтобы оно содержало только функции sin х и cos у. Для этого используем формулы понижения степени. Получим: (откуда ) и (тогда ). Второе уравнение системы имеет вид: или Получили систему тригонометрических уравнений Введем новые переменные a = sin х и b = cos у. Имеем симметричную систему уравнений единственное решение которой a = b = 1/2. Вернемся к старым неизвестным и получим простейшую систему тригонометрических уравнений решение которой где n , k ∈ Z .

6. Системы, для которых важны особенности уравнений

Практически при решении любой системы уравнений используются те или иные ее особенности. В частности, один из наиболее общих приемов решения системы - тождественные преобразования, позволяющие получить уравнение, содержащее только одну неизвестную. Выбор преобразований, конечно, определяется спецификой уравнений системы.

Пример 9

Решим систему

Обратим внимание на левые части уравнений, например на Используя формулы приведения, сделаем из нее функцию с аргументом π/4 + х. Получим: Тогда система уравнений имеет вид: Чтобы исключить переменную х, почленно умножим уравнения и получим: или 1 = sin 3 2у, откуда sin 2у = 1. Находим и Удобно отдельно рассмотреть случаи четных и нечетных значений n . Для четных n (n = 2 k , где k ∈ Z ) Тогда из первого уравнения данной системы получим: где m ∈ Z . Для нечетных Тогда из первого уравнения имеем: Итак, данная система имеет решения

Как и в случае уравнений, достаточно часто встречаются системы уравнений, в которых существенную роль играет ограниченность функций синуса и косинуса.

Пример 10

Решим систему уравнений

Прежде всего преобразуем первое уравнение системы: или или или или Учитывая ограниченность функции синуса, видим, что левая часть уравнения не меньше 2, а правая часть не больше 2. Поэтому такое уравнение равносильно условиям sin 2 2х = 1 и sin 2 у = 1.

Второе уравнение системы запишем в виде sin 2 у = 1 - cos 2 z или sin 2 у = sin 2 z , и тогда sin 2 z = 1. Получили систему простейших тригонометрических уравнений Используя формулу понижения степени, запишем систему в виде или тогда

Разумеется, при решении других систем тригонометрических уравнений также необходимо обращать внимание на особенности этих уравнений.

Скачать материал

Полный текст материала смотрите в скачиваемом файле.
На странице приведен только фрагмент материала.

Здравствуйте, Дорогие друзья! Сегодня мы рассмотрим задание из части С. Это система из двух уравнений. Уравнения довольно своеобразны. Здесь и синус, и косинус, да ещё и корни имеются. Необходимо умение решать квадратные и , простейшие . В представленном задании их подробные решения не представлены, это вы уже должны уметь делать. По указанным ссылкам можете посмотреть соответствующую теорию и практические задания.

Основная трудность в подобных примерах заключается в том, что необходимо полученные решения сопоставлять с найденной областью определения, здесь легко можно допустить ошибку из-за невнимательности.

Решением системы всегда является пара(ры) чисел х и у, записывается как (х;у). Обязательно после того как получили ответ делайте проверку. Для вас представлено три способа, нет, не способа, а три пути рассуждения, которыми можно пойти. Лично мне наиболее близок третий. Приступим:

Решите систему уравнений:

ПЕРВЫЙ ПУТЬ!

Найдём область определения уравнения. Известно, что подкоренное выражение имеет неотрицательное значение:

Рассмотрим первое уравнение:

1. Оно равно нулю при х = 2 или при х = 4, но 4 радиана не принадлежит определения выражения (3).

*Угол в 4 радиана (229,188 0) лежит в третьей четверти, в ней значение синуса отрицательно. Поэтому

остаётся только корень х = 2.

Рассмотрим второе уравнении при х = 2.

При этом значении х выражение 2 – y – у 2 должно быть равно нулю, так как

Решим 2 – y – у 2 = 0, получим y = – 2 или y = 1.

Отметим, что при y = – 2 корень из cos y не имеет решения.

*Угол в –2 радиана (– 114,549 0) лежит в третьей четверти, а в ней значение косинуса отрицательно.

Поэтому остаётся только y = 1.

Таким образом, решением системы будет пара (2;1).

2. Первое уравнение так же равно нулю при cos y = 0, то есть при

Но учитывая найденную область определения (2), получим:

Рассмотрим второе уравнение при этом у.

Выражение 2 – y – у 2 при у = – Пи/2 не равно нулю, значит для того, чтобы оно имело решение должно выполнятся условие:

Решаем:

Учитывая найденную область определения (1) получаем, что

Таким образом, решением системы является ещё одна пара:

ВТОРОЙ ПУТЬ!

Найдём область определения для выражения:

Известно, что выражение под корнем имеет неотрицательное значение.
Решая неравенство 6х – х 2 + 8 ≥ 0, получим 2 ≤ х ≤ 4 (2 и 4 это радианы).

Рассмотрим Случай 1:

Пусть х = 2 или х = 4.

Если х = 4, то sin x < 0. Если х = 2, то sin x > 0.

Учитывая то, что sin x ≠ 0, получается, что в этом случае во втором уравнении системы 2 – y – у 2 = 0.

Решая уравнение получим, что y = – 2 или y = 1.

Анализируя полученные значения можем сказать, что х = 4 и y = – 2 не является корнями, так как получим sin x < 0 и cos y < 0 соответственно, а выражение стоящее под корнем должно быть ≥ 0 (то есть числом неотрицательным).

Видно, что х = 2 и y = 1 входят область определения.

Таким образом, решением является пара (2;1).

Рассмотрим Случай 2:

Пусть теперь 2 < х < 4, тогда 6х – х 2 + 8 > 0. Исходя из этого можем сделать вывод, что в первом уравнении cos y должен быть равен нулю.

Решаем уравнение, получим:

Во втором уравнении при нахождении области определения выражения:

Получим:

2 – y – у 2 ≥ 0

– 2 ≤ у ≤ 1

Из всех решений уравнения cos y = 0 этому условию удовлетворяет только:

При данном значении у, выражение 2 – y – у 2 ≠ 0. Следовательно, во втором уравнении sin x будет равен нулю, получим:

Из всех решений этого уравнения интервалу 2 < х < 4 принадлежит только

Значит решением системы будет ущё пара:

*Область определения сразу для всех выражений в системе находить не стали, рассмотрели выражение из первого уравнения (2 случая) и далее уже по ходу определяли соответствие найденных решений с установленной областью определения. На мой взгляд не очень удобно, как-то путано получается.

ТРЕТИЙ ПУТЬ!

Он схож с первым, но есть отличия. Также сначала находится область определения для выражений. Затем отдельно решается первое и второе уравнение, далее находится решение системы.

Найдём область определения. Известно, что подкоренное выражение имеет неотрицательное значение:

Решая неравенство 6х – х 2 + 8 ≥ 0 получим 2 ≤ х ≤ 4 (1).

Величины 2 и 4 это радианы, 1 радиан как мы знаем ≈ 57,297 0

В градусах приближённо можем записать 114,549 0 ≤ х ≤ 229,188 0 .

Решая неравенство 2 – y – у 2 ≥ 0 получим – 2 ≤ у ≤ 1 (2).

В градусах можем записать – 114,549 0 ≤ у ≤ 57,297 0 .

Решая неравенство sin x ≥ 0 получим, что

Решая неравенство cos y ≥ 0 получим, что

Известно, что произведение равно нулю тогда, когда один из множителей равен нулю (и другие при этом не теряют смысла).

Рассмотрим первое уравнение:

Значит

Решением cos y = 0 является:

Решением 6х – х 2 + 8 = 0 являются х = 2 и х = 4.

Рассмотрим второе уравнение:

Значит

Решением sin x = 0 является:

Решением уравнения 2 – y – у 2 = 0 будут y = – 2 или y = 1.

Теперь учитывая область определения проанализируем

полученные значения:

Так как 114,549 0 ≤ х ≤ 229,188 0 , то данному отрезку принадлежит только одно решение уравнения sin x = 0, это x = Пи.

Так как – 114,549 0 ≤ у ≤ 57,297 0 , то данному отрезку принадлежит только одно решение уравнения cos y = 0, это

Рассмотрим корни х = 2 и х = 4.

Верно!

Таким образом, решением системы будут две пары чисел:

*Здесь учитывая найденную область определения мы исключили все полученные значения, не принадлежащие ей и далее перебрали все варианты возможных пар. Далее проверили, какие из них являются решением системы.

Рекомендую сразу в самом начале решения уравнений, неравенств, их систем, если имеются корни, логарифмы, тригонометрические функции, обязательно находить область определения. Есть, конечно, такие примеры, где проще бывает сразу решить, а потом просто проверить решение, но таких относительное меньшинство.

Вот и всё. Успеха Вам!

Решение тригонометрических уравнений и систем тригонометрических уравнений основывается на решении простейших тригонометрических уравнений.

Напомним основные формулы для решения простейших тригонометрических уравнений.

Решение уравнений вида sin(x) = a.

При |a|< = 1 x = (-1)^k *arcsin(a) +π*k, где k принадлежит Z.

При |a|>1 решений не существует.

Решение уравнений вида cos(x) = a.

При |a|< = 1 x = ±arccos(a) +2*π*k, где k принадлежит Z.

При |a|>1 решений не существует.

Решение уравнений вида tg(x) = a.

x = arctg(a) + π*k, где k принадлежит Z.

Решение уравнений вида ctg(x) = a.

x = arcctg(a)+ π*k, где k принадлежит Z.

Некоторые частые случаи:

sin(x) =1; x = π/2 +2* π*k, где k принадлежит Z.

sin(x) = 0; x = π*k, где k принадлежит Z.

sin(x) = -1; x = - π/2 +2* π*k, где k принадлежит Z.

cos(x) = 1; x = 2* π*k, где k принадлежит Z.

cos(x) = 0; x= π/2 + π*k, где k принадлежит Z.

cos(x) = -1; x = π+2* π*k, где k принадлежит Z.

Рассмотрим несколько примеров:

Пример 1. Решить тригонометрическое уравнение 2*(sin(x))^2 + sin(x) -1 = 0.

Уравнения такого вида решаются сведение к квадратному уравнению заменой переменной.

Пусть у = sin(x). Тогда получаем,

2*y^2 + y - 1 = 0.

Решаем полученное увадратное уравнение одним из известных способов.

y1 = 1/2, y2 = -1.

Следовательно, получаем два простейших тригонометрических уравнения которые решаются по формулам, указанным выше.

sin(x) = 1/2, x = ((-1)^k)*arcsin(1/2) + pi*k = ((-1)^k)*pi/6 + pi*k, длю любого целого k.

sin(x) = -1, x = - pi/2 +2* pi*n, где n принадлежит Z.

Пример 2. Решить уравнение 6*(sin(x))^2 + 5*cos(x) – 2 = 0.

По основному тригонометрическому тождеству заменяем (sin(x))^2 на 1 - (cos(x))^2

Получаем квадратное уравнение относительно cos(x):

6*(cos(x))^2 – 5*cos(x) - 4 = 0.

Вводим замену y=cos(x).

6*y^2 - 5*y - 4 = 0.

Решаем полученное квадратное уравнение y1 = -1/2, y2 = 1(1/3).

Так как y = cos(x), а косинус не может быть больше единицы, получаем одно простейшее тригонометрическое уравнение.

x = ±2*pi/3+2*pi*k, при любом целом k.

Пример 3. tg(x) + 2*ctg(x) = 3.

Введем переменную y = tg(x). Тогда 1/y = ctg(x). Получаем

Умножаем на y не равное нулю, получаем квадратное уравнение.

y^2 – 3*y + 2 = 0.

Решаем его:

tg(x) = 2, x = arctg(2)+pi*k, для любого целого k.

tg(x) = 1, x = arctg(1) + pi*k, pi/4 +pi*k, для любого целого k.

Пример 4. 3*(sin(x))^2 – 4*sin(x)*cos(x) + (cos(x))^2 = 0.

Это уравнение сводится к квадратному делением либо на (cos(x))^2, либо на (sin(x))^2. При делении на (cos(x)^2 получим

3*(tg(x))^2 – 4*tg(x) +1 = 0.

tg(x) = 1, x = pi/4+pi*n, для любого целого n

tg(x) = 1/3, x = arctg(1/3) + pi*k, для любого целого k.

Пример 4. Решить систему уравнений

{ sin(x) = 2*sin(y)

Из пергового уравнения выразим y,

Тогда получим, 2*sin(y) = 2*sin(x-5*pi/3) = 2*(sin(x)*cos(5*pi/3) - cos(x)*sin(5*pi/3)) = 2*(sin(x)*(1/2) –((√3)/2)*cos(x)) = sinx + √3*cos(x).



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта