Главная » Ядовитые грибы » Главный момент, согласно пуанкаре. Теорема Нётер

Главный момент, согласно пуанкаре. Теорема Нётер

В 1887 году физика была в тупике: опыт с интерферометром, поставленный Майкельсоном и Морли, не обнаружил тех эффектов, которые должны были бы иметь место в соответствии с тогдашними представлениями в науке. Эти представления таковы: Ньютон в 1687 году постулировал существование абсолютного пространства и абсолютного времени. Френель в 1820 году выдвинул волновую теорию света, в соответствии с которой распространение световой волны имеет место по отношению к бестелесной среде – эфиру, заполняющей все бесконечное пространство. Этот эфир представлялся межзвездной субстанцией наподобие тому, как воздух окружает нас в обыденной жизни. При этом он обладал жесткостью наподобие твердого тела и был легче любого газа.

Звездная аберрация, кажущееся движение, открытая Бредли в 1728 году, объяснялась тогда результатом сложения скорости света со скоростью Земли относительно неподвижного эфира. В 1865 году Максвелл вывел уравнения, которые описывали распространение электромагнитных процессов в пространстве. Это распространение происходит со скоростью света; Герц в 1887 году показал, что и сам свет представляет собой электромагнитную волну. Оставалось подтвердить движение Земли по отношению к эфиру, который служит средой для распространения света. С этой целью и был поставлен эксперимент Майкельсона, в котором ничего обнаружить не удалось. Поэтому надо было предположить, что эфир увлекается Землей, но тогда необъяснимой оставалась аберрация. Проблема казалась неразрешимой.

Именно в этот момент и вступили в игру крупный голландский физик Хендрик Лоренц и гениальный французский математик Анри Пуанкаре. Первый всемирно известен благодаря преобразованиям, которые носят его имя, второй в этой области известен значительно меньше. К счастью, бывший политеховец Жюль Левегль вот уже более двух лет занимается выяснением роли, которую сыграл Пуанкаре в генезисе работ, которые привели к отказу от концепций эфира в пользу преобразований четырехмерного пространства-времени.

Левегль опубликовал результат своих исследований в апреле 1994 в ежемесячнике выпускников политехнической школы и мы встретились с ним после этого, чтобы лучше очертить работы Пуанкаре в критическую для физики эпоху с 1899 по 1905 годы.

Итак, в 1887 году отрицательный результат опыта Майкельсона привел к замешательству. Спустя пять лет Лоренц представил первые публикации по теории электронов, позволяющей упростить интерпретацию уравнений Максвелла. Несколько позже он ввел сокращение размеров движущихся через неподвижный эфир тел. Эта теория, опубликованная в 1895 году, содержала искусственный математический элемент, который сам Лоренц назвал "местное время".

Именно в этот момент на сцене появился Пуанкаре, вмешавшийся фундаментальным образом в дебаты по электродинамике движущихся тел. Анри Пуанкаре родился в Нанси в 1854 году, где закончил среднюю школу, поступив в 1873 году в Политехническую школу. Близорукий, левша, удивительно неловкий в обычной жизни, он уже в начале учебы рассматривался профессорами как "математическое чудовище".

Анри Пуанкаре был репетитором по математическому анализу в Политехнической школе, затем профессором математической физики и математической астрономии в Сорбонне, профессором теоретической электротехники в Школе телекоммуникаций и действительным членом Академии наук в 33 года. Он умер в 1912 году в возрасте 57 лет после операции. Его открытия в дифференциальной геометрии, в алгебраической топологии, в теории вероятностей, в функциональном анализе и в других областях позволили Жану Дьедоне, одному из основателей группы Бурбаки, сказать: "Гений Пуанкаре эквивалентен гению Гаусса и столь же универсален. Он превосходил всех математиков своего времени".

Его рассеянность и его отрешенность от житейских проблем были легендарными. Вследствие беспримерной щедрости он, приписывал другим открытия, которые сделал сам. Его репутация в среде математиков была всеобщей. Над решенной им проблемой трех тел бились самые выдающиеся математики. Предложенное решение позволило сделать далеко идущие выводы и открыть новые разделы анализа, как например, стохастизация в динамических системах. Он показал, не прибегая к помощи вычислительных машин, что траектории динамических систем могут иметь беспорядочное поведение в зависимости от начальных условий, что называется сейчас чувствительностью к начальным условиям в теории хаоса. Он показал, что точки пересечения траекторий с секущей плоскостью образуют разрывное множество, плотность которого в заданной области может быть описана в терминах теории вероятности. Тем самым он установил связь между детерминизмом и случайностью. Ему также принадлежит концепция аттракторов и фрактальных кривых, основанная на представлении о предельных циклах. Пуанкаре был экстраординарной математической фигурой, какие встречаются два-три раза в столетие.

Итак, в 1899 году Пуанкаре был профессором математической физики в Сорбонне, где занимался математическим описанием наблюдаемых в физике явлений. В этом качестве он внимательно следил за проблемами, возникшими в физике после опытов Майкельсона. Он сразу обратил внимание на предложенную Лоренцем теорию локального времени и сокращения размеров движущихся в эфире тел. В своем курсе "Электричество и оптика " Пуанкаре пишет: "Это странное свойство производит впечатление фокуса, разыгранного природой для того, чтобы было невозможно определить движение Земли посредством оптических экспериментов. Такое положение дел не может меня удовлетворить. Я полагаю весьма правдоподобным, что оптические явления могут зависеть только от относительных движений присутствующих материальных тел."

Тем самым в трех фразах Пуанкаре исключил эфир, в следующем, 1900 году в статье "Теория Лоренца и принцип противодействия " он дал физическую интерпретацию Лоренцева локального времени: это время подвижных наблюдателей, которые настроили свои часы с помощью оптических сигналов, игнорируя собственное движение. Он там также замечает: "Если аппарат массы 1 кг посылает в некотором направлении со скоростью света энергию в 3 мегаджоуля, то скорость противодействия будет 1 см/сек".

Этот означает, что лучевая энергия обладает свойством инерции, так же как любое материальное дело, для которого коэффициентом инерции является ею масса. Эта эквивалентная масса электромагнитной энергии Е равна, следовательно, Е/c 2 , формула, которую он явно выписывает, что влечет за собой Е = mc 2 . Имеет место эквивалентность между массой и энергией в случае электромагнитного излучения, Макс Планк обобщит эту формулу на случай тела, которое поглощает и теряет энергию и произведет доказательство в 1907 году, опираясь на электромагнитное количество движения Пуанкаре.

В 1902 году Пуанкаре публикует работу "Наука и гипотеза ", работу, которая имела большой резонанс в научном сообществе. Там он, в частности, писал: "Не существует абсолютного пространства и мы воспринимаем только относительные движения. Не существует абсолютного времени: утверждение, что два промежутка времени равны друг другу, само по себе не имеет никакого смысла. Оно может обрести смысл только при определенных дополнительных условиях. У нас нет непосредственной интуиции одновременности двух событий, происходящих в двух разных театрах. Мы могли бы что-либо утверждать о содержании фактов механического порядка, только отнеся их к какой-либо неевклидовой геометрии".

В этих высказываниях нетрудно увидеть ряд положений, которые типичны для современной релятивистской физики. Лоренц, впрочем, читал эту работу Пуанкаре и был в курсе тех критических замечаний, которые высказывал Пуанкаре еще в 1899 году. Лоренц получил в 1902 Нобелевскую премию по физике, вторую в истории науки (первую получил Рентген), что делало его весьма авторитетным. Строгий ученый, он принимал в расчет критику Пуанкаре, как он сам об этом пишет в своем мемуаре в мае 1904 года, где он предлагает новые уравнения. Однако он не может расстаться с идеей неподвижного эфира.

В сентябре 1904 года Пуанкаре приглашают в Соединенные штаты прочитать лекцию в городе Сент-Луис (штат Миссури). Он должен там рассказать о состоянии науки и о будущем математической физики. Он начал лекцию с того, что рассказал о той роли, которую выпало играть в современной ему науке великим принципам, таким как закон сохранения энергии, второе начало термодинамики, равенство действия противодействию, закон сохранения массы, принцип наименьшего действия. К ним он затем добавляет радикальное нововведение: принцип относительности, в соответствии с которым законы физики должны быть одинаковыми, как для неподвижного наблюдателя, так и для наблюдателя, вовлеченного в равномерное движение, так, что мы не имеем и не можем иметь никакого способа узнать находимся ли мы или нет в подобном движении".

Впервые он обнародовал принцип относительности, касающийся не только механики, но и электромагнетизма. Пуанкаре закончил свою лекцию словами: "Возможно, нам предстоит построить механику, контуры которой уже начинают проясняться и где возрастающая со скоростью масса сделает скорость света непреодолимым барьером".

Из мемуара Лоренца 1904 года, с которым он познакомился до этой лекции, он извлек главное, что оправдывает и обосновывает принцип относительности. Он публикует резюме своих исследований в заметке в Академии наук от 5 июня 1905 года, где можно найти следующую фразу: "Самое главное, что было установлено Лоренцем – это то, что уравнения электромагнитного поля не изменяются под действием преобразований, которым я даю название преобразований Лоренца".

На самом деле это именно Пуанкаре принадлежит доказательство инвариантности уравнений Максвелла. Это позже честно признал сам Лоренц "Это были мои рассуждения, опубликованные в мае 1904 года, которые подвигнули Пуанкаре написать свою статью, в которой он приписывает мое имя преобразованиям, из которых я не смог извлечь всей пользы. Позже я смог увидеть в мемуаре Пуанкаре, что я мог добиться больших упрощений. Не заметив их, я не смог установить принцип относительности как строго и универсально справедливый. Пуанкаре, напротив, установил совершенную инвариантность и сформулировал постулат относительности. Именно этот термин он первым и употребил".

Действительно, Лоренц предложил двухступенчатую замену переменных, связывающую координаты событи {x ,y ,z ,t } в некотором инерциальном репере с координатами этого же событи {x" ,y" ,z" ,t" } в другом инерциальном репере, движущимся по отношению к первому. В то время как Пуанкаре связал координаты {x ,y ,z ,t } с координатами {x" ,y" ,z" ,t" } единым преобразованием. Это преобразование симметрично и обратимо: никакой репер не имеет привилегированного характера и в этом суть релятивизма. Немедленное следствие: постоянство скорости света.

Именно этому преобразованию Пуанкаре дал имя Лоренца, ставшее классическим. В заметке 5 июня он писал: "Множество всех этих преобразований вместе со всеми поворотами пространства должно обладать групповыми свойствами, для того, чтобы удовлетворять принципу относительности".

Термин преобразование имеет специальное употребление в теории групп преобразований в геометрии после работ Феликса Клейна 1872 года. По этой причине, с теорией групп в то время были знакомы лишь несколько математиков самого высокого уровни и некоторые кристаллографы. Поэтому этой теорией воспользовался Пуанкаре, который ею владел, а не Лоренц.

Последствия того открытия, что в основе релятивизма лежит специальная группа, были весьма значительными, так как из этого следовало, что x 2 + у 2 + z 2 – c 2 t является инвариантом этой группы, преобразования которой в пространстве четырех измерений х ,у ,z ,ict являются вращениями. Эта группа, которой Пуанкаре дал название группа Лоренца , и которую современные физики именуют группа Пуанкаре , является основой специальной теории относительности.

Итак, в своей заметке 5 июня 1905 года Пуанкаре дал новую форму преобразованиям, предложенным Лоренцем, и установил их групповую природу. В силу этих преобразований уравнения Максвелла инвариантны и этим удовлетворяется принцип относительности: в этом и состоит главный момент . Основы теории относительности были сформированы.

В это время 26 сентября 1905 года журнал "Annalen der Physik " (Берлин-Лейпциг) публикуют статью Альберта Эйнштейна, озаглавленную "К электродинамике движущихся тел ". Рукопись, подписанная Эйнштейном и его женой Милевой Марич (см. Science & Vie No. 871, р. 32) была получена редакцией 30 июня 1905 года, то есть более трех недель спустя заметки Пуанкаре. Эта рукопись была немедленно уничтожена после ее публикации. Родившийся в 1879 году Эйнштейн получил образование в Цюрихском Политехникуме, после чего поступил в патентное бюро Берна.

В его статье можно найти то, о чем в течение десяти лет Пуанкаре дискутировал с Лоренцем и что уже неоднократно публиковалось: ненужность эфира, абсолютного пространства и абсолютного времени, условность понятия одновременности, принцип относительности, постоянство скорости света, синхронизация часов световыми сигналами, преобразования Лоренца, инвариантность уравнений Максвелла, и так далее. К уже известному Эйнштейн добавил формулы релятивистского эффекта Доплера и аберрации, которые немедленно вытекают из преобразований Лоренца.

Таким образом, независимый исследователь, никогда, ничего не публиковавший по обсуждаемому вопросу прежде, якобы переоткрыл практически мгновенно то, что ученые класса Лоренца и Пуанкаре смогли установить только после десяти лет усилий. Более того, вопреки научной этике в своей статье Эйнштейн не делает никаких ссылок на работы предшественников, что особенно поразило Макса Борна. При этом Эйнштейн, который читал по-французски также хорошо, как и по-немецки, знал работу Пуанкаре "Наука и гипотеза ", а также, без сомнения, и все другие статьи Лоренца и Пуанкаре.

Это не помешало Эйнштейну стать в глазах общественности творцом теории относительности, что обрекало Пуанкаре на забвение. Такое произошло под влиянием немецкой школы и благодаря научному авторитету Планка и фон Лауе. В 1907 году Планк писал: "Принцип относительности, намеченный Лоренцем и в наиболее общем виде сформулированный Эйнштейном..."; здесь Пуанкаре был уже полностью проигнорирован.

Этому есть два главных объяснения. Прежде всего, конфликт двух кланов: Пуанкаре был математиком, а не физиком. Мог ли профессор математики с высоты своей кафедры давать советы тем, кто внизу ведет тяжелую борьбу с грубой реальностью практики? Затем конфликт наций: в начале века наука была немецкой (Рентген, Герц, Планк, Вайн и др.), как могли немцы получать уроки от французов?

Хотя Эйнштейн и работал в Берне, но родился в Ульме, в Баварии. Он принадлежал к немецкой школе и поэтому стал знаменитым. Потом американцы, склонные все преувеличивать до абсурда, сделали из него самого великого ученого человечества.

В этом избытке почестей есть, однако, "небольшая осечка". Пуанкаре умер в 1912 году, в этом же году, а затем и в последующих, Эйнштейн неоднократно выдвигался на Нобелевскую премию по теории относительности. В конце концов он получил эту премию, но не за эту теорию, а за фотоэффект. Для премии по теории относительности было существенное препятствие: Лоренц, престиж которого в Шведской Академии Наук был огромен, и который лучше, чем кто-либо знал о приоритете Пуанкаре в генезисе релятивизма.

* Par Renard de la Taille, Relativite Poincare a precede Einstein , Science et Vie, No. 931, avril 1995, p. 114-119 (оригинал статьи в формате djvu)

2005 В.Ф. Журавлев (перевод с французского)

Теорема Нётер. Непрерывные пространственно-временные симметрии (глобальные симметрии). Группа Лоренца. Группа Пуанкаре

Симметрия - инвариантность(неизменность) структуры, свойств, формы, состояния системы. относительно данного преобразования. Понятие симметрии неразрывно связано с представлениями о красоте. «Все симметричное автоматически красиво». Однако, в природе может наблюдаться небольшое нарушение симметрии. Состояние физической системы определяется оператором Гамильтона (гамильтонианом) или оператором Лагранжа (лагранжианом) для полей.

Преобразования симметрии для физической системы являются преобразования, не меняющие гамильтониана или лагранжиана системы. В математике такие преобразования составляют группу.

Теорема Нётер: Для каждой физической системы, уравнения которой могут быть получены из вариационного принципа, каждому однопараметрическому непрерывному преобразованию симметрии отвечает один закон сохранения некоторой физической величины.

Теорема Нётер самое универсальное средство, позволяющее находить законы сохранения в лагранжевой классической механике, теории поля, квантовой теории.

Из физических представлений об однородности и изотропии пространства-времени следует, что для любой замкнутой системы действие должно быть инвариантно относительно преобразований группы Пуанкаре. В силу теоремы Нётер это приводит к существованию 10 фундаментальных сохраняющихся величин: энергии, трех компонентов импульса, и 6 компонент 4-момента импульса.

Эти сохраняющиеся физические величины являются генераторами этих преобразований. В физике симметрии делятся на геометрические и внутренние. Геометрические симметрии подразделяются на непрерывные и дискретные. Преобразования, отвечающие геометрическим симметриям, в четырехмерном прострастве-времени содержат пространственные и временные сдвиги, вращения, зеркальные отражения координатных осей.

Непрерывныепространственно-временные симметрии (глобальные симметрии)

1.Перенос (сдвиг) системы, как целого в пространстве понимается как реальный перенос физической системы или параллельный перенос системы отсчета. Симметрия физических законов относительно сдвигов в пространстве означает эквивалентность всех точек пространства (однородность пространства). Ему соответствует закон сохранения импульса в замкнутой системе.

2. Изменение начала отсчета времени (сдвиг во времени). Симметрия относительно сдвига во времени означает эквивалентность всех моментов времени (однородность времени). Ему соответствует закон сохранения энергии в замкнутой системе.

3. Поворот системы как целого в пространстве. Симметрия относительно поворотов означает эквивалентность всех направлений в пространстве (изотропность пространства). «В пространстве нет выделенных направлений». Ему соответствует закон сохранения углового момента(момента импульса) замкнутой системы.

4.Переход к системе отсчета, движущейся относительно данной системы с постоянной (по величине и направлению) скоростью. Симметрия относительного этого преобразования означает, в частности, эквивалентность всех инерциальных систем отсчета. Ему соответствует закон сохранения равномерного и прямолинейного движения центра инерции в инерциальной системе координат.

Эти четыре непрерывные симметрии отражают свойства плоского 4–мерного пространства Минковского с псевдоэвклидовой метрикой. Преобразования 1 и 2 –сдвиги, 3 и 4 –повороты в пространстве Минковского.

Группа Лоренца – группа вещественных линейных однородных преобразований. 4-векторов пространства Минковского М 4 сохраняющих скалярное произведение:

где - метрический тензор в М 4 (подразумевается суммирование по повторяющимся индексам). Группа Лоренца является подгруппой группы Пуанкаре (группы симметрии пространства-времени в отсутствие гравитации). Инвариантность действия относительно преобразований группы Лоренца отражает изотропность пространства-времени и влечет за собой сохранение 4-тензора момента.

Группа Лоренца-шестипараметрическая группа Ли. Имеется три независимых пространственных вращения на угол в плоскости :

и три независимых (частных) преобразования Лоренца –гиперболические повороты (бусты ) на угол в плоскости :

здесь и их циклические перестановки: 2,3,1 ; 3,2,1.

Трансформационные свойства физического поля по отношению к преобразованиям группы Лоренца задают спин частицы: скаляру соответствует спин , спинору – спин , вектору спин .

ПУАНКАРЕ ГРУППА

(неоднородная группа Лоренца) - группа всех вещественных преобразований 4-век-торов пространства Минковского М 4 вида где L - преобразование из Лоренца группы, а - 4-вектор смещения (трансляции). Элемент П. г. обычно обозначается {a , L}, а закон композиции имеет вид

П. г. играет чрезвычайно важную роль в релятивистской физике, являясь группой её глобальной симметрии. Она была введена в 1905 А. Пуанкаре (Н. Poincare). Как и группа Лоренца, П. г. имеет четыре компоненты связности, различаемые значениями и знаком, а именно: и . Это - неабелева, некомпактная группа Ли. Наиб. важной является компонента , представляющая собой множество преобразований содержащая единичное преобразование. В дальнейшем речь будет идти именно об этой группе.

Группа - 10-параметрическая; к шести генераторам группы Лоренца добавляются четыре генератора трансляций. Ли алгебра П. г. определяется перестановочными соотношениями для генераторов:

где - метрич. тензор. 10 генераторов П. г. являются осн. динамич. величинами в релятивистской механике. Величину наз. вектором энергии-импульса или 4-импульсом; 3-вектор есть угл. момент. В квантовой теории поля для любого оператора А (х )

В частности, эволюция во времени определяется оператором P 0 , или гамильтонианом системы.

Для П. г. имеется два Казимира оператора, коммутирующих со всеми её генераторами и, следовательно, релятивистски инвариантных. Это p, где псевдовектор а - полностью антисимметричный тензор.

При 0 имеется ещё одна дискретная инвариантная характеристика - знак энергии: с собств. значениями b1.

Как и в случае группы Лоренца, представления П. г. строят с помощью односвязной группы - универсальной накрывающей для группы (см. Группа). Для квантовой теории поля важны унитарные неприводимые представления (см. Представление группы). Согласно требованию релятивистской инвариантности, векторам состояния отвечают т. н. проективные представления, задаваемые с точностью до фазового множителя. Имеет место теорема Вигнера - Баргмана, утверждающая, что любое проективное представление группы, порождается обычным однозначным унитарным представлением группы

Изучение важных для физики унитарных представлений группы сводится к классификации её неприводимых унитарных представлений, т. к. хотя и некомпактна, любое её унитарное представление может быть разложено в прямую сумму (или интеграл) неприводимых представлений.

Группа локально изоморфна группе и имеет те же генераторы и те же операторы Казимира, что и . В зависимости от значений оператора P 2 представления группы могут быть разделены на следующие классы:

1) Р 2 = m 2 > 0.

1а) e = 1 (т. е. Р 0 > 0). Соответствующие представления описывают трансформац. свойства реальных частиц с массой покоя т.

1б) e = -1 (т. е. Р 0 < 0). Эти представления комплексно сопряжены с представлениями класса 1а.

2) Р 2 = 0, P 0.

2а) e=1 ( Р 0 > 0). Соответствующие представления описывают частицы с нулевой массой покоя (нейтрино и фотон).

2б) e = -1 ( Р 0 < 0). Представления этого класса комплексно сопряжены с представлениями класса 2а.

3) Р 2 = -m 2 <0 (т. е. вектор P пространственно подобен). Согласно осн. принципам релятивистской механики, частицы с таким импульсом не могут реально существовать. Однако представления класса 3 также встречаются в квантовой теории поля, напр. при описании трансформац. свойств взаимодействующих полей.

4) P = 0. Все состояния с таким P трансляционно инвариантны. Все унитарные представления этого класса, кроме единичного, бесконечномерны. Единичное представление соответствует вакууму, инвариантному относительно всех преобразований из П. г.

Физ. смысл инварианта выявляется просто при т 2 > 0, Р 0 > 0. В этом случае величина равна квадрату угл. момента М 2 в состоянии покоя, т. е. квадрату спина.

Т. о., неприводимое унитарное представление П. г. характеризуется значениями массы т, спина S изнака энергии (при m 2 > 0).

Лит.: Боголюбов Н. Н., Логунов А. А., Tодоров И. Т., Основы аксиоматического подхода в квантовой теории поля, М., 1969; Новожилов Ю. В., Введение в теорию элементарных частиц, М., 1972; Мишель Л., Шааф М., Симметрия в квантовой физике, пер. с англ., М., 1974; Ба-рут А., Рончка Р., Теория представлений групп и ее приложения, пер. с англ., т. 1-2, М., 1980; Эллиот Дж., Добер П., Симметрия в физике, пер. с англ., т. 1-2, М., 1983.

  • - о возвращении - одна из осн. теорем, характеризующих поведение динамической системы с инвариантной мерой...

    Физическая энциклопедия

  • - Раймон - франц. политич. деятель, умеренный республиканец, представитель монополистич. кругов. Адвокат по профессии. В 1887-1903 - чл. палаты депутатов; в 1903-13 - сенатор...

    Советская историческая энциклопедия

  • - президент Франции в 1913 - январе 1920 гг., премьер-министр в 1912 - январе 1913 гг., 1922-24 гг. и 1926-29 гг. Проводил милитаристскую политику...

    Исторический словарь

  • - франц. политический и государственный деятель) О вздернутых Врангелем, / о расстрелянном, / о заколотом / память на каждой крымской горе. / Какими пудами / какого золота / оплатите это, господин Пуанкаре? Ирон. М922 ...

    Собственное имя в русской поэзии XX века: словарь личных имён

  • - Жюль Анри, французский математик. Автор более 500 работ в различных областях, включая математический АНАЛИЗ, ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ, ТОПОЛОГИЮ, теорию ВЕРОЯТНОСТИ и ТЕОРИЮ ЧИСЕЛ...

    Научно-технический энциклопедический словарь

  • - Жюль Анри - французский мыслитель, математик и астроном, автор философской доктрины конвенционализма, труды которого, с одной стороны, завершили построение математики и физики классического периода, а с другой...

    История философии

  • - французский политический деятель, один из руководителей французской внешней и внутренней политики в период от кануна первой мировой войны до конца 20-х годов...

    Дипломатический словарь

  • - Жюль Анри - фр. математик и физик, один из последних универсалистов, оставивший свой след практически во всех областях физико-математического знания...

    Философская энциклопедия

  • - ".....

    Официальная терминология

  • - французский политический деятель, род. в 1860 г.; получив юридическое образование в Париже, П. сперва занимался адвокатурой; в течение 1½ лет заведовал канцелярией министерства земледелия...

    Энциклопедический словарь Брокгауза и Евфрона

  • - знаменитый французский математик, род. в 1854 г. в Нанси. Поступил в 1873 г. в политехническую школу, а в 1875 г. в горную школу, откуда вышел в 1879 г. горным инженером...

    Энциклопедический словарь Брокгауза и Евфрона

  • - I - французский политический деятель, род. в 1860 г.; получив юридическое образование в Париже, П. сперва занимался адвокатурой; в течение 11/2 лет заведовал канцелярией министерства земледелия...

    Энциклопедический словарь Брокгауза и Евфрона

  • - Пуанкаре́ Раймон, президент Франции в 1913 — январе 1920, премьер-министр в 1912 — январе 1913, 1922—24 и 1926—29, неоднократно министр. Двоюродный брат Ж. А. Пуанкаре. Проводил милитаристскую политику...
  • - президент Франции в 1913 - январе 1920, премьер-министр в 1912 - январе 1913, 1922-24 и 1926-29, неоднократно министр. Проводил милитаристскую политику...

    Большой энциклопедический словарь

  • - ...

    Орфографический словарь-справочник

"ПУАНКАРЕ ГРУППА" в книгах

Семья Пуанкаре

Из книги Пуанкаре автора Тяпкин Алексей Алексеевич

Семья Пуанкаре Говорят, что дома - это портреты своей эпохи. В таком случае дом на улице Гиз в Нанси - одно из немногих исключений. Построенный ученым советником и врачом лотарингских герцогов, он выглядел ровесником XIX века, воплощением его буржуазной умеренности и

Феномен Пуанкаре

Из книги Пуанкаре автора Тяпкин Алексей Алексеевич

Феномен Пуанкаре Пешие прогулки были единственным видом физических упражнений, которыми Пуанкаре занимался охотно и систематически. По свидетельствам близко знавших его людей, он мог пройти до 15 километров. Впрочем, даже этот род физкультуры он скорее всего

Пуанкаре

Из книги Человек, который был Богом. Скандальная биография Альберта Эйнштейна автора Саенко Александр

Пуанкаре Конференция в Дюссельдорфе заканчивалась. Ничем не отличаясь от других, она сильно утомила Альберта, да и дурное предчувствие не покидало его с утра. Слава надоела, он в шутку говорил потом: «Я не мог начать лекцию. Мне не удалось разбудить студентов, уснувших,

Глава 26 Господин Пуанкаре

Из книги Главный финансист Третьего рейха. Признания старого лиса. 1923-1948 автора Шахт Яльмар

Глава 26 Господин Пуанкаре 23 января 1924 года я прибыл по приглашению комитета Дауэса в Париж. Перед поездкой в Берлин члены комитета предпочли сначала обсудить экономическое положение Германии в Париже, и потребовалось мое присутствие для предоставления необходимой

Часть 1 Тайна Пуанкаре

автора Арсенов Олег Орестович

Часть 1 Тайна Пуанкаре -16- «Трудно отделаться от ощущения, что эти математические формулы существуют независимо от нас и обладают своим собственным разумом, что они умнее нас, умнее тех, кто открыл их, и что мы извлекаем из них больше, чем было в них первоначально

Гл. 3 Гипотеза Пуанкаре

Из книги Григорий Перельман и гипотеза Пуанкаре автора Арсенов Олег Орестович

Гл. 3 Гипотеза Пуанкаре «Математика - не просто создание человеческого разума, она испытывает на себе сильное влияние тех культур, в рамках которых развивается. Математические "истины" зависят от людей ничуть не меньше, чем восприятие цвета или язык». Людвиг

Пуанкаре

Из книги Законы успеха автора

Пуанкаре Жюль Анри Пуанкаре (1854–1912) – французский математик, физик и философ науки, член Парижской Академии наук. Ученый, достойный таковым называться, и прежде всего математик, испытывает в своей работе такие же впечатления, как и художник; его удовольствие столь же

Пуанкаре и Эйнштейн

Из книги Гравитация [От хрустальных сфер до кротовых нор] автора Петров Александр Николаевич

Пуанкаре и Эйнштейн В исторической литературе о науке много внимания уделяется взаимоотношениям создателей СТО в начале прошлого века. Иногда оценки разнятся чрезвычайно. К сожалению, часто доходят до крайностей, ничем не обоснованных. Можно было бы об этом просто не

2. Франция и Россия в начале эры Пуанкаре. Франко-русские отношения в свете новейшей документации. Министерство Пуанкаре. Избрание Пуанкаре президентом Французской республики

Из книги Европа в эпоху империализма 1871-1919 гг. автора Тарле Евгений Викторович

Пуанкаре

Из книги Энциклопедический словарь (П) автора Брокгауз Ф. А.

Пуанкаре Раймон

Из книги Большая Советская Энциклопедия (ПУ) автора БСЭ

ПУАНКАРЕ, Анри

Из книги Большой словарь цитат и крылатых выражений автора Душенко Константин Васильевич

ПУАНКАРЕ, Анри (Poincar?, Henri, 1854–1912), французский математик и физик 518 Наука строится из фактов, как дом строится из кирпичей; но сумма фактов не есть наука, так же как груда кирпичей не есть еще дом. «Наука и гипотеза» (1909), гл. 9 ? Oster, p.

ПУАНКАРЕ

Из книги Формула успеха. Настольная книга лидера для достижения вершины автора Кондрашов Анатолий Павлович

ПУАНКАРЕ Жюль Анри Пуанкаре (1854–1912) – французский математик, физик и философ науки, член Парижской Академии наук.* * * Ученый, достойный таковым называться, и прежде всего математик, испытывает в своей работе такие же впечатления, как и художник; его удовольствие столь

54. Группа лиц, группа лиц по предварительному сговору или организованная группа. Преступление, повлекшее по неосторожности смерть и иные тяжкие последствия

Из книги Уголовное право (Общая и Особенная части): Шпаргалка автора Автор неизвестен

54. Группа лиц, группа лиц по предварительному сговору или организованная группа. Преступление, повлекшее по неосторожности смерть и иные тяжкие последствия Группа лиц – группа, в которой совместные действия двух или более соисполнителей без предварительного на то

«Анри Пуанкаре»

Из книги Подводные лодки: Свыше 300 подводных лодок всех стран мира автора Автор неизвестен

В докладе, опубликованном в "Заметках Академии наук" З июня
1905 года, Пуанкаре комментирует группу преобразований, найденную им при анализе уравнений Лоренца. Он подчеркивает, что главным моментом, оказавшимся в основе принципа относительности, является инвариантность уравнений электромагнитного поля.

Действительно Лоренц предложил двухступенчатую замену переменных, связывающую координаты события {x,y,z,t} в одном инерциальном репере с координатами этого же события {х", у", z", t"} в другом инерциальном репере, движущемся по отношению к первому. В то время как Пуанкаре связал координаты {x, y, z, t} с координатами {х", у", z", t"} единым преобразованием. Это преобразование симметрично и обратимо: никакой репер не имеет привилегированного характера и в этом суть релятивизма. Немедленное следствие: постоянство скорости света.

Именно этому преобразован он дал имя Лоренца, ставшее классическим. В заметке 5 июня он писал: "Множество всех этих преобразований вместе со всеми поворотами пространства должно обладать групповыми свойствами для того, чтобы удовлетворять принципу относительности".

Термин имеет специальное употребление в теории групп преобразований в геометрии после работ Феликса Клейна 1872 года. С теорией групп в то время были знакомы лишь несколько математиков самого высокого уровня и некоторые кристаллографы. Поэтому этой теорией воспользовался Пуанкаре, который ею владел, а не Лоренц.

Последствия того открытия, что в основе релятивизма лежит специальная группа, были весьма значительными, так как из этого следовало, что y 2 +y 2 +z 2 -c 2 t 2 является инвариантом этой групп, преобразования которой в пространстве четырех измерений x, y, z, ict являются вращениями. Эта группа, которой Пуанкаре дал название Группа Лоренца, и которую современные физики именуют Группа Пуанкаре, является основой специальной теории относительности.

Итак, в своей заметке 5 июня 1905 года Пуанкаре дал новую форму преобразованиям, предложенным Лоренцем и установил их групповую природу. В силу этих преобразований уравнения Максвелла инвариантны и этим удовлетворяется принцип относительности: в этом и состоит главный момент . Основы теории относительности были сформированы.

В это время 26 сентября 1905 года "Annalen der Physik" (Берлин-Лейпциг) публикуют статью Альберта Эйнштейна, озаглавленную "К электродинамике движущихся тел". Рукопись, подписанная Эйнштейном и его женой Милевой Марич (см. Science & Vie N 871, р. 32), была получена редакцией 30 июня 1905 года, то есть более трех недель спустя заметки Пуанкаре. Эта рукопись была немедленно уничтожена после ее публикации. Родившийся в 1879 году Эйнштейн получил образование в Цюрихском Политехникуме, после чего поступил в патентное бюро Берна.


В его статье можно найти то, о чем в течение десяти лет Пуанкаре дискутировал с Лоренцем и что уже неоднократно публиковалось: ненужность эфира, абсолютного пространства и абсолютного времени, условность понятия одновременности, принцип относительности, постоянство скорости света, синхронизация часов световыми сигналами, преобразования Лоренца, инвариантность уравнений Максвелла, и так далее. К уже известному Эйнштейн добавил формулы релятивистского эффекта Доплера и аберрации, которые немедленно вытекают из преобразований Лоренца.

Таким образом, независимый исследователь, никогда ничего не публиковавший по обсуждаемому вопросу прежде, якобы переоткрыл практически мгновенно то, что ученые класса Лоренца и Пуанкаре смогли установить только после десяти лет усилий. Более того, вопреки научной этике в своей статье Эйнштейн не делает никаких ссылок на работы предшественников, что особенно поразило Макса Борна. При этом Эйнштейн, который читал по-французски так же хорошо, как и по-немецки, знал работу Пуанкаре и "Наука и гипотеза", а также, без сомнения, и все другие статьи Лоренца и Пуанкаре.

Это не помешало Эйнштейну стать в глазах общественности творцом теории относительности, что обрекало Пуанкаре на забвение. Такое произошло под влиянием немецкой школы и благодаря научному авторитету Планка и фон Лауе. В 1907 году Планк писал: "Принцип относительности намеченный Лоренцем и в наиболее общем виде сформулированный Эйнштейном,...". Пуанкаре был уже полностью проигнорирован.

Этому два главных объяснения. Прежде всего конфликт двух кланов: Пуанкаре был математиком, а не физиком. Мог ли профессор математики с высоты своей кафедры давать советы тем, кто внизу ведет тяжелую борьбу с грубой реальностью практики? Затем конфликт наций: в начале века наука была немецкой (Рентген, Герц, Планк, Вайи и др.), как могли немцы получать уроки от французов?

Хотя Эйнштейн и работал в Берне, но родился он в Ульме, в Баварии. Он принадлежал немецкой школе. Поэтому он и стал знаменитым. Потом американцы, склонные все преувеличивать до абсурда, сделали из него самого Великого ученого человечества.

В этом избытке почестей есть, однако, небольшая осечка. Пуанкаре умер в 1912 году, в этом же году, а затем и в последующих, Эйнштейн выдвигался на Нобелевскую премию по теории относительности. В конце концов он получил эту премию, но не за эту теорию, а за фотоэффект. Для премии по теории относительности было существенное препятствие: Лоренц, престиж которого в шведской Академии наук был огромен, и который лучше, чем кто-либо знал о приоритете Пуанкаре в генезисе релятивизма.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта