Главная » Ядовитые грибы » Как составлять уравнения. Составление уравнения c одним неизвстным

Как составлять уравнения. Составление уравнения c одним неизвстным

Поговорим о том, как составить уравнение химической реакции. Именно этот вопрос в основном вызывает серьезные затруднения у школьников. Одни не могут понять алгоритм составления формул продуктов, другие неправильно расставляют коэффициенты в уравнении. Учитывая, что все количественные вычисления осуществляются именно по уравнениям, важно понять алгоритм действий. Попробуем выяснить, как составлять уравнения химических реакций.

Составление формул по валентности

Для того чтобы правильно записывать процессы, происходящие между различными веществами, нужно научиться записывать формулы. Бинарные соединения составляют с учетом валентностей каждого элемента. Например, у металлов главных подгрупп она соответствует номеру группы. При составлении конечной формулы между этими показателями определяется наименьшее кратное, затем расставляются индексы.

Что такое уравнение

Под ним понимают символьную запись, которая отображает взаимодействующие химические элементы, их количественные соотношения, а также те вещества, которые получаются в результате процесса. Одно из заданий, предлагаемых ученикам девятого класса на итоговой аттестации по химии, имеет следующую формулировку: «Составьте уравнения реакций, характеризующих химические свойства предложенного класса веществ». Для того чтобы справиться с поставленной задачей, ученики должны владеть алгоритмом действий.

Алгоритм действий

Например, нужно написать процесс горения кальция, пользуясь символами, коэффициентами, индексами. Поговорим о том, как составить уравнение химической реакции, воспользовавшись порядком действий. В левой части уравнения через "+" записываем знаками вещества, которые участвуют в данном взаимодействии. Так как горение происходит с участием кислорода воздуха, который относится к двухатомным молекулам, его формулу пишем О2.

За знаком равенства формируем состав продукта реакции, используя правила расстановки валентности:

2Ca + O2 = 2CaO.

Продолжая разговор о том, как составить уравнение химической реакции, отметим необходимость использования закона постоянства состава, а также сохранения состава веществ. Они позволяют проводить процесс уравнивания, расставлять в уравнении недостающие коэффициенты. Данный процесс является одним из простейших примеров взаимодействий, происходящих в неорганической химии.

Важные аспекты

Для того чтобы понять, как составить уравнение химической реакции, отметим некоторые теоретические вопросы, касающиеся этой темы. Закон сохранения массы веществ, сформулированный М. В. Ломоносовым, объясняет возможность расстановки коэффициентов. Так как количество атомов каждого элемента до и после взаимодействия остается неизменным, можно проводить математические расчеты.

При уравнивании левой и правой частей уравнения используют наименьшее общее кратное, аналогично тому, как составляется формула соединения с учетом валентностей каждого элемента.

Окислительно-восстановительные взаимодействия

После того как у школьников будет отработан алгоритм действий, они смогут составить уравнение реакций, характеризующих химические свойства простых веществ. Теперь можно переходить к разбору более сложных взаимодействий, например протекающих с изменением степеней окисления у элементов:

Fe + CuSO4 = FeSO4 + Cu.

Существуют определенные правила, согласно которым расставляют степени окисления в простых и сложных веществах. Например, у двухатомных молекул этот показатель равен нулю, в сложных соединениях сумма всех степеней окисления также должна быть равна нулю. При составлении электронного баланса определяют атомы или ионы, которые отдают электроны (восстановитель), принимают их (окислитель).

Между этими показателями определяется наименьшее кратное, а также коэффициенты. Завершающим этапом разбора окислительно-восстановительного взаимодействия является расстановка коэффициентов в схеме.

Ионные уравнения

Одним из важных вопросов, который рассматривается в курсе школьной химии, является взаимодействие между растворами. Например, дано задание следующего содержания: «Составьте уравнение химической реакции ионного обмена между хлоридом бария и сульфатом натрия». Оно предполагает написание молекулярного, полного, сокращенного ионного уравнения. Для рассмотрения взаимодействия на ионном уровне необходимо по таблице растворимости указать ее для каждого исходного вещества, продукта реакции. Например:

BaCl2 + Na2SO4 = 2NaCl + BaSO4

Вещества, которые не растворяются на ионы, записывают в молекулярном виде. Реакция обмена ионами протекает полностью в трех случаях:

  • образование осадка;
  • выделение газа;
  • получение малодиссоциируемого вещества, например воды.

При наличии у вещества стереохимического коэффициента он учитывается при написании полного ионного уравнения. После того как будет написано полное ионное уравнение, проводят сокращение тех ионов, которые не были связаны в растворе. Конечным итогом любого задания, предполагающего рассмотрение процесса, протекающего между растворами сложных веществ, будет запись сокращенной ионной реакции.

Заключение

Химические уравнения позволяют объяснять с помощью символов, индексов, коэффициентов те процессы, которые наблюдаются между веществами. В зависимости от того, какой именно протекает процесс, существуют определенные тонкости записи уравнения. Общий алгоритм составления реакций, рассмотренный выше, основывается на валентности, законе сохранения массы веществ, постоянстве состава.

Поговорим о том, как составить химическое уравнение, ведь именно они являются основными элементами данной дисциплины. Благодаря глубокому осознанию всех закономерностей взаимодействий и веществ, можно управлять ими, применять их в различных сферах деятельности.

Теоретические особенности

Составление химических уравнений - важный и ответственный этап, рассматриваемый в восьмом классе общеобразовательных школ. Что должно предшествовать данному этапу? Прежде чем педагог расскажет своим воспитанникам о том, как составить химическое уравнение, важно познакомить школьников с термином «валентность», научить их определять данную величину у металлов и неметаллов, пользуясь таблицей элементов Менделеева.

Составление бинарных формул по валентности

Для того чтобы понять, как составить химическое уравнение по валентности, для начала нужно научиться составлять формулы соединений, состоящих из двух элементов, пользуясь валентностью. Предлагаем алгоритм, который поможет справиться с поставленной задачей. Например, необходимо составить формулу оксида натрия.

Сначала важно учесть, что тот химический элемент, который в названии упоминается последним, в формуле должен располагаться на первом месте. В нашем случае первым будет записываться в формуле натрий, вторым кислород. Напомним, что оксидами называют бинарные соединения, в которых последним (вторым) элементом обязательно должен быть кислород со степенью окисления -2 (валентностью 2). Далее по таблице Менделеева необходимо определить валентности каждого из двух элементов. Для этого используем определенные правила.

Так как натрий - металл, который располагается в главной подгруппе 1 группы, его валентность является неизменной величиной, она равна I.

Кислород - это неметалл, поскольку в оксиде он стоит последним, для определения его валентности мы из восьми (число групп) вычитаем 6 (группу, в которой находится кислород), получаем, что валентность кислорода равна II.

Между определенными валентностями находим наименьшее общее кратное, затем делим его на валентность каждого из элементов, получаем их индексы. Записываем готовую формулу Na 2 O.

Инструкция по составлению уравнения

А теперь подробнее поговорим о том, как составить химическое уравнение. Сначала рассмотрим теоретические моменты, затем перейдем к конкретным примерам. Итак, составление химических уравнений предполагает определенный порядок действий.

  • 1-й этап. Прочитав предложенное задание, необходимо определить, какие именно химические вещества должны присутствовать в левой части уравнения. Между исходными компонентами ставится знак «+».
  • 2-й этап. После знака равенства необходимо составить формулу продукта реакции. При выполнении подобных действий потребуется алгоритм составления формул бинарных соединений, рассмотренный нами выше.
  • 3-й этап. Проверяем количество атомов каждого элемента до и после химического взаимодействия, в случае необходимости ставим дополнительные коэффициенты перед формулами.

Пример реакции горения

Попробуем разобраться в том, как составить химическое уравнение горения магния, пользуясь алгоритмом. В левой части уравнения записываем через сумму магний и кислород. Не забываем о том, что кислород является двухатомной молекулой, поэтому у него необходимо поставить индекс 2. После знака равенства составляем формулу получаемого после реакции продукта. Им будет в котором первым записан магний, а вторым в формуле поставим кислород. Далее по таблице химических элементов определяем валентности. Магний, находящийся во 2 группе (главной подгруппе), имеет постоянную валентность II, у кислорода путем вычитания 8 - 6 также получаем валентность II.

Запись процесса будет иметь вид: Mg+O 2 =MgO.

Для того чтобы уравнение соответствовало закону сохранения массы веществ, необходимо расставить коэффициенты. Сначала проверяем количество кислорода до реакции, после завершения процесса. Так как было 2 атома кислорода, а образовался всего один, в правой части перед формулой оксида магния необходимо добавить коэффициент 2. Далее считаем число атомов магния до и после процесса. В результате взаимодействия получилось 2 магния, следовательно, в левой части перед простым веществом магнием также необходим коэффициент 2.

Итоговый вид реакции: 2Mg+O 2 =2MgO.

Пример реакции замещения

Любой конспект по химии содержит описание разных видов взаимодействий.

В отличие от соединения, в замещении и в левой, и в правой части уравнения будет два вещества. Допустим, необходимо написать реакцию взаимодействия между цинком и Алгоритм написания используем стандартный. Сначала в левой части через сумму пишем цинк и соляную кислоту, в правой части составляем формулы получаемых продуктов реакции. Так как в электрохимическом ряду напряжений металлов цинк располагается до водорода, в данном процессе он вытесняет из кислоты молекулярный водород, образует хлорид цинка. В результате получаем следующую запись: Zn+HCL=ZnCl 2 +H 2 .

Теперь переходим к уравниванию количества атомов каждого элемента. Так как в левой части хлора был один атом, а после взаимодействия их стало два, перед формулой соляной кислоты необходимо поставить коэффициент 2.

В итоге получаем готовое уравнение реакции, соответствующее закону сохранения массы веществ: Zn+2HCL=ZnCl 2 +H 2 .

Заключение

Типичный конспект по химии обязательно содержит несколько химических превращений. Ни один раздел этой науки не ограничивается простым словесным описанием превращений, процессов растворения, выпаривания, обязательно все подтверждается уравнениями. Специфика химии заключается в том, что с все процессы, которые происходят между разными неорганическими либо органическими веществами, можно описать с помощью коэффициентов, индексов.

Чем еще отличается от других наук химия? Химические уравнения помогают не только описывать происходящие превращения, но и проводить по ним количественные вычисления, благодаря которым можно осуществлять лабораторное и промышленное получение разных веществ.

Cтраница 1


Составление уравнений, отражающих химическое взаимодействие окисдителя и восстановителя, сводится к определению коэффициентов при формулах исходных веществ и продуктов реакции, состав которых выявлен из опыта.  

Составление уравнений для определения числа критериев рекомендуется выполнять так, чтобы в каждое из уравнений входили три переменные величины аъ а2, а3, а оставшиеся величины а4 и я включаются в уравнения поочередно.  

Составление уравнений возможно только для простейших объектов. Более сложные объекты, к которым относится большинство объектов нефтяной промышленности, изучаются пока экспериментально. Свойствами объекта, используемыми при изучении систем автоматического регулирования, являются само-выравнивание, емкость и запаздывание.  

Составление уравнений в разностной форме произведем для проводящей среды и для диэлектрика, а также для одномерных и двухмерных задач, в которы-х изменение величин поля по расстоянию происходит соответственно в одном или двух координатных направлениях.  

Составление уравнений для виртуальных вариаций демонстрируется на примере учета неголономных связей. Показано, что уравнение голономной связи с параметром является идеальной связью, когда оно описывает огибающую. Обсуждаются правила виртуального варьирования связей при двух независимых переменных.  

Составление уравнений имеет много общего с таким переводом. В легких случаях словесная формулировка почти механически распадается на ряд последовательных частей, каждую из которых можно непосредственно выразить математическими символами. В более трудных случаях условие состоит из частей, которые не могут быть непосредственно переведены на язык математических символов. В этом случае мы должны меньше обращать внимания на словесную формулировку и сосредоточить свое внимание на смысле этой формулировки. Перед тем, как приступить к математической записи, возможно нам придется по-иному сформулировать условия, все время имея в виду математические средства для записи этой новой формулировки.  

Составление уравнений таких химических процессов не представляет никаких трудностей.  

Составление уравнений в вариациях в общем виде рассмотрено ниже.  

Составление уравнения углов закручивания Q и определение его производных.  

Составление уравнений возможно только для простейших объектов. Более сложные объекты, к которым относится большинство объектов нефтяной промышленности, изучаются пока экспериментально. Свойствами объекта, используемыми при изучении систем автоматического регулирования, являются самовыравнивание, емкость и запаздывание.  

Составление уравнений аналитическим путем возможно только для относительно простых объектов, процессы или физические явления в которых достаточно хорошо изучены. В общем случае динамические свойства регулируемых объектов описываются дифференциальными уравнениями, выражающими зависимость между выходными и входными величинами во времени. Эти уравнения составляют на основании физических законов, определяющих переходные процессы в объектах.  

Составление уравнений (6 - 58) и их решение относительно Л и В. Общий метод решения этой задачи может быть указан при условии, что А и В входят в уравнение линейно.  

Составить уравнение - значит выразить в математической форме связь между данными (известными) задачи и искомыми (неизвестными) ее величинами. Иногда эта связь, настолько явно содержится в формулировке задачи, что составление уравнения есть просто дословный пересказ задачи, на языке математических знаков.

Пример 1. Петров получил за работу на 160 руб. больше, чем половина суммы, которую получил Иванов. Вместе они получили 1120 руб. Сколько получили за работу Петров и Иванов? Обозначим через х заработок Иванова. Половина его заработка есть 0,5x ; месячной заработок Петрова 0,5x + 160 вместе они зарабатывают 1120 руб.; математическая запись последней фразы будет

(0,5x + 160) + x = 1120.

Уравнение составлено. Решая его по раз установленным правилам, находим, заработок Иванова х = 640руб.; заработок же Петрова 0,5x+ 160=480 (руб.).

Чаше, однако, случается, что связь между данными и искомыми величинами не указывается в задаче прямо; ее нужно установить, исходя из условий задачи. В практических задачах так и бывает почти всегда. Только что приведенный пример носит надуманный характер; в жизни почти никогда подобных задач не встречается.

Для составления уравнения поэтому нельзя дать вполне исчерпывающих указаний. Однако на первых порах полезно руководствоваться следующим. Примем за значение искомой величины (или нескольких величин) какое-нибудь наугад взятое число (или несколько чисел) и поставим себе задачу проверить, угадали ли мы правильное решение задачи или нет. Если мы сумели провести эту проверку и обнаружить либо то, что догадка наша верна, либо то, что она неверна (скорее всего случится, конечно, второе), то мы немедленно можем составить нужное уравнение (или несколько уравнений). Именно, запишем те самые действия, которые мы производили для проверки, только вместо наугад взятого числа введем буквенной знак неизвестной величины. Мы получим требуемое уравнение.

Пример 2. Кусок сплава меди и цинка объемом в 1 дм3 весит 8,14 кг. Сколько меди содержится в сплаве? (уд. вес меди 8,9 кг/дм3; цинка - 7,0 кг/дм3).

Возьмем наугад число, выражающее искомый объем меди, например 0,3 дм3. Проверим, удачно ли мы взяли это число. Так как 1 кг/дм3 меди весит 8,9 кг, то 0,3 дм3 весят 8,9 * 0,3 = 2,67 (кг). Объем цинка в сплаве есть 1 - 0,3 = 0,7 (дм3). Вес его 7,0 0,7 = 4,9 (кг). Общий вес цинка и меди 2,67+ +4,9 = 7,57 (кг). Между тем вес нашего куска, по условию задачи, 8,14 кг. Догадка наша несостоятельна. Но зато мы немедленно получим уравнение решение которого даст правильный ответ. Вместо наугад взятого числа 0,3 дм3 обозначим объем меди (в дм3) через х. Вместо произведения 8,9 0,3 = 2,67 берем произведшие 8,9 x. Это - вес меди в сплаве. Вместо 1 – 0,3 = 0,7 берем 1 - х; это - объем цинка. Вместо 7,0 0,7 = 4,9 берем 7,0 (1 - x); это - вес цинка. Вместо 2,67+4,9 берем 8,9х + 7,0 (1 - х); это - общий вес цинка и меди. По условию он равен 8,14 кг; значит, 8,9х +7,0 (1 - x)= 8,14.

Решение этого уравнения дает x = 0,6. Проверку наугад взятого решения можно делать различными способами; соответственно этому можно получить для одной и той же задачи различные виды уравнения; все они, однако, дадут для искомой величины одно и, то же решение, такие уравнения называются равносильными друг другу.

Разумеется, после получения навыков в составлении уравнений нет нужды производить проверку наугад взятого числа: можно для значения искомой величины брать не число, а какую-нибудь букву (х, у и т. д.) и поступать так, как если бы эта буква (неизвестное) была тем числом, проверить которое мы собираемся.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта