Главная » Ядовитые грибы » Косинус х деленное на 2. Тригонометрические тождества и преобразования

Косинус х деленное на 2. Тригонометрические тождества и преобразования

Значения синуса заключены в промежутке [-1; 1], т.е. -1 ≤ sin α ≤ 1. Поэтому если |а| > 1, то уравнение sin x = a не имеет корней. Например, уравнение sin x = 2 корней не имеет.

Обратимся к некоторым задачам.

Решить уравнение sin x = 1/2.

Решение.

Отметим, что sin x – это ордината точки единичной окружности, которая получена в результате поворота точки Р (1; 0) на угол х вокруг начала координат.

Ордината, равная ½, присутствует у двух точек окружности М 1 и М 2 .

Так как 1/2 = sin π/6, то точка М 1 получается из точки Р (1; 0) посредством поворота на угол х 1 = π/6, а также на углы х = π/6 + 2πk, где k = +/-1, +/-2, …

Точка М 2 получается из точки Р (1; 0) в результате поворота на угол х 2 = 5π/6, а также на углы х = 5π/6 + 2πk, где k = +/-1, +/-2, …, т.е. на углы х = π – π/6 + 2πk, где k = +/-1, +/-2, ….

Итак, все корни уравнения sin х = 1/2 можно найти по формулам х = π/6 + 2πk, х = π – π/6 + 2πk, где k € Z.

Эти формулы могут объединиться в одну: х = (-1) n π/6 + πn, где n € Z (1).

Действительно, если n – четное число, т.е. n = 2k, то из формулы (1) получаем х = π/6 + 2πk, а если n – нечетное число, т.е. n = 2k + 1, то из формулы (1) получаем х = π – π/6 + 2πk.

Ответ. х = (-1) n π/6 + πn, где n € Z.

Решить уравнение sin x = -1/2.

Решение.

Ординату -1/2 имеют две точки единичной окружности М 1 и М 2 , где х 1 = -π/6, х 2 = -5π/6. Следовательно, все корни уравнения sin x = -1/2 можно найти по формулам х = -π/6 + 2πk, х = -5π/6 + 2πk, k € Z.

Эти формулы мы можем объединить в одну: х = (-1) n (-π/6) + πn, n € Z (2).

Действительно, если n = 2k, то по формуле (2) получаем х = -π/6 + 2πk, а если n = 2k – 1, то по формуле (2) находим х = -5π/6 + 2πk.

Ответ. х = (-1) n (-π/6) + πn, n € Z.

Таким образом, каждое из уравнений sin x = 1/2 и sin x = -1/2 имеет бесконечное множество корней.

На отрезке -π/2 ≤ х ≤ π/2 каждое из этих уравнений имеет только один корень:
х 1 = π/6 – корень уравнения sin x = 1/2 и х 1 = -π/6 – корень уравнения sin x = -1/2.

Число π/6 называют арксинусом числа 1/2 и записывают: arcsin 1/2 = π/6; число -π/6 называют арксинусом числа -1/2 и пишут: arcsin (-1/2) = -π/6.

Вообще уравнение sin x = а, где -1 ≤ а ≤ 1, на отрезке -π/2 ≤ х ≤ π/2 имеет лишь один корень. Если а ≥ 0, то корень заключен в промежутке ; если а < 0, то в промежутке [-π/2; 0). Этот корень называют арксинусом числа а и обозначают arcsin а.

Таким образом, арксинусом числа а € [–1; 1] называется такое число а € [–π/2; π/2], синус которого равен а.

аrcsin а = α, если sin α = а и -π/2 ≤ х ≤ π/2 (3).

Например, аrcsin √2/2 = π/4, так как sin π/4 = √2/2 и – π/2 ≤ π/4 ≤ π/2;
аrcsin (-√3/2) = -π/3, так как sin (-π/3) = -√3/2 и – π/2 ≤ – π/3 ≤ π/2.

Аналогично тому, как это сделано при решении задач 1 и 2, можно показать, что корни уравнения sin х = а, где |а| ≤ 1, выражаются формулой

х = (-1) n аrcsin а + πn, n € Z (4).

Также мы можем доказать, что для любого а € [-1; 1] справедлива формула аrcsin (-а) = -аrcsin а.

Из формулы (4) следует, что корни уравнения
sin х = а при а = 0, а = 1, а = -1 можно находить по более простым формулам:

sin х = 0 х = πn, n € Z (5)

sin х = 1 х = π/2 + 2πn, n € Z (6)

sin х = -1 х = -π/2 + 2πn, n € Z (7)

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Задание .
Найти значение х при .

Решение.
Найти значение аргумента функции , при котором он равен какому-либо значению, означает определить, при каких аргументах значение синуса будет именно таким, как указано в условии.
В данном случае нам нужно выяснить, при каких значениях значение синуса будет равным 1/2. Это можно сделать несколькими способами.
Например, использовать , по которому определить при каких значениях х функция синус будет равна 1/2.
Другим способом является использование . Напомню, что значения синусов лежат на оси Оу.
Самым распространенным способом является обращение к , особенно если речь идет о таких стандартных для этой функции значениях, как 1/2.
Во всех случаях не стоит забывать об одном из важнейших свойств синуса — о его периоде.
Найдем в таблице значение 1/2 для синуса и посмотрим какие аргументы ему соответствуют. Интересующие нас аргументы равны Пи / 6 и 5Пи / 6.
Запишем все корни, которые удовлетворяют заданное уравнение. Для этого записываем интересующий нас неизвестный аргумент х и одно из значений аргумента, полученное из таблицы, то есть Пи / 6. Запишем для него, учитывая период синуса, все значения аргумента:

Возьмем второе значение, и проделаем те же шаги, что и в предыдущем случае:

Полным решением исходного уравнения будет:
и
q может принимать значение любого целого числа.



|BD| - длина дуги окружности с центром в точке A .
α - угол, выраженный в радианах.

Тангенс (tg α ) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине прилежащего катета |AB| .
Котангенс (ctg α ) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине противолежащего катета |BC| .

Тангенс

Где n - целое.

В западной литературе тангенс обозначается так:
.
;
;
.

График функции тангенс, y = tg x


Котангенс

Где n - целое.

В западной литературе котангенс обозначается так:
.
Также приняты следующие обозначения:
;
;
.

График функции котангенс, y = ctg x


Свойства тангенса и котангенса

Периодичность

Функции y = tg x и y = ctg x периодичны с периодом π .

Четность

Функции тангенс и котангенс - нечетные.

Области определения и значений, возрастание, убывание

Функции тангенс и котангенс непрерывны на своей области определения (см. доказательство непрерывности). Основные свойства тангенса и котангенса представлены в таблице (n - целое).

y = tg x y = ctg x
Область определения и непрерывность
Область значений -∞ < y < +∞ -∞ < y < +∞
Возрастание -
Убывание -
Экстремумы - -
Нули, y = 0
Точки пересечения с осью ординат, x = 0 y = 0 -

Формулы

Выражения через синус и косинус

; ;
; ;
;

Формулы тангенса и котангенс от суммы и разности



Остальные формулы легко получить, например

Произведение тангенсов

Формула суммы и разности тангенсов

В данной таблице представлены значения тангенсов и котангенсов при некоторых значениях аргумента.

Выражения через комплексные числа

Выражения через гиперболические функции

;
;

Производные

; .


.
Производная n-го порядка по переменной x от функции :
.
Вывод формул для тангенса > > > ; для котангенса > > >

Интегралы

Разложения в ряды

Чтобы получить разложение тангенса по степеням x , нужно взять несколько членов разложения в степенной ряд для функций sin x и cos x и разделить эти многочлены друг на друга , . При этом получаются следующие формулы.

При .

при .
где B n - числа Бернулли. Они определяются либо из рекуррентного соотношения:
;
;
где .
Либо по формуле Лапласа:


Обратные функции

Обратными функциями к тангенсу и котангенсу являются арктангенс и арккотангенс , соответственно.

Арктангенс, arctg


, где n - целое.

Арккотангенс, arcctg


, где n - целое.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
Г. Корн, Справочник по математике для научных работников и инженеров, 2012.

См. также:

В тригонометрии многие формулы легче вывести, чем вызубрить. Косинус двойного угла — замечательная формула! Она позволяет получить формулы понижения степени и формулы половинного угла.

Итак, нам нужны косинус двойного угла и тригонометрическая единица:

Они даже похожи: в формуле косинуса двойного угла — разность квадратов косинуса и синуса, а в тригонометрической единице — их сумма. Если из тригонометрической единицы выразить косинус:

и подставить его в косинус двойного угла, то получим:

Это — еще одна формула косинуса двойного угла:

Эта формула — ключ к получению формулы понижения степени:

Итак, формула понижения степени синуса:

Если в ней угол альфа заменить на половинный угол альфа пополам, а двойной угол два альфа — на угол альфа, то получим формулу половинного угла для синуса:

Теперь из тригонометрической единицы выразим синус:

Подставим это выражение в формулу косинуса двойного угла:

Получили еще одну формулу косинуса двойного угла:

Эта формула — ключ к нахождению формулы понижения степени косинуса и половинного угла для косинуса.

Таким образом, формула понижения степени косинуса:

Если в ней заменить α на α/2, а 2α — на α, то получим формулу половинного аргумента для косинуса:

Так как тангенс — отношение синуса к косинусу то формула для тангенса:

Котангенс — отношение косинуса к синусу. Поэтому формула для котангенса:

Конечно, в процессе упрощения тригонометрических выражений формулы половинного угла или понижения степени нет смысла каждый раз выводить. Гораздо проще перед собой положить листик с формулами. И упрощение продвинется быстрее, и зрительная память включится на запоминание.

Но несколько раз вывести эти формулы все же стоит. Тогда вы будете абсолютно уверены в том, что на экзамене, когда нет возможности воспользоваться шпаргалкой, вы без труда их получите, если возникнет необходимость.

Формул в тригонометрии много.

Запомнить их механически очень сложно, почти невозможно. На занятиях многие школьники и студенты пользуются распечатками на форзацах учебников и тетрадей, плакатами на стенах, шпаргалками, наконец. А как быть на экзамене?

Однако, если Вы присмотритесь к этим формулам повнимательнее, то обнаружите, что все они взаимосвязаны и обладают определенной симметрией. Давайте проанализируем их с учетом определений и свойств тригонометрических функций, чтобы определить тот минимум, который действительно стоит выучить наизусть.

I группа. Основные тождества

sin 2 α + cos 2 α = 1;

tgα = ____ sinα cosα ; ctgα = ____ cosα sinα ;

tgα·ctgα = 1;

1 + tg 2 α = _____ 1 cos 2 α ; 1 + ctg 2 α = _____ 1 sin 2 α .

Эта группа содержит самые простые и самые востребованные формулы. Большинство учащихся их знает. Но если всё-таки есть трудности, то чтобы запомнить первые три формулы, мысленно представьте себе прямоугольный треугольник с гипотенузой равной единице. Тогда его катеты будут равны, соответственно, sinα по определению синуса (отношение противолежащего катета к гипотенузе) и cosα по определению косинуса (отношение прилежащего катета к гипотенузе).

Первая формула представляет собой теорему Пифагора для такого треугольника - сумма квадратов катетов равна квадрату гипотенузы (1 2 = 1), вторая и третья - это определения тангенса (отношение противолежащего катета к прилежащему) и котангенса (отношение прилежащего катета к противолежащему).
Произведение тангенса на котангенс равно 1 потому, что котангенс, записанный в виде дроби (формула третья) есть перевернутый тангенс (формула вторая). Последнее соображение, кстати, позволяет исключить из числа формул, которые необходимо обязательно заучить, все последующие длинные формулы с котангенсом. Если в каком-либо сложном задании Вам встретится ctgα, просто замените его на дробь ___ 1 tgα и пользуйтесь формулами для тангенса.

Последние две формулы можно не запоминать досимвольно. Они встречаются реже. И если потребуются, то Вы всегда сможете вывести их на черновике заново. Для этого достаточно подставить вместо тангенса или контангенса их определения через дробь (формулы вторая и третья, соответственно) и привести выражение к общему знаменателю. Но важно помнить, что такие формулы, которые связывают квадраты тангенса и косинуса, и квадраты котангенса и синуса существуют. Иначе, Вы можете не догадаться, какие преобразования необходимы для решения той или иной конкретной задачи.

II группа. Формулы сложения

sin(α + β) = sinα·cosβ + cosα·sinβ;

sin(α − β) = sinα·cosβ − cosα·sinβ;

cos(α + β) = cosα·cosβ − sinα·sinβ;

cos(α − β) = cosα·cosβ + sinα·sinβ;

tg(α + β) = tgα + tgβ _________ 1 − tgα·tgβ ;

tg(α − β) =

Вспомним свойства четности/нечетности тригонометрических функций:

sin(−α) = − sin(α); cos(−α) = cos(α); tg(−α) = − tg(α).

Из всех тригонометрических функций только косинус является четной функцией и не изменяет свой знак при смене знака аргумента (угла), остальные функции являются нечетными. Нечетность функции, фактически, означает, что знак минус можно вносить и выносить за знак функции. Поэтому, если Вам встретится тригонометрическое выражение с разностью двух углов, всегда можно будет понимать его как сумму положительного и отрицательного углов.

Например, sin(x − 30º) = sin(x + (−30º)).
Дальше пользуемся формулой суммы двух углов и разбираемся со знаками:
sin(x + (−30º)) = sinx ·cos(−30º) + cosx ·sin(−30º) =
= sinx ·cos30º − cosx ·sin30º.

Таким образом все формулы, содержащие разность углов, можно просто пропустить при первом заучивании. Затем стоит научиться восстанавливать их в общем виде сначала на черновике, а потом и мысленно.

Например, tg(α − β) = tg(α + (−β)) = tgα + tg(−β) ___________ 1 − tgα·tg(−β) = tgα − tgβ _________ 1 + tgα·tgβ .

Это поможет в дальнейшем быстрее догадываться о том, какие преобразования нужно применить для решения той или иной задачи из тригонометрии.

Ш группа. Формулы кратных аргументов

sin2α = 2·sinα·cosα ;

cos2α = cos 2 α − sin 2 α ;

tg2α = 2tgα _______ 1 − tg 2 α ;

sin3α = 3sinα − 4sin 3 α ;

cos3α = 4cos 3 α − 3cosα .

Необходимость в использовании формул для синуса и косинуса двойного угла возникает очень часто, для тангенса тоже нередко. Эти формулы следует знать наизусть. Тем более, что трудностей в их заучивании нет. Во-первых, формулы короткие. Во-вторых, их легко контролировать по формулам предыдущей группы, исходя из того, что 2α = α + α.
Например:
sin(α + β) = sinα·cosβ + cosα·sinβ;
sin(α + α) = sinα·cosα + cosα·sinα;
sin2α = 2sinα·cosα.

Однако, если Вы быстрее выучили эти формулы, а не предыдущие, то можно поступать и наоборот: вспоминать формулу для суммы двух углов можно по соответствующей формуле для двойного угла.

Например, если нужна формула косинуса суммы двух углов:
1) вспоминаем формулу для косинуса двойного угла: cos2x = cos 2 x − sin 2 x ;
2) расписываем её длинно: cos(x + x ) = cosx ·cosx − sinx ·sinx ;
3) заменяем один х на α, второй на β: cos(α + β) = cosα·cosβ − sinα·sinβ.

Потренируйтесь аналогично восстанавливать формулы для синуса суммы и тангенса суммы. В ответственных случаях, таких как например ЕГЭ, проверяйте точность восстановленных формул по известным первой четверти: 0º, 30º, 45º, 60º, 90º.

Проверка предыдущей формулы (полученной заменой в строке 3):
пусть α = 60°, β = 30°, α + β = 90°,
тогда cos(α + β) = cos90° = 0, cosα = cos60° = 1/2, cosβ = cos30° = √3_ /2, sinα = sin60° = √3_ /2, sinβ = sin30° = 1/2;
подставляем значения в формулу: 0 = (1/2)·(√3_ /2) − (√3_ /2)·(1/2);
0 ≡ 0, ошибок не обнаружено.

Формулы для тройного угла, на мой взгляд, специально "зубрить" не нужно. Они достаточно редко встречаются на экзаменах типа ЕГЭ. Они легко выводятся из формул, которые были выше, т.к. sin3α = sin(2α + α) . А тем учащимся, которым по каким-то причинам всё же потребуется выучить эти формулы наизусть, советую обратить внимание на их некоторую "симметричность" и запоминать не сами формулы, а мнемонические правила. Например, порядок в котором расположены числа в двух формулах "33433433" и т.п.

IV группа. Сумма/разность - в произведение

sinα + sinβ = 2·sin α + β ____ 2 ·cos α − β ____ 2 ;

sinα − sinβ = 2·sin α − β ____ 2 ·cos α + β ____ 2 ;

cosα + cosβ = 2·cosα + β ____ 2 ·cosα − β ____ 2 ;

cosα − cosβ = −2·sinα − β ____ 2 ·sinα + β ____ 2 ;

tgα + tgβ = sin(α + β) ________ cosα·cosβ ;

tgα − tgβ = sin(α − β) ________ cosα·cosβ .

Воспользовавшись свойствами нечетности функций синус и тангенс: sin(−α) = − sin(α); tg(−α) = − tg(α),
можно формулы для разностей двух функций свести к формулам для их сумм. Например,

sin90º − sin30º = sin90º + sin(−30º) = 2·sin 90º + (−30º) __________ 2 ·cos 90º − (−30º) __________ 2 =

2·sin30º·cos60º = 2·(1/2)·(1/2) = 1/2.

Таким образом, формулы разности синусов и тангенсов не обязательно сразу заучивать наизусть.
С суммой и разностью косинусов дело обстоит сложнее. Эти формулы не взаимозаменяемы. Но опять же, пользуясь четностью косинуса, можно запомнить следующие правила.

Сумма cosα + cosβ не может изменить свой знак ни при каких изменениях знаков углов, поэтому произведение также должно состоять из четных функций, т.е. двух косинусов.

Знак разности cosα − cosβ зависит от значений самих функций, значит знак произведения должен зависеть от соотношения углов, поэтому произведение должно состоять из нечетных функций, т.е. двух синусов.

И всё-таки эта группа формул не самая лёгкая для запоминания. Это тот случай, когда лучше меньше зубрить, но больше проверять. Чтобы не допустить ошибки в формуле на ответственном экзамене, обязательно сначала запишите её на черновике и проверьте двумя способами. Сначала подстановками β = α и β = −α, затем по известным значениям функций для простых углов. Для этого лучше всего брать 90º и 30º, как это было сделано в примере выше, потому что полусумма и полуразность этих значений, снова дают простые углы, и Вы легко можете увидеть, как равенство становится тождеством для верного варианта. Или, наоборот, не выполняется, если Вы ошиблись.

Пример проверки формулы cosα − cosβ = 2·sinα − β ____ 2 ·sinα + β ____ 2 для разности косинусов с ошибкой !

1) Пусть β = α, тогда cosα − cosα = 2·sinα − α _____ 2 ·sinα + α _____ 2 = 2sin0·sinα = 0·sinα = 0. cosα − cosα ≡ 0.

2) Пусть β = − α, тогда cosα − cos(− α) = 2·sinα − (−α) _______ 2 ·sinα + (−α) _______ 2 = 2sinα·sin0 = 0·sinα = 0. cosα − cos(− α) = cosα − cosα ≡ 0.

Эти проверки показали, что функции в формуле использованы правильно, но из-за того, что тождество получалось вида 0 ≡ 0, могла быть пропущена ошибка со знаком или коэффициентом. Делаем третью проверку.

3) Пусть α = 90º, β = 30º, тогда cos90º − cos30º = 2·sin90º − 30º ________ 2 ·sin90º + 30º ________ 2 = 2sin30º·sin60º = 2·(1/2)·(√3_ /2) = √3_ /2.

cos90 − cos30 = 0 − √3_ /2 = −√3_ /2 ≠ √3_ /2.

Ошибка была действительно в знаке и только в знаке перед произведением.

V группа. Произведение - в сумму/разность

sinα·sinβ = 1 _ 2 ·(cos(α − β) − cos(α + β)) ;

cosα·cosβ = 1 _ 2 ·(cos(α − β) + cos(α + β)) ;

sinα·cosβ = 1 _ 2 ·(sin(α − β) + sin(α + β)) .

Само название пятой группы формул подсказывает, что эти формулы являются обратными по отношению к предыдущей группе. Понятно, что в этом случае проще восстановить формулу на черновике, чем учить её заново, увеличивая риск создания "каши в голове". Единственное, на чем имеет смысл заострить внимание для более быстрого восстановления формулы, это следующие равенства (проверьте их):

α = α + β ____ 2 + α − β ____ 2 ; β = α + β ____ 2 α − β ____ 2 .

Рассмотрим пример: нужно преобразовать произведение sin5x ·cos3x в сумму двух тригонометрических функций.
Поскольку в произведение входят и синус, и косинус, то берём из предыдущей группы формулу для суммы синусов, которую уже выучили, и записываем её на черновике.

sinα + sinβ = 2·sin α + β ____ 2 ·cos α − β ____ 2

Пусть 5x = α + β ____ 2 и 3x = α − β ____ 2 , тогда α = α + β ____ 2 + α − β ____ 2 = 5x + 3x = 8x , β = α + β ____ 2 α − β ____ 2 = 5x − 3x = 2x .

Заменяем в формуле на черновике значения углов, выраженные через переменные α и β, на значения углов, выраженные через переменную x .
Получим sin8x + sin2x = 2·sin5x ·cos3x

Делим обе части равества на 2 и записываем его на чистовик справа налево sin5x ·cos3x = 1 _ 2 (sin8x + sin2x ). Ответ готов.

В качестве упражнения: Объясните, почему в учебнике формул для преобразования суммы/разности в произведение 6, а обратных (для преобразования произведения в сумму или разность) - всего 3?

VI группа. Формулы понижения степени

cos 2 α = 1 + cos2α _________ 2 ;

sin 2 α = 1 − cos2α _________ 2 ;

cos 3 α = 3cosα + cos3α ____________ 4 ;

sin 3 α = 3sinα − sin3α ____________ 4 .

Первые две формулы этой группы очень нужны. Применяются часто при решении тригонометрических уравнений, в том числе уровня единого экзамена, а также при вычислении интегралов, содержащих подинтегральные функции тригонометрического типа.

Возможно, будет легче запомнить их в следующей "одноэтажной" форме
2cos 2 α = 1 + cos2α;
2 sin 2 α = 1 − cos2α,
а разделить на 2 всегда можно в уме или на черновике.

Необходимость в использовании следующих двух формул (с кубами функций) на экзаменах встречается гораздо реже. В другой обстановке у Вас всегда будет время воспользоваться черновиком. При этом возможны следующие варианты:
1) Если Вы помните последние две формулы III-ей группы, то пользуйтесь ими, чтобы выражать sin 3 α и cos 3 α путем несложных преобразований.
2) Если в последних двух формулах этой группы Вы заметили элементы симметрии, которые способствуют их запоминанию, то записывайте "эскизы" формул на черновике и проверяйте их по значениям основных углов.
3) Если, кроме того, что такие формулы понижения степени существуют, Вы о них ничего не знаете, то решайте задачу поэтапно, исходя из того, что sin 3 α = sin 2 α·sinα и прочих выученных формул. Потребуются формулы понижения степени для квадрата и формулы преобразования произведения в сумму.

VII группа. Половинный аргумент

sin α _ 2 = ± √ 1 − cosα ________ 2 ; _____

cos α _ 2 = ± √ 1 + cosα ________ 2 ; _____

tg α _ 2 = ± √ 1 − cosα ________ 1 + cosα . _____

Не вижу смысла в заучивании наизусть этой группы формул в том виде, в котором они представлены в учебниках и справочниках. Если Вы понимаете, что α есть половина от 2α, то этого достаточно, чтобы быстро вывести нужную формулу половинного аргумента, исходя из первых двух формул понижения степени.

Это касается также тангенса половинного угла, формула для которого получается делением выражения для синуса на соответствующее выражение для косинуса.

Не забудьте только при извлечении квадратного корня поставить знак ± .

VIII группа. Универсальная подстановка

sinα = 2tg(α/2) _________ 1 + tg 2 (α/2) ;

cosα = 1 − tg 2 (α/2) __________ 1 + tg 2 (α/2) ;

tgα = 2tg(α/2) _________ 1 − tg 2 (α/2) .

Эти формулы могут оказаться чрезвычайно полезными для решения тригонометрических задач всех видов. Они позволяют реализовать принцип "один аргумент - одна функция", который позволяет делать замены переменных, сводящие сложные тригонометрические выражения к алгебраическим. Недаром эта подстановка названа универсальной.
Первые две формулы учим обязательно. Третью можно получить делением первых двух друг на друга по определению тангенса tgα = sinα ___ cosα

IX группа. Формулы приведения.

Чтобы разобраться с этой группой тригонометрических формул, передите

X группа. Значения для основных углов.

Значения тригонометрических функций для основных углов первой четверти приведены

Итак, делаем вывод : Формулы тригонометрии знать надо. Чем больше, тем лучше. Но на что тратить своё время и усилия - на заучивание формул или на их восстановление в процессе решения задач, каждый должен решить самостоятельно.

Пример задачи на использование формул тригонометрии

Решить уравнение sin5x ·cos3x − sin8x ·cos6x = 0.

Имеем две разные функции sin() и cos() и четыре! разных аргумента 5x , 3x , 8x и 6x . Без предварительных преобразований свести к простейшим типам тригонометрических уравнений не получится. Поэтому сначала пробуем заменить произведения на суммы или разности функций.
Делаем это так же, как в примере выше (см. раздел ).

sin(5x + 3x ) + sin(5x − 3x ) = 2·sin5x ·cos3x
sin8x + sin2x = 2·sin5x ·cos3x

sin(8x + 6x ) + sin(8x − 6x ) = 2·sin8x ·cos6x
sin14x + sin2x = 2·sin8x ·cos6x

Выражая из этих равенств произведения, подставляем их в уравнение. Получим:

(sin8x + sin2x )/2 − (sin14x + sin2x )/2 = 0.

Умножаем на 2 обе части уравнения, раскрываем скобки и приводим подобные члены

Sin8x + sin2x − sin14x − sin2x = 0;
sin8x − sin14x = 0.

Уравнение значительно упростилось, но решать его так sin8x = sin14x , следовательно 8x = 14x + T, где Т - период, неверно, так как мы не знаем значения этого периода. Поэтому воспользуемся тем, что в правой части равенства стоит 0, с которым легко сравнивать множители в любом выражении.
Чтобы разложить sin8x − sin14x на множители, нужно перейти от разности к произведению. Для этого можно воспользоваться формулой разности синусов, или снова формулой суммы синусов и нечётностью функции синус (см. пример в разделе ).

sin8x − sin14x = sin8x + sin(−14x ) = 2·sin 8x + (−14x ) __________ 2 ·cos 8x − (−14x ) __________ 2 = sin(−3x )·cos11x = −sin3x ·cos11x .

Итак, уравнение sin8x − sin14x = 0 равносильно уравнению sin3x ·cos11x = 0, которое, в свою очередь, равносильно совокупности двух простейших уравнений sin3x = 0 и cos11x = 0. Решая последние, получаем две серии ответов
x 1 = πn /3, n ϵZ
x 2 = π/22 + πk /11, k ϵZ

Если Вы обнаружили ошибку или опечатку в тексте, сообщите о ней, пожалуйста, на электронный адрес [email protected] . Буду весьма признательна.

Внимание, ©mathematichka . Прямое копирование материалов на других сайтах запрещено. Ставьте ссылки.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта