Главная » Ядовитые грибы » Свободные оси. Гироскопический эффект

Свободные оси. Гироскопический эффект

Свободные оси (оси свободного вращения) - такие оси вращения тел, которые сохраняют свою ориентацию в пространстве без действия на них внешних сил. В общей теории доказывается, что для любого твердого тела существуют главные оси инерции - три попарно взаимно перпендикулярные оси, проходящие через центр масс тела, которые могут служить свободными осями.

Можно показать, что вращение вокруг главных осей с наибольшим и наименьшим моментами инерции оказывается устойчивым, а вращение вокруг других осей и оси со средним моментом - неустойчивым.

Гйроскоп - массивное твердое симметричное тело, вращающееся с большой угловой скоростью d> вокруг своей оси симметрии, являющейся свободной осью.

Если ось симметрии гироскопа закреплена или она поворачивается с угловой скоростью о) 0

Рис. 6.3.

Широкое распространение получил гироскоп па кардаповом подвесе , когда однородное тело вращения закреплено в центре масс (рис. 6.3). Положение тела в подвесе должно быть таким, чтобы оси свободного вращения АЛ", В В" и ось 00" пересекались в центре масс. В этом случае при любых возможных движениях тела его центр масс остается неподвижным. При этом ось АЛ" (в данном случае - ось симметрии тела) может занимать произвольную ориентацию в пространстве.

Если гироскоп раскручен вокруг оси симметрии, то ориентация оси вращения гироскопа остается неизменной, когда момент внешних сил относительно закрепленного центра масс гироскопа равен нулю. Как следует из уравнения моментов (4.44), L = /со = const, т.е. выполняется равенство (6.10). Действительно, момент силы тяжести относительно закрепленного центра масс свободно вращающегося гироскопа будет равен нулю, так как эта сила приложена к центру масс (центр вращения С совпадает с центром масс). Момент сил трения пренебрежимо мал.

Чтобы ось гироскопа изменила свое направление в пространстве, необходимо, согласно уравнению (4.44), отличие от нуля момента внешних сил. Тогда будет наблюдаться гироскопический эффект - гироскоп поворачивается так, чтобы его оси свободного и вынужденного вращения совпадали. Используя уравнение моментов (уравнение динамики вращательного движения), можно показать, что если ось быстро вращающегося свободного гироскопа с моментом импульса L стараться повернуть моментом сил м , то она начнет вращаться с угловой скоростью d> 0 в таком направлении, чтобы векторы to 0 , L и М составляли правую тройку векторов:

Рис. 6.4. К объяснению гироскопического эффекта (а> 0 - угловая скорость, с которой поворачивается ось гироскопа)

Гироскопический эффект вызван действием кориолисовых сил инерции. Объясним это. На рис. 6.4 изображен массивный симметричный волчок, вращающийся с угловой скоростью ш вокруг оси симметрии, совпадающей с осью Z. Пусть к оси гироскопа приложена пара внешних сил F m , направленных вдоль оси X. Тогда момент внешних сил М вн , направленный вдоль оси Y, стремится вращать ось гироскопа с угловой скоростью со вн вокруг оси Y (рис. 6.4). Однако гироскоп начинает поворачиваться вокруг оси X, что действительно должно быть вызвано появлением какого-то момента сил, направленного вдоль этой оси. Перейдем во вращающуюся со скоростью со вн систему отсчета, в которой ось гироскопа неподвижна, а на его материальные точки т, движущиеся со скоростями v" = (bx г ", действуют кориолисовы силы инерции F lK =2m i (см. формулу (6.6)). Момент этих сил М к направлен вдоль оси X, и именно он вызывает вращение оси со скоростью (6 0 . Движение несвободного гироскопа с осью симметрии, закрепленной в двух точках, отличается от движения свободного гироскопа. В рассмотренном выше примере (рис. 6.4) ось несвободного гироскопа будет поворачиваться в направлении действия момента сил М вн вдоль оси Y.

Если ось гироскопа закреплена подшипниками, то возникающие гироскопические силы действуют на опоры, в которых вращается ось гироскопа. Их действие надо учитывать при конструировании устройств, содержащих быстровращающиеся массивные составные части, иначе эти силы могут даже разрушить подшипники.

Использующий магнетизм Земли. В Древней Греции были созданы астролябия и другие приборы, основанные на положении звёзд.

Преимуществом гироскопа перед более древними приборами являлось то, что он правильно работал в сложных условиях (плохая видимость, тряска, электромагнитные помехи). Однако вращение гироскопа быстро замедлялось из-за трения.

Во второй половине XIX века было предложено использовать электродвигатель для разгона и поддержания вращения гироскопа. Впервые на практике гироскоп был применён в 1880-х годах инженером Обри для стабилизации курса торпеды . В XX веке гироскопы стали использоваться в самолётах, ракетах и подводных лодках вместо компаса или совместно с ним.

Классификация

Основные типы гироскопов по количеству степеней свободы :

  • двухстепенные,
  • трехстепенные.

Основные два типа гироскопов по принципу действия:

  • механические гироскопы,
  • оптические гироскопы.

Также проводятся исследования по созданию ядерных гироскопов, использующих ЯМР для отслеживания изменения спина атомных ядер.

Механические гироскопы

Среди механических гироскопов выделяется ро́торный гироско́п - быстро вращающееся твёрдое тело (ротор), ось вращения которого может свободно изменять ориентацию в пространстве. При этом скорость вращения гироскопа значительно превышает скорость поворота оси его вращения. Основное свойство такого гироскопа - способность сохранять в пространстве неизменное направление оси вращения при отсутствии воздействия на него моментов внешних сил и эффективно сопротивляться действию внешних моментов сил. Это свойство в значительной степени определяется величиной угловой скорости собственного вращения гироскопа.

Впервые это свойство использовал Фуко в г. для экспериментальной демонстрации вращения Земли . Именно благодаря этой демонстрации гироскоп и получил своё название от греческих слов «вращение», «наблюдаю».

Свойства трёхстепенного роторного гироскопа

Прецессия механического гироскопа.

Изменение вектора момента импульса под действием момента силы возможно не только по величине, но и по направлению. В частности, момент силы , приложенный перпендикулярно оси вращения гироскопа, то есть перпендикулярный L → {\displaystyle {\vec {L}}} , приводит к движению, перпендикулярному как M → {\displaystyle {\vec {M}}} , так и L → {\displaystyle {\vec {L}}} , то есть к явлению прецессии . Угловая скорость прецессии гироскопа определяется его моментом импульса и моментом приложенной силы :

M → = Ω → P × L → , {\displaystyle {\vec {M}}={\vec {\Omega }}_{P}\times {\vec {L}},}

то есть Ω → P {\displaystyle {\vec {\Omega }}_{P}} обратно пропорциональна моменту импульса ротора гироскопа, или, при неизменном моменте инерции ротора - скорости его вращения.

Одновременно с возникновением прецессии, согласно следствию третьего закона Ньютона , гироскоп начнёт действовать на окружающие его тела моментом реакции, равным по величине и противоположным по направлению моменту M → {\displaystyle {\vec {M}}} , приложенному к гироскопу. Этот момент реакции называется гироскопическим моментом.

То же движение гироскопа можно трактовать иначе, если воспользоваться неинерциальной системой отсчёта, связанной с кожухом ротора, и ввести в ней фиктивную силу инерции - так называемую кориолисову силу . Так, при воздействии момента внешней силы гироскоп поначалу будет вращаться именно в направлении действия внешнего момента (нутационный бросок). Каждая частица гироскопа будет таким образом двигаться с переносной угловой скоростью вращения вследствие действия этого момента. Но ротор гироскопа, помимо этого, и сам вращается, поэтому каждая частица будет иметь относительную скорость. В результате возникает кориолисова сила, которая заставляет гироскоп двигаться в перпендикулярном приложенному моменту направлении, то есть прецессировать.

Вибрационные гироскопы

Принцип работы

Два подвешенных грузика вибрируют на плоскости в MEMS-гироскопе с частотой ω r {\displaystyle \scriptstyle \omega _{r}} .

При повороте гироскопа возникает Кориолисово ускорение равное a → c = − 2 (v → × Ω →) {\displaystyle \scriptstyle {\vec {a}}_{c}=-2({{\vec {v}}\times {\vec {\Omega }}})} , где v → {\displaystyle \scriptstyle {\vec {v}}} - скорость и Ω → {\displaystyle \scriptstyle {\vec {\Omega }}} - угловая частота поворота гироскопа. Горизонтальная скорость колеблющегося грузика получается как: X i p ω r cos ⁡ (ω r t) {\displaystyle \scriptstyle X_{ip}\omega _{r}\cos(\omega _{r}t)} , а положение грузика в плоскости - X i p sin ⁡ (ω r t) {\displaystyle \scriptstyle X_{ip}\sin(\omega _{r}t)} . Внеплоскостное движение y o p {\displaystyle \scriptstyle y_{op}} , вызываемое поворотом гироскопа равно:

y o p = F c k o p = 2 m Ω X i p ω r cos ⁡ (ω r t) k o p {\displaystyle y_{op}={\frac {F_{c}}{k_{op}}}={\frac {2m\Omega X_{ip}\omega _{r}\cos(\omega _{r}t)}{k_{op}}}} где: m {\displaystyle \scriptstyle m} - масса колеблющегося грузика. k o p {\displaystyle \scriptstyle k_{op}} - коэффициент жёсткости пружины в направлении, перпендикулярном плоскости. Ω {\displaystyle \scriptstyle \Omega } - величина поворота в плоскости перпендикулярно движению колеблющегося грузика.
Разновидности

Гироскоп на МАКС-2009

Оптические гироскопы

Δ t = 4 S Ω c 2 , {\displaystyle \Delta t={\frac {4S\Omega }{c^{2}}},}

где -разность времён прихода лучей, выпущенных в разных направлениях, S {\displaystyle S} - площадь контура, Ω {\displaystyle \Omega } - угловая скорость вращения гироскопа.

Так как величина Δ t {\displaystyle \Delta t} очень мала, то её прямое измерение с помощью пассивных интерферометров возможно только в волоконно-оптических гироскопах с длиной волокна 500-1000 м. Во вращающемся кольцевом интерферометре лазерного гироскопа можно измерить фазовый сдвиг встречных волн, равный :

Δ φ = 8 π S Ω λ c , {\displaystyle \Delta \varphi ={\frac {8\pi S\Omega }{\lambda c}},}

где λ {\displaystyle \lambda } - длина волны.

Применение в технике

Схема простейшего механического гироскопа в карданном подвесе

Свойства гироскопа используются в приборах - гироскопах, основной частью которых является быстро вращающийся ротор , который имеет несколько степеней свободы (осей возможного вращения).

Чаще всего используются гироскопы, помещённые в карданов подвес . Такие гироскопы имеют 3 степени свободы, то есть он может совершать 3 независимых поворота вокруг осей АА" , BB" и CC" , пересекающихся в центре подвеса О , который остаётся по отношению к основанию A неподвижным.

Для управления гироскопом и снятия с него информации используются датчики угла и датчики момента .

Гироскопы используются в виде компонентов как в системах навигации (авиагоризонт , гирокомпас , ИНС и т. п.), так и в системах ориентации и стабилизации космических аппаратов. При использовании в гировертикали показания гироскопа должны корректироваться акселерометром (маятником), так как из-за суточного вращения Земли и ухода гироскопа происходит отклонение от истиной вертикали. Кроме того, в механических гироскопах может использоваться смещение его центра масс, которое эквивалентно непосредственному воздействию маятника на гироскоп .

Системы стабилизации

Системы стабилизации бывают трех основных типов.

  • Система силовой стабилизации (на двухстепенных гироскопах).

Для стабилизации вокруг каждой оси нужен один гироскоп. Стабилизация осуществляется гироскопом и двигателем разгрузки, в начале действует гироскопический момент, а потом подключается двигатель разгрузки.

  • Система индикаторно-силовой стабилизации (на двухстепенных гироскопах).

Для стабилизации вокруг каждой оси нужен один гироскоп. Стабилизация осуществляется только двигателями разгрузки, но в начале появляется небольшой гироскопический момент, которым можно пренебречь.

  • Система индикаторной стабилизации (на трехстепенных гироскопах)

Для стабилизации вокруг двух осей нужен один гироскоп. Стабилизация осуществляется только двигателями разгрузки.

Новые типы гироскопов

Постоянно растущие требования к точностным и эксплуатационным характеристикам гиро-приборов заставили ученых и инженеров многих стран мира не только усовершенствовать классические гироскопы с вращающимся ротором, но и искать принципиально новые идеи, позволившие решить проблему создания чувствительных датчиков для измерения и отображения параметров углового движения объекта.

В настоящее время известно более ста различных явлений и физических принципов, которые позволяют решать гироскопические задачи. В США , ЕС , Японии , России выданы тысячи патентов и авторских свидетельств на соответствующие открытия и изобретения.

Поскольку прецизионные гироскопы используются в системах наведения стратегических ракет большой дальности, во время холодной войны информация об исследованиях, проводимых в этой области, классифицировалась как секретная.

Перспективным является направление развития квантовых гироскопов .

Перспективы развития гироскопической навигации

Сегодня созданы достаточно точные гироскопические системы, удовлетворяющие большой круг потребителей. Сокращение средств, выделяемых для военно-промышленного комплекса в бюджетах ведущих мировых стран, резко повысило интерес к гражданским применениям гироскопической техники. Например, сегодня широко распространено использование микромеханических гироскопов в системах стабилизации автомобилей или видеокамер .

По мнению сторонников таких методов навигации, как GPS и ГЛОНАСС , выдающийся прогресс в области высокоточной спутниковой навигации сделал ненужными автономные средства навигации (в пределах зоны покрытия спутниковой навигационной системы (СНС), то есть в пределах планеты). В настоящее время СНС системы по параметрам массы, габаритов и стоимости превосходят гироскопические. Однако решение углового положения аппарата в пространстве с использованием СНС систем (многоантенных) хоть и возможно, но весьма затруднено и имеет ряд значимых ограничений, в отличие от гироскопических систем.

В настоящее время разрабатывается система навигационных спутников третьего поколения . Она позволит определять координаты объектов на поверхности Земли с точностью до единиц сантиметров в дифференциальном режиме, при нахождении в зоне покрытия корректирующего сигнала DGPS . При этом якобы отпадает необходимость в использовании курсовых гироскопов. Например, установка на крыльях самолета двух приёмников спутниковых сигналов, позволяет получить информацию о повороте самолёта вокруг вертикальной оси.

Однако системы СНС оказываются неспособны точно определять положение в городских условиях, при плохой видимости спутников. Подобные проблемы обнаруживаются и в лесистой местности. Кроме того прохождение сигналов СНС зависит от процессов в атмосфере, препятствий и переотражений сигналов. Автономные же гироскопические приборы работают в любом месте - под землёй, под водой, в космосе.

В самолётах СНС оказывается точнее ИНС на длинных участках. Но использование двух СНС-приёмников для измерения углов наклона самолета даёт погрешности до нескольких градусов. Подсчёт курса путём определения скорости самолёта с помощью СНС также не является достаточно точным. Поэтому, в современных навигационных системах оптимальным решением является комбинация спутниковых и гироскопических систем, называемая интегрированной (комплексированной) ИНС/СНС системой.

За последние десятилетия эволюционное развитие гироскопической техники подступило к порогу качественных изменений. Именно поэтому внимание специалистов в области гироскопии сейчас сосредоточилось на поиске нестандартных применений таких приборов. Открылись совершенно новые интересные задачи: геологоразведка, предсказание землетрясений, сверхточное измерение положений железнодорожных путей и нефтепроводов, медицинская техника и многие другие.

Использование в бытовой технике

Значительное удешевление производства МЭМС -датчиков привело к тому, что они все чаще используются в смартфонах и игровых приставках .

Гироскопы применялись в контроллерах для игровых приставок: Sixaxis для Sony PlayStation 3 и Wii MotionPlus для Nintendo Wii и в более поздних. Вместе с гироскопом в них установлен акселерометр.

Изначально единственным датчиком ориентации в смартфонах был трехосевой МЭМС-акселерометр , чувствительный лишь к ускорению. В состоянии относительного покоя он позволял приблизительно оценить направление вектора силы тяготения Земли (g) . С 2010 года смартфоны стали дополнительно оснащаться трёхосевым вибрационным МЭМС-гироскопом, одним из первых был iPhone 4. Иногда также устанавливается магнитометр (электронный компас), позволяющий компенсировать дрейф гироскопов.

Игрушки на основе гироскопа

Ряд радиоуправляемых вертолётов использует гироскоп.

Минимум три гироскопа нужны для полета мультикоптеров , в частности квадрокоптеров.

См. также

  • Гироскопия (приборостроение)

Примечания

  1. Johann G. F. Bohnenberger (1817) «Beschreibung einer Maschine zur Erläuterung der Gesetze der Umdrehung der Erde um ihre Axe, und der Veränderung der Lage der letzteren» («Описание машины для объяснения законов вращения Земли вокруг своей оси и изменения направления последней») Tübinger Blätter für Naturwissenschaften und Arzneikunde , vol. 3, pages 72-83. В интернете: http://www.ion.org/museum/files/File_1.pdf
  2. Simeon-Denis Poisson (1813) «Mémoire sur un cas particulier du mouvement de rotation des corps pesans» («Статья об особом случае вращательного движения массивных тел»), Journal de l"École Polytechnique , vol. 9, pages 247-262. В интернете:

Опыт показывает, что если тело привести во вращение вокруг некоторой оси, а затем предоставить его самому себе, то положение оси вращения в пространстве изменяется со временем. Сохранить неизменным положение оси вращения можно, если зафиксировать ее с помощью подшипников. Однако существуют такие оси вращения тел, которые не изменяют своей ориентации в пространстве без действия на них внешних сил. Эти оси называют свободными осями.

В любом теле существуют три взаимно перпендикулярные оси, проходящие через центр масс тела, являющиеся осями симметрии, которые могут быть свободными осями.

Для устойчивости вращения большое значение имеет, какая именно из свободных осей служит осью вращения. Опыт показывает, что вращение вокруг осей с наибольшим и наименьшим моментами инерции оказывается устойчивым, а вращение вокруг оси со средним моментом инерции – неустойчивым.

Так, если подбросить параллелепипед, приведя его одновременно во вращение, то он, падая, будет устойчиво вращаться вокруг осей 1 и 2 (рис. 4.7.1).

Свойство свободных осей сохранять свое положение в пространстве широко применяется в технике. Наиболее интересны в этом плане гироскопы – массивные однородные тела, вращающиеся с большой угловой скоростью вокруг своей оси симметрии, являющейся свободной осью.

Чтобы ось гироскопа изменила свое направление в пространстве, необходимо, чтобы момент внешних сил был отличен от нуля. При попытке вызвать поворот оси гироскопа наблюдается явление, получившее название гироскопического эффекта: под действием сил, которые должны были бы вызвать поворот оси гироскопа вокруг прямой , ось гироскопа поворачивается вокруг прямой (рис.4.7.2). Противоестественное на первый взгляд поведение гироскопа полностью соответствует законам динамики вращательного движения. Действительно, момент сил и , стремящихся повернуть ось гироскопа вокруг оси , направлен вдоль прямой влево (по правилу буравчика).

За время момент импульса гироскопа получит приращение , причем это приращение имеет такое же направление, как и (вектор лежит в плоскости чертежа и направлен влево). Спустя время момент импульса гироскопа станет равен (вектор лежит в плоскости рисунка). Так как направление момента импульса совпадает с направлением оси гироскопа, то направление совпадает с новым направлением оси гироскопа. Таким образом, ось гироскопа повернется на угол вокруг оси .

Если ось гироскопа закреплена подшипниками, то вследствие гироскопического эффекта возникают гироскопические силы, действующие на опоры, в которых вращается ось гироскопа. Их необходимо учитывать при конструировании устройств, содержащих быстровращающиеся массивные составные части (например, подшипники паровых турбин на кораблях).



Гироскопы применяются в различных навигационных приборах (гирокомпас, гирогоризонт, авторулевой, автопилот и т.д.).

Глава 5. Механические колебания

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Тема: «Гироскопический эффект и его применение»

Введение

Постоянное совершенствование систем управление летательных аппаратов сопровождается непрерывным развитием их измерительных устройств (ИУ).

К основному составу бортовых измерительных устройств следует отнести акселерометры, гироскопические системы, оптикоэлектронные приборы и.т.д.

Гироскопические устройства (ГУ) занимают одно из важных мест в системах управления летательных аппаратов. Основным элементом ГУ является гироскоп, представляющий собой быстровращающееся симметричное тело. Слово «гироскоп» состоит из двух греческих слов: «гирос» - вращение и «скопео» - наблюдать, смотреть.

Быстровращающееся тело приобретает на первый взгляд труднообъяснимое свойство сохранять свое угловое положение неизменным в инерциальном пространстве - свойство устойчивости. На такое необычное качество вращающихся тел человек обратил внимание еще в глубокой древности.

Всем известна игрушка волчок, которая при его закрутке с угловой скоростью щ приобретает устойчивость относительно горизонтальной плоскости. Многие века волчок оставался всего лишь игрушкой. Впервые изучение волчка занялся И. Ньютон (1642-1727 гг.). Член Российской Академии Наук Л. Эйлер (1707-1783 гг.) вывел уравнения движения твердого тела относительно неподвижной его опоры. Эти выдающиеся ученые предвосхитили блестящее будущее волчка.

Дальнейшее развитие теория волчка нашла в трудах Ж. Лагранжа (1736-1813 гг.) и Л. Пуансо (1777-1859 гг.). Тем не менее, волчок оставался все еще игрушкой до тех пор, пока Л. Фуко (1819-1868 гг.) не поместил его в устройство, состоящее из двух колец и названное по имени его изобретателя Кардана - карданным подвесом. Образованный таким образом прибор был назван гироскопом и впервые продемонстрирован Л. Фуко в 1852 году на заседании Парижской академии наук (рис. 1)

Начало практического использования гироскопических устройств связывают с 1898 г., когда лейтенант австрийской армии Обри предложил прибор, обеспечивающий стабилизация курса морской торпеды.

Новые возможности практического использования гироскопических устройств открылись в связи с опубликованием работ выдающегося русского ученого Н.Е. Жуковского. В 1912 году он предложил установить гироскоп на ЛА с целью повышения устойчивости аппарата. В данном случае устройство выполняло функции исполнительного органа, с помощью которого создавались управляющие и демпфирующие моменты относительно центра масс аппарата. В настоящее время гироскопические исполнительные органы находят широкое применение в системах угловой стабилизации КА.

Рис. 1 Схема модели первого гироскопа Л. Фуко, 1852 г

гироскоп поплавковый лазерный оптический

1. Гироскоп и его основные свойства

Обнаруженное свойство волчка открывало интереснейшие перспективы его использования. Представим себе, что мы наблюдаем за земным шаром со стороны его Северного полюса N из мирового пространства (рис.2).

Рис. 2 Отклонение гироскопа с течением времени от плоскости горизонта

Предположим также, что в начальный момент времени мы увидели волчок установленным на экваторе в точке В0, причем его главная ось АА1 направлена с запада на восток и расположена горизонтально. Вследствие суточного вращения Земли точка В0 непрерывно изменяет свое положение. По прошествии трех часов она переместится в точку В3, через шесть часов - в точку В6, через двенадцать - в точку В12 и т.д. пока вновь не вернется в исходное положение по истечении 24 часов. Известно, что в любой точке на земной поверхности плоскость горизонта перпендикулярна радиусу земного шара (т.е. плоскость горизонта изменяет с течением времени свое положение в мировом пространстве). Поэтому для наблюдающего из мирового пространства ее положение для точки земной поверхности, расположенной на экваторе, будет казаться прямой линией. Так, в точке В0 это будет прямая а0b0, в точке В3 - прямая а3b3, в точке В3 - прямая а6b6 и т.д.

В суточном вращении Земли участвует и точка подвеса волчка, закрепленная с помощью кардановых колец неподвижно на земной поверхности.

Главная ось такого волчка не сохранит неизменного положения относительно плоскости горизонта. Оставаясь стабильной и мировом пространстве, главная ось АА1 волчка отклонится от плоскости горизонта. Причем угол этого отклонения будет равен углу поворота земного шара.

Следовательно, наблюдатель, находящийся на земной поверхности рядом с волчком в карданном подвесе, сможет по отклонению его главной оси от плоскости горизонта определить угол поворота земного шара около своей оси.

Прибор Фуко дал возможность непосредственно наблюдать суточное вращение Земли, поэтому и был назван гироскопом.

Быстро вращающийся гироскоп оказывает значительное сопротивление любым попыткам изменить его положение в пространстве. Если воздействовать на его наружное кольцо НК (рис.3) силой F, пытаясь повернуть гироскоп вокруг оси СС1, то можно убедиться в сопротивлении гироскопа внешнему усилию.

Гироскоп начнет поворачиваться не вокруг оси СС1 а вокруг оси ВВ1. в направлении, указанном стрелкой. Скорость вращения гироскопа вокруг оси ВВ1 будет тем больше, чем больше сила F.

Рис. 3 Сопротивляемость гироскопа внешним усилиям

Одновременно были обнаружены и другие интересные свойства гироскопа. Опыты показали, что, затягивая винты d, расположенные на наружном кольце НК , и лишая тем самым гироскоп свободы вращения вокруг оси ВВ1, создают условия, при которых гироскоп будет стремиться совместить свою главную ось АА1 с плоскостью меридиана. Для этого необходимо главную ось гироскопа предварительно установить в плоскость горизонта. Если же затянуть винт d1, расположенный на корпусе К прибора, и лишить тем самым гироскоп свободы вращения вокруг оси СС1, то главная ось АА1 при условии ее предварительного совмещения с плоскостью меридиана, будет стремиться к совмещению с линией, параллельной оси мира.

Для уяснения природы многообразных свойств гироскопа обратимся к некоторым основным понятиям и законам механики.

2. Свойство трехстепенного роторного гироскопа

Среди механических гироскопов выделяется роторный гироскоп -- быстро вращающееся твёрдое тело (ротор), ось вращения которого может свободно изменять ориентацию в пространстве. При этом скорость вращения гироскопа значительно превышает скорость поворота оси его вращения. Основное свойство такого гироскопа -- способность сохранять в пространстве неизменное направление оси вращения при отсутствии воздействия на него моментов внешних сил и эффективно сопротивляться действию внешних моментов сил. Это свойство в значительной степени определяется величиной угловой скорости собственного вращения гироскопа.

При воздействии момента внешней силы вокруг оси, перпендикулярной оси вращения ротора, гироскоп начинает поворачиваться вокруг оси прецессии, которая перпендикулярна моменту внешних сил.

Поведение гироскопа в инерциальной системе отсчёта описывается, согласно следствию второго закона Ньютона, уравнением

Где векторы и являются, соответственно, моментом силы, действующей на гироскоп, и его моментом импульса.

Изменение вектора момента импульса под действием момента силы возможно не только по величине, но и по направлению. В частности, момент силы, приложенный перпендикулярно оси вращения гироскопа, то есть перпендикулярный, приводит к движению, перпендикулярному как, так и, то есть к явлению прецессии. Угловая скорость прецессии гироскопа определяется его моментом импульса и моментом приложенной силы.

То есть обратно пропорциональна скорости вращения гироскопа. Одновременно с возникновением прецессии, согласно следствию третьего закона Ньютона, гироскоп начнёт действовать на окружающие его тела моментом реакции, равным по величине и противоположным по направлению моменту, приложенному к гироскопу. Этот момент реакции называется гироскопическим моментом.

То же движение гироскопа можно трактовать иначе, если воспользоваться неинерциальной системой отсчёта, связанной с кожухом ротора, и ввести в ней фиктивную силу инерции -- так называемую кориолисову силу. Так, при воздействии момента внешней силы гироскоп поначалу будет вращаться именно в направлении действия внешнего момента (нутационный бросок). Каждая частица гироскопа будет таким образом двигаться с переносной угловой скоростью вращения вследствие действия этого момента. Но ротор гироскопа, помимо этого, и сам вращается, поэтому каждая частица будет иметь относительную скорость. В результате возникает кориолисова сила, которая заставляет гироскоп двигаться в перпендикулярном приложенному моменту направлении, то есть прецессировать.

3. Новые типы гироскопов

Постоянно возрастающие требования к точностным и эксплуатационным характеристикам гироскопических приборов стимулировали ученых и инженеров многих стран мира не только к дальнейшим усовершенствованиям классических гироскопов с вращающимся ротором, но и к поискам принципиально новых идей, позволяющих решить проблему создания чувствительных датчиков для индикации и измерения угловых движений объекта в пространстве.

В настоящее время известно более ста различных явлений и физических принципов, которые позволяют решать гироскопические задачи. Выданы многие тысячи патентов и авторских свидетельств на соответствующие открытия и изобретения. И даже их беглое перечисление представляет собой невыполнимую задачу. Поэтому остановимся только на самых интересных направлениях, с помощью которых получены наиболее значительные практические результаты. При этом надо учесть, что уровень развития гироскопии оказывал существенное влияние на обороноспособность, поэтому во времена холодной войны гироскопы разрабатывались в обстановке строжайшей секретности и информация о полученных результатах хранилась за семью печатями.

Поплавковые гироскопы

Поплавковый гироскоп (ПГ) представляет собой классический роторный гироскоп, в котором для разгрузки подшипников подвеса все подвижные элементы взвешены в жидкости с большим удельным весом так, чтобы вес ротора вместе с кожухом уравновешивался гидростатическими силами. Благодаря этому на много порядков снижается сухое трение в осях подвеса и увеличивается ударная и вибрационная стойкость прибора. Герметичный кожух, выполняющий роль внутренней рамки карданового подвеса, называется поплавком. Конструкция поплавка должна быть максимально симметричной. Ротор гироскопа внутри поплавка вращается на воздушной подушке в аэродинамических подшипниках со скоростью порядка 30-60 тыс. оборотов в минуту. ПГ с большим вязким трением жидкости называется также интегрирующим гироскопом.

ПГ до настоящего времени остается одним из наиболее распространенных типов гироскопов и, безусловно, будет широко применяться в ближайшие годы, так как основывается на хорошо отработанных технологиях, мощной производственной базе. Но новые разработки ПГ, по-видимому, нецелесообразны, поскольку дальнейшее повышение точности встречает труднопреодолимые препятствия и вряд ли будет экономически оправданным.

Динамически настраиваемые гироскопы

Динамически настраиваемые гироскопы (ДНГ) принадлежат к классу гироскопов с упругим подвесом ротора, в которых свобода угловых движений оси собственного вращения обеспечивается за счет упругой податливости конструктивных элементов (например, торсионов). В ДНГ в отличие от классического гироскопа используется так называемый внутренний карданов подвес (рис. 3), образованный внутренним кольцом 2, которое изнутри крепится торсионами 4 к валу электродвигателя 5, а снаружи - торсионами 3 к ротору 1. Момент трения в подвесе проявляется только в результате внутреннего трения в материале упругих торсионов. В динамически настраиваемых гироскопах за счет подбора моментов инерции рамок подвеса и угловой скорости вращения ротора осуществляется компенсация упругих моментов подвеса, приложенных к ротору. К достоинствам ДНГ следует отнести их миниатюрность, высокую стабильность показаний, относительно невысокую стоимость.

Кольцевые лазерные гироскопы

Кольцевой лазерный гироскоп (КЛГ), называемый также квантовым гироскопом, создан на основе лазера с кольцевым резонатором, в котором по замкнутому оптическому контуру одновременно распространяются встречные электромагнитные волны. Длины этих волн определяются условиями генерации, согласно которым на длине периметра резонатора должно уложиться целое число волн, поэтому на неподвижном основании частоты этих волн совпадают. При вращении резонатора лазерного гироскопа путь, проходимый лучами по контуру, становится разным и частоты встречных волн становятся неодинаковыми. Волновые фронты лучей интерферируют друг с другом, создавая интерференционные полосы. Вращение резонатора лазерного гироскопа приводит к тому, что интерференционные полосы начинают перемещаться со скоростью, пропорциональной скорости вращения гироскопа. Интегрирование по времени выходного сигнала лазерного гироскопа, пропорционального угловой скорости, позволяет определить угол поворота объекта, на котором установлен гироскоп. К достоинствам лазерных гироскопов следует отнести прежде всего отсутствие вращающегося ротора, подшипников, подверженных действию сил трения.

Волоконно-оптические гироскопы

Значительные достижения в области разработки и промышленного выпуска световодов с минимальным значением погонного затухания и интегральных оптических компонентов привели к началу работ над волоконно-оптическим гироскопом (ВОГ), представляющим собой волоконно-оптический интерферометр, в котором распространяются встречные электромагнитные волны. Наиболее распространенный вариант ВОГ - многовитковая катушка оптического волокна. Достигнутые в лабораторных образцах точности ВОГ приближаются к точности КЛГ. ВОГ из-за простоты конструкции является одним из наиболее дешевых среднеточных гироскопов.

Волновые твердотельные гироскопы (ВТГ)

В основе функционирования волнового твердотельного гироскопа (ВТГ) лежит физический принцип, заключающийся в инертных свойствах упругих волн в твердом теле. Упругая волна может распространяться в сплошной среде как жесткое тело, не изменяя своей конфигурации. Такая частицеподобная волна называется солитоном и рассматривается как модельное воплощение корпускулярно-волнового дуализма: с одной стороны, это волна, с другой - неизменность конфигурации приводит к аналогии с частицей. Однако эта аналогия в некоторых явлениях простирается и дальше. Так, если возбудить стоячие волны упругих колебаний в осесимметричном резонаторе, то вращение основания, на котором установлен резонатор, вызывает поворот стоячей волны на меньший, но известный угол. Соответствующее движение волны как целого называется прецессией. Скорость прецессии стоячей волны пропорциональна проекции угловой скорости вращения основания на ось симметрии резонатора.

Резонатор ВТГ представляет собой тонкую упругую оболочку вращения, сделанную из плавленого кварца, сапфира или другого материала, обладающего малым коэффициентом потерь при колебаниях. Обычно форма оболочки - полусфера с отверстием в полюсе, поэтому ВТГ называется в литературе полусферическим резонаторным гироскопом. Один край резонатора (у полюса) жестко прикреплен к основанию (ножке). Другой край, называемый рабочим, свободен. На внешнюю и внутреннюю поверхности резонатора, около рабочего края, напыляются металлические электроды, которые образуют вместе с такими же электродами, нанесенными на окружающий резонатор кожух, конденсаторы. Часть конденсаторов служит для силового воздействия на резонатор. Вместе с соответствующими электронными схемами они образуют систему возбуждения колебаний и поддержания их постоянной амплитуды. С ее помощью в резонаторе устанавливают так называемую вторую форму колебаний, у которой стоячая волна имеет четыре пучности через каждые 90?. Вторая группа конденсаторов служит датчиками положения пучностей на резонаторе. Соответствующая (весьма сложная) обработка сигналов этих датчиков позволяет получать информацию о вращательном движении основания резонатора.

К достоинствам ВТГ относятся высокое отношение точность / цена, способность переносить большие перегрузки, компактность и небольшой вес, низкая энергоемкость, малое время готовности, слабая зависимость от температуры окружающей среды.

Вибрационные гироскоп

Вибрационные гироскопы основаны на свойстве камертона, заключающегося в стремлении сохранить плоскость колебаний своих ножек. Теория и эксперимент показывают, что в ножке колеблющегося камертона, установленного на платформе, вращающейся вокруг оси симметрии камертона, возникает периодический момент сил, частота которого равна частоте колебания ножек, а амплитуда пропорциональна угловой скорости вращения платформы. Поэтому, измеряя амплитуду угла закрутки ножки камертона, можно судить об угловой скорости платформы. Патент на вибрационный гироскоп принадлежит некоторым видам двукрылых насекомых, обладающих парой стержнеобразных придатков, называемых жужжальцами, которые вибрируют в полете с размахом до 75? и частотой около 500 Гц. При повороте туловища возникают колебания жужжалец в другой плоскости. Эти колебания воспринимаются особыми чувствительными клетками, расположенными в основании жужжалец и подающими команду на выравнивание корпуса насекомого. Система похожа на автопилот, в датчиках которого вращательное движение заменено на колебательное как на более естественное и экономичное для биологических систем.

Первые разработчики вибрационных гироскопов предрекали близкую смерть классическим гироскопам с вращающимся ротором. Однако более глубокий анализ показал, что вибрационные гироскопы отказываются работать в условиях вибрации, которая практически всегда сопровождает места установки приборов на движущихся объектах. Непреодолимой оказалась и проблема нестабильности показаний из-за сложностей высокоточного измерения амплитуды колебаний ножек. Поэтому идея чистого камертонного гироскопа так и не была доведена до прецизионного прибора, однако она стимулировала целое направление поисков новых типов гироскопов, использующих либо пьезоэлектрический эффект, либо вибрацию жидкостей или газов в хитро изогнутых трубках и т.п.

Список использованной литературы

1.Каргау, Л.И. Измерительные устройства летательных аппаратов [Текст] / Л.И. Каргау. - М., 1988. - 256 с.

2. Сифф, Э.Дж. Введение в гироскопию [Текст] / Э.Дж.Сифф. - М.: Наука, 1965. - 124 с.

3. Википедия [Электронный ресурс] / Свободная энциклопедия. - 21.12.2014. - Режим доступа. - URL: http://wikipedia.org.

Размещено на Allbest.ru

...

Подобные документы

    Магнитоэлектрические датчики момента. Исследование математической модели динамически настраиваемого гироскопа с газодинамической опорой ротора, учитывающей угловую податливость скоростной опоры. Уравнения движения динамически настраиваемого гироскопа.

    дипломная работа , добавлен 12.04.2014

    Элементарное представление о гироскопе, его основные свойства, принцип работы и применение в технике. Теорема Резаля. Направление оси свободного гироскопа в инерциальной системе отсчета. Регулярная прецессия тяжелого гироскопа, правило Жуковского.

    презентация , добавлен 09.11.2013

    Волновые свойства света: дисперсия, интерференция, дифракция, поляризация. Опыт Юнга. Квантовые свойства света: фотоэффект, эффект Комптона. Закономерности теплового излучения тел, фотоэлектрического эффекта.

    реферат , добавлен 30.10.2006

    Общее понятие гироскопа, его важнейшие свойства. Основное допущение элементарной теории. Реакция гироскопа на внешние силы. Момент гироскопической реакции, сущность теоремы Резаля. Оценка воздействия мгновенной силы на направление оси гироскопа.

    презентация , добавлен 30.07.2013

    Волоконно-оптические линии связи как понятие, их физические и технические особенности. Основные составляющие элементы оптоволокна и его виды. Области применения и классификация волоконно-оптических кабелей, электронные компоненты систем оптической связи.

    реферат , добавлен 16.01.2011

    Фотоупругость - следствие зависимости диэлектрической проницаемости вещества от деформации. Волоконно-оптические сенсоры с применением фотоупругости. Фотоупругость и распределение напряжения. Волоконно-оптические датчики на основе эффекта фотоупругости.

    курсовая работа , добавлен 13.12.2010

    Лазерная обработка металлов. Лазерная связь и локация. Лазерные системы навигации и обеспечения безопасности полетов. Лазерные системы управления оружием. Газовые, полупроводниковые, жидкостные, газодинамические, кольцевые лазеры.

    реферат , добавлен 10.05.2004

    Оптические свойства стекол (показатель преломления, молярная и ионная рефракция, дисперсия). Оптические свойства и строение боросиликатных стёкол, которые содержат на поверхности наноразмерные частицы серебра и меди. Методы исследования наноструктур.

    дипломная работа , добавлен 18.09.2012

    Свойства сверхпроводящих материалов. Определение электрического сопротивления и магнитной проницаемости немагнитных зазоров. Падение напряженности магнитного поля по участкам. Условия для работы устройства. Применение эффекта Мейснера и его изобретение.

    научная работа , добавлен 20.04.2010

    Пьезоэлектрический эффект в кристаллах. Диэлектрики, в которых наблюдается пьезоэффект. Прямой и обратный эффект пьезоэлектриков. Сжатие пьезо-электрической пластинки. Основные виды поликристаллических пьезоэлектриков. Основные свойства пьезоэлектриков.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта