Главная » Ядовитые грибы » В каком году советская станция марс 2. Атмосфера представляет собой самую внешнюю и потому наиболее доступную дистанционным методам исследований оболочку планеты, формирование которой непосредственно связано с ее эволюцией

В каком году советская станция марс 2. Атмосфера представляет собой самую внешнюю и потому наиболее доступную дистанционным методам исследований оболочку планеты, формирование которой непосредственно связано с ее эволюцией

Первой удавшейся Советской марсианской миссией была отправка на «красную планету» автоматической межпланетной станции третьего поколения Марс-2. Марс-2 предназначалась для исследования Марса как с его орбиты, так и непосредственно с поверхности планеты.

Марс-2

АМС состояла из орбитальной станции (искусственный спутник для исследования Марса) и спускаемого аппарата. Навигация в Космосе осуществлялась при помощи ориентации на Солнце, звезду Канопус и Землю. Советский Союз планировал осуществить серьёзные исследовательские работы на Марсе, для этого на АМС находилось всё необходимое оборудование: инфракрасный фотометр для изучения рельефа поверхности по измерению количества углекислого газа, ультрафиолетовый фотометр для определения плотности плотности верхней атмосферы. Счётчик частиц космических лучей и многие другие приборы. Спускаемый аппарат также был автоматизирован и настроен на автономную работу и управление.

Станция была запущена с космодрома Байконур 19 мая 1971 года. Полёт станции к Марсу длился более 6 месяцев. Полёт осуществлялся по программе и, как говорится, ничто не предвещало беды, только на последнем этапе (самом важном, стоит признать), из-за неверных расчётов, спускаемый аппарат вошёл в атмосферу под углом больше заданного, парашютная система была в таких условиях неэффективной и, пройдя сквозь атмосферу Марса, аппарат разбился. К чести нашей страны, наш спускаемый аппарат, хоть и потерпел крушение, всё же стал первым искусственным предметом на планете. Орбитальная станция же свыше восьми месяцев осуществляла комплексные исследования Марса, совершив за время работы 362 оборота вокруг планеты.

Марс-3

Следующая русская марсианская миссия оказалась более успешной. При разработке программы Марса-3 были учтены недочёты предыдущего запуска. Запущенная через 9 дней после Марса-2, станция Марс-3 через полгода успешно достигла марсианской орбиты. Спускаемый аппарат впервые в истории совершил мягкую посадку на поверхность «красной планеты».

После полутора минут подготовительного периода, аппарат приступил к работе и начал транслировать панораму окружающей поверхности, но через 14 с половиной секунд «марсианское шоу» закончилось. «Шоу» это, конечно можно назвать с большой натяжкой: АМС передала только первые 79 строк фототелевизионного сигнала, представлявшие из себя серый фон без единой детали, то же произошло и с трансляцией со второго телефотометра. Предполагались разные версии некорректной работы устройств: коронный разряд в антеннах передатчика, повреждение аккумуляторной батареи… но окончательное решение о причинах неудачи принято не было. Не иначе, Марсиане что-то намудрили.

Марс-4

21 июля 1973 года с космодрома Байконур была запущена АМС Марс-4. Через 204 суток после старта, 10 февраля 1974 года КА пролетел на расстоянии 1844 км от поверхности Марса. За 27 минут до этого момента были включены однострочные оптико-механические сканеры - телефотометры, с помощью которых проведена съемка панорам двух областей поверхности Марса (в оранжевом и красно-инфракрасном диапазонах).

Впервые в практике отечественной космонавтики в полёте участвовали четыре космических аппарата. На Марс-4 возлагалось много задач: изучение распределения водяного пара по диску планеты, определение газового состава и плотности атмосферы, измерение потоков электронов и протонов на трассе полёта и у планеты, исследования спектров собственного свечения атмосферы Марса и множество других. Главной задачей Марса-4 был выход на связь с автоматическими станциями на поверхности Марса. КА «Марс-4» провел фотографирование Марса с пролетной траектории. На фотоснимках поверхности планеты, отличающихся весьма высоким качеством, можно различить детали размером до 100 м. Это ставит фотографирование в число основных средств изучения планеты. При его помощи с использованием цветных светофильтров путем синтезирования негативов получены цветные изображения ряда участков поверхности Марса. Цветные снимки также отличаются высоким качеством и пригодны для ареолого-морфологических и фотометрических исследований. К сожалению, всех возложенных на него задач Марс-4 не выполнил.

Марс-5

Запуск АМС Марса-5 был осуществлён через четыре дня после запуска Марса-4. Задачи, которые ставились перед ним не сильно отличались от предыдущей миссии. Станция «Марс-5» успешно вышла на орбиту вокруг планеты, однако сразу же произошла разгерметизация приборного отсека, в результате чего работа станции длилась лишь около двух недель. Научные приборы, размещенные на станции «Марс-5», предназначались, главным образом, для изучения ряда важнейших характеристик поверхности планеты и околопланетного пространства с орбиты. Аппарат был оснащён лайман-альфа-фотометром, сконструированным совместно советскими и французскими учёными, и предназначенным для поиска водорода в верхних слоях атмосферы Марса. Установленный на борту магнитометр производил измерения магнитного поля планеты.

Для измерения температуры поверхности предназначался инфракрасный радиометр, работавший в диапазоне 8-40 мк. Искусственный спутник Марса КА «Марс-5» передал на Землю новые сведения о планете и окружающем её пространстве; с орбиты спутника получены качественные фотографии марсианской поверхности, в том числе цветные. Исследования магнитного поля в околомарсианском пространстве, проведенные аппаратом, подтвердили вывод, сделанный на основании аналогичных исследований КА «Марс-2,-3», о том, что вблизи планеты существует магнитное поле порядка 30 гамм (в 7-10 раз больше величины межпланетного невозмущенного поля, переносимого солнечным ветром). Предполагалось, что это магнитное поле принадлежит самой планете, и «Марс-5» помог получить дополнительные аргументы в пользу этой гипотезы. По аналогичным измерениям с борта КА «Марс-5» впервые непосредственно измерена температура атомарного водорода в верхней атмосфере Марса. Предварительная обработка данных показала, что эта температура близка к 350°К.Несмотря на то, что работа станции продолжалась недолго, за время её работы были получены многочисленные сведения о Марсе, его атмосфере и магнитном поле.

Марс-6

Ещё один наш спускаемый аппарат оказался на Марсе благодаря АМС Марс-6, запущенной с космодрома Байконур 5 августа 1973 года. Печально, но и на этот раз мягкой посадки не произошло. Во время спуска не было цифровой информации с прибора МХ 6408М, зато с помощью приборов «Зубр», ИТ и ИД была получена информация о перегрузках, изменении температуры и давления. Непосредственно перед посадкой связь с СА потеряна.

Последняя полученная с него телеметрия подтвердила выдачу команды на включение двигателя мягкой посадки. Новое появление сигнала ожидалось через 143 секунды после пропадания, однако этого не произошло, однако данные, полученные во время спуска, уже принесли значительные результаты и внесли большой вклад в изучение Марса. Спускаемый аппарат Марса-6 совершил посадку на планету, впервые передав на Землю данные о параметрах марсианской атмосферы, полученные во время снижения. Марс-6 проводил измерения химического состава марсианской атмосферы при помощи масс-спектрометра радиочастотного типа. Вскоре после раскрытия основного парашюта сработал механизм вскрытия анализатора, и атмосфера Марса получила доступ в прибор. Предварительный анализ позволяет сделать вывод, что содержание аргона в атмосфере планеты может составлять около одной трети. Этот результат имеет принципиальное значение для понимания эволюции атмосферы Марса. На спускаемом аппарате осуществлялись также измерения давления и окружающей температуры; результаты этих измерений весьма важны как для расширения знаний о планете, так и для выявления условий, в которых должны работать будущие марсианские станции.
Совместно с французскими учеными выполнен также радиоастрономический эксперимент – измерения радиоизлучения Солнца в метровом диапазоне. Прием излучения одновременно на Земле и на борту космического аппарата, удаленного от нашей планеты на сотни миллионов километров, позволяет восстановить объемную картину процесса генерации радиоволн и получить данные о потоках заряженных частиц, ответственных за эти процессы. В этом эксперименте решалась и другая задача – поиск кратковременных всплесков радиоизлучения, которые могут, как предполагается, возникать в далеком космосе за счет явлений взрывного типа в ядрах галактик, при вспышках сверхновых звезд и других процессах.

Марс-7

Марс-7 был запущен 9 августа 1973 года. Эта марсианская миссия оказалась неудачной. Спускаемы аппарат прошёл в 1400 километрах от поверхности Марса и ушёл в космос. Таким образом, целевая программа Марса-7 не была выполнена, но, совершая автономный полёт, спускаемый аппарат сохранял работоспособность и передавал информацию на пролетный аппарат по радиолиниям КД-1 и РТ-1. С пролетным аппаратом Марса-7 связь поддерживалась до 25 марта 1974 года.

При работе Марса-7 в сентябре-ноябре 1973 года зафиксирована связь между возрастанием потока протонов и скорости солнечного ветра. Предварительная обработка данных КА Марс-7об интенсивности излучения в резонансной линии атомарного водорода Лайман-альфа позволила оценить профиль этой линии в межпланетном пространстве и определить в ней две компоненты, каждая из которых вносит приблизительно равный вклад в суммарную интенсивность излучения. Полученная информация даст возможность вычислить скорость, температуру и плотность втекающего в солнечную систему межзвездного водорода, а также выделить вклад галактического излучения в линии Лайман-альфа. Этот эксперимент выполнялся совместно с французскими учеными.

Проект Фобос

Проект «Фобос» был следующим этапом изучения Марса и его спутника. Он был начат на волне успешного сотрудничества с западными научными организациями в рамках проекта АМС «Вега». Несмотря на то, что основная задача проекта осталась невыполненной, а планировалась доставка на спутник Марса спускаемых аппаратов, проект принёс результаты. Исследования Марса, Фобоса и околомарсианского пространства, выполненные в течение 57 дней на этапе орбитального движения вокруг Марса, позволили получить уникальные научные результаты о тепловых характеристиках Фобоса, плазменном окружении Марса, взаимодействии его с солнечным ветром.

Например, по величине потока ионов кислорода, покидающих атмосферу Марса, обнаруженных при помощи спектрометра ионов, установленного на КА Фобос-2, удалось оценить скорость эрозии атмосферы Марса, вызванной взаимодействием с солнечным ветром.На этом советская программа изучения Марса завершилась. Запуск следующего, уже российского, аппарата для исследования Марса - станции «Марс-96» в 1996 году - закончился неудачей. Запуск следующего российского аппарат для исследования Марса и его спутников (Фобос-грунт) состоялся 9 ноября 2011 года. Основная цель этого аппарата - доставка образца грунта Фобоса на Землю. В тот день аппарат вышел на опорную орбиту, однако по каким-то причинам команда на включение маршевой двигательной установки не прошла. 24 ноября были официально прекращены попытки восстановить работоспособность, а в феврале 2012 года аппарат неуправляемо вошел в плотные слои атмосферы, и упал в океан.

Первый космический аппарат для полёта к Марсу - «Марс-1» был создан в ОКБ С.П. Королёва и запущен в 1962 г., но не достиг планеты, а два КА серии М-69, разработанные в НПО им. С.А. Лавочкина и предназначенные для исследования Марса с орбиты искусственного спутника, в 1969 г. не были выведены на межпланетные траектории из-за аварии РН «Протон». Для завоевания лидерства в исследованиях Марса было решено разработать проект М-71, предусмотрев запуск в 1971 г. трех КА.

Первый КА - М-71С - должен был стартовать раньше и выйти на орбиту искусственного спутника Марса. Два других - автоматические межпланетные станции «Марс-2» и «Марс-3» предназначались для исследования планеты Марс с орбиты искусственного спутника (ИСМ) и с помощью посадочного аппарата (СА) на его поверхности. Для реализации этой программы были фактически с нуля разработаны новые станции, состоявшие из орбитального и спускаемого аппаратов и представлявшие собой новейшее поколение советских автоматических межпланетных станций, разработанных в НПО им. С.А. Лавочкина под руководством выдающегося конструктора Г.Н. Бабакина. Заложенные в них конструктивные решения успешно использовались почти 20 лет при создании межпланетных станций серии «Марс», «Венера», «Вега», космических обсерваторий «Астрон» и «Гранат».

Первый КА решал чрезвычайно важную техническую задачу - уточнение эфемерид Марса, что необходимо для выдерживания расчетного угла входа СА в атмосферу Марса с максимально допустимым отклонением от номинала в 5°. При большем угле входа не хватит времени для раскрытия парашютной системы, при меньшем - СА рикошетирует от атмосферы и уходёт в космическое пространство.

Такое решение было вызвано тем, что эфемерид Марса с необходимой точностью конструкторы не имели. Измерения положения планеты по сигналам его искусственного спутника позволили бы получить уточнённые данные, опираясь на которые можно было провести коррекцию траекторий движения второго и третьего аппаратов на заключительном участке и обеспечить расчетные условия входа СА в атмосферу.

В конце 1969 г. была закончена разработка эскизного проекта М-71 - аппаратов нового поколения, на базе которых впоследствии были созданы станции для межпланетных полетов и астрофизических исследований космоса. До старта М-71 оставалось всего 17 месяцев. За это время нужно было разработать документацию, изготовить 24 экспериментальных аппарата и установок, провести их испытания, откорректировать по результатам испытаний документацию на летные КА, изготовить, провести испытания и запустить три летных аппарата. Огромный объем работ!

Много сил ушло на отработку СА и его систем. Вот некоторые из проблем, которые были решены.

Сложные научно-технические проблемы были решены при отработке парашютной системы, которая должна была вводиться в атмосфере Марса при скорости 3.5 М. Аналогов системы, как и методов ее испытаний в условиях Земли, в мире не существовало. На основании теоретических исследований специалисты НИИ парашютно-десантных средств совместно со специалистами НПО Лавочкина предложили проводить испытания на моделях парашютной системы, выводимых на большую высоту метеорологическими ракетами М-100Б. При испытаниях обнаружилась тенденция к схлопыванию купола основного парашюта на скорости 3.5М. В систему ввели изменения, их эффективность подтвердили последующими испытаниями.

В конструкции станции и СА широко использовались различные пиросистемы: удлиненные кумулятивные заряды, пирозамки, пиротолкатели, пироцилиндры и т.п. Объем их испытаний был большим, так как по нормам НПО им. С.А. Лавочкина пиросистема могла быть установлена на аппарате только при безотказном ее срабатывании последовательно 12 раз на заключительном этапе наземных испытаний.

Для отработки системы мягкой посадки провели пять сбросов макетов СА со штатными блоками бортовой автоматики, высотомерами и пороховыми двигателями.

Эффективность амортизации АМС и функционирование станции после удара о грунт проверялось на специальном стенде, состоящем из катапульты, грунта-аналога и защитной стенки. Провели сбросы пяти макетов станции, укомплектованных габаритно-массовыми макетами аппаратуры, штатными механизмами, пиросистемами, источником питания. При испытаниях горизонтальная скорость соприкосновения с грунтом-аналогом составляла - до 28.5 м/с, вертикальная - до 12 м/с. Испытания показали, что амортизация обеспечивает защиту конструкции станции при посадке и нормальное функционирование систем отделения защитного кожуха и вертикализации станции при различных направлениях удара по станции.

В заключение провели испытание АМС, полностью соответствующей летной, после имитации всех условий, действующих на станцию в полете. После сброса АМС с катапульты по командам бортовой автоматики отделился защитный кожух, открылись лепестки и станция приняла вертикальное положение; включились передатчики и научная аппаратура, на грунт были вынесены рентгеновский спектрометр и прибор оценки проходимости, который совершил короткое путешествие, проведя по пути исследования пока еще земного грунта. В течение 25 минут панорама и научная информация передавались по эфиру и принимались контрольной аппаратурой.

Применение СА в проекте потребовало решения проблемы его стерилизации для исключения загрязнения Марса земными микроорганизмами. Отдельные части СА стерилизовались различными методами, а сборка его проводилась в специально построенном в НПО им. С.А. Лавочкина чистом помещении со шлюзовой камерой, фильтрами, бактерицидными лампами и т.п.

В конце марта - начале апреля КА были отправлены на Байконур для подготовки к полету.
5 мая 1971 г. стартовала станция М-71С. Вывести ее на межпланетную траекторию не удалось: оператор выдал неправильную уставку на второе включение блока «Д». Это привело к потере возможности создания первого искусственного спутника Марса и использования его в качестве маяка, позволявшего с необходимой точностью определить положение Марса и обеспечить расчетные условия входа СА в атмосферу.

Космические аппараты

Конструктивно «Марс-2» и «Марс-3» были аналогичны и дублировали друг друга на случай возможного сбоя. На аппаратах находились 2 фототелевизионные камеры с различными фокусными расстояниями для фотографирования поверхности Марса, а на «Марсе-3» также аппаратура «Стерео» для проведения совместного советско-французского эксперимента по изучению радиоизлучения Солнца на частоте 169 МГц. В составе каждого КА был орбитальный отсек и спускаемый аппарат.
Основные устройства орбитального отсека: приборный отсек, блок баков двигательной установки, корректирующий реактивный двигатель с агрегатами автоматики, солнечная батарея, антенно-фидерные устройства и радиаторы системы терморегулирования. Спускаемый аппарат - автоматическая марсианская станция (АМС), оборудованная системами и устройствами, обеспечивающими отделение аппарата от орбитального отсека, переход его на траекторию сближения с планетой, торможение, спуск в атмосфере и мягкую посадку на поверхность Марса. Автоматическая марсианская станция была снабжена приборно-парашютным контейнером, аэродинамическим тормозным конусом и соединительной рамой, на которой размещен ракетный двигатель.
В спускаемом аппарате была установлена аппаратура для измерения температуры и давления атмосферы, масс-спектрометрического определения химического состава атмосферы, измерения скорости ветра, определения химического состава и физико-механических свойств поверхностного слоя, а также для получения панорамы с помощью телевизионных камер.

Схема полёта

  • Дата старта «Марс-2»: 19 мая 1971 года в 20:22 МСК
  • Дата старта «Марс-3»: 28 мая 1971 года в 19:26 МСК
  • Ракета-носитель: «Протон-К» с разгонным блоком «Д»
  • Масса КА: 4625 кг
  • Масса орбитального аппарата: 3625кг
  • Масса автоматической марсианской станции после посадки: 355 кг.

После потери М-71С осталось надеяться на безупречную работу системы космической автономной навигации (СКАН). Решение о разработке этой системы, не имеющей аналогов в мире, и установке ее на 2-й и 3-й КА принял Совет главных конструкторов в начале 1970 г. как запасной вариант на случай аварии станции М-71С. В системе использовался оптический угломер. За 7 час до прилета к Марсу прибор должен был провести первое измерение углового положения Марса относительно базовой системы координат. Данные измерений передавались в бортовой компьютер системы управления, который рассчитывал вектор третьей коррекции, необходимый для перевода станции на номинальную траекторию. По результатам расчетов система управления КА без вмешательства с Земли выдавала команды на выполнение коррекции.По результатам внешнетраекторных измерений 5 июня на «Марсе-2» и 8 июня на «Марсе-3» были проведены первые коррекции траектории их движения. Бортовая аппаратура станций работала без замечаний. Из-за особенности траекторий полета к Марсу сеансы связи со станциями проводились ночью. Полет «Марсов» продолжался. В ноябре 1971 г. успешно провели вторые коррекции траекторий движения. До прилета станций к Марсу оставались считанные дни. Погода на планете была неблагоприятной для наблюдений с орбитальных станций, и, тем более, для посадки спускаемого аппарата: уже несколько недель на Марсе бушевала необычно сильная пылевая буря, охватившая всю поверхность планеты. Астрономы такой мощной бури на Марсе не фиксировали за всю историю его наблюдений.21 ноября 1971 г. с использованием системы космической автономной навигации провели третью коррекцию траектории движения «Марса-2». Спускаемый аппарат «Марса-2» был отстыкован от орбитального отсека 27 ноября 1971 года, а сама станция выведена на орбиту искусственного спутника Марса (ИСМ) с периодом обращения 18 часов. Перед отделением спускаемого аппарата бортовая ЭВМ, из-за программной ошибки сработала неправильно и в спускаемый аппарат были введены ошибочные уставки, предусматривающие нерасчетную ориентацию станции перед отделением. Через 15 мин после отделения на спускаемом аппарате включилась твердотопливная двигательная установка. Она все-таки обеспечила перевод спускаемого аппарата на траекторию попадания на Марс. Однако угол входа в атмосферу оказался больше расчетного. Спускаемый аппарат слишком круто «зарылся» в марсианскую атмосферу, из-за чего не успел затормозить на этапе аэродинамического спуска. Парашютная система уже ничего не смогла сделать. 27 ноября 1971 г. СА, «прошив» атмосферу « Красной планеты», разбился о поверхность Марса в точке с координатами 4° с.ш. и 47° з.д. (Долина Нанеди в Земле Ксанфа), впервые в истории достигнув поверхности Марса. На борту СА был закреплен вымпел СССР. «Марс-2» стал первым искусственным предметом на планете. Отклонения от расчетных значений периодов обращений ИСМ и траектории движения СА станции «Марс-2» были следствием недостатка времени на отработку матобеспечения бортового компьютера. Последующий анализ установил, что «Марс-2» шел точно по расчетной траектории и коррекция не требовалась. Но этот вариант не успели проверить на стенде системы управления! Такого развития событий можно было избежать при функционировании на орбите Марса станции М-71С. Тогда по измерениям с Земли могли бы установить, что станция идет по номинальной траектории и коррекция была бы отменена. После потери СА «Марса-2» основные надежды стали возлагаться на подлетающую к красной планете станцию «Марс-3».Третью коррекцию траектории «Марса-3» провели штатно 2 декабря 1971 г. Спускаемый аппарат отделился и перешел на расчетную траекторию встречи с планетой. Через 4 часа 35 минут он вошел в атмосферу со скоростью 5800 м/с, уменьшил скорость за счет аэродинамического торможения, открыл парашют - и автоматическая марсианская станция совершила посадку на поверхность планеты в районе с координатами 158° западной долготы и 45° южной широты. Орбитальный отсек «Марс-3» был выведен на орбиту ИСМ с периодом обращения 12 суток 19 часов.Информация с АМС записывалась на магнитофон орбитальной станции и передавалась на Землю после завершения операции выведения станции на орбиту ИСМ. Информация с АМС передавалась циклами; каждый цикл состоял из передачи панорамы поверхности длительностью в 1 минуту с последующей посылкой телеметрии. Наконец началась передача панорамы. Полученное изображение представляло собой серый фон без единой детали. Через 14.5 секунд сигнал пропал. Такая же картина повторилась со вторым телефотометром. Объяснить причину потери связи с АМС тогда не смогли. Уже позже была выдвинута версия о том, что, вероятно, коронный разряд в антеннах передатчика был причиной внезапного исчезновения сигнала с поверхности.Пылевая буря продолжала бушевать. «Марсы» проводили съемку поверхности, но пыль полностью скрывала рельеф. Не видно было даже горы Олимп, возвышающейся на 26 км. В одном из сеансов съемки была получена фотография полного диска Марса с четко выраженным тонким слоем марсианских облаков над пылью. Во время этих исследований в декабре 1971г. пылевая буря подняла в атмосферу столько пыли, что планета выглядела мутным красноватым диском. Однако низкое качество изображений Марсов объяснялось не только пылевой бурей. Причина оказалась в фототелевизионной установке (ФТУ) Марсов. Их разработчики использовали неправильную модель Красной планеты. Из-за этого были выбраны неправильные выдержки ФТУ, фотографии получались пересветленными. Сделали несколько серий снимков (каждый по 12 кадров) и, убедившись в их практически полной непригодности, от использования ФТУ на аппаратах отказались. Аппараты функционировали на орбите Марса более 8 месяцев и прекратили работу практически одновременно, израсходовав бортовой запас азота в системе ориентации 23 августа 1972 г.

НАУЧНАЯ АППАРАТУРА

Орбитальный аппарат

Для проведения исследований, как на трассе перелета, так и на орбите искусственного спутника Марса, на орбитальном аппарате установлены научные приборы:

Прибор ИВ‑2 для изучения распределения водяного пара по диску планеты;

Ультрафиолетовый спектрометр УФС-1 для определения газового состава и плотности атмосферы;

ФКМ-71 для изучения рельефа по распределению СО 2 , определения распределения концентрации газа в атмосфере, яркостной температуры планеты и атмосферы;

Радиочастотный радиометр РА-71 для определения диэлектрической проницаемости, поляризации и температуры поверхности планеты;

Трехкомпонентный магнитометр СГ-70 для измерения магнитного поля по трассе перелета и вблизи планеты;

РИЭП-2801 для измерения потоков электронов и протонов на трассе перелета и у планеты;

КС-18-5М для регистрации космических излучений и радиационных поясов планеты.

Для получения изображений марсианской поверхности на борту орбитального аппарата внутри торового приборного отсека установлено фототелевизионное устройство. Собственно ФТУ состоит из двух фотоаппаратов. Один из них – ФТУ-II – короткофокусный с фокусным расстоянием 52 мм предназначен для обзорной съемки. Он снабжен четырьмя сменными светофильтрами: красным, зеленым, синим и оранжевым. Для детальной съемки предназначен другой фотоаппарат – ФТУ-III – с фокусным расстоянием 350 мм, перед которым установлен оранжевый светофильтр. Съемка проводится на неперфорированную фотопленку шириной 25,4 мм циклами по 12 кадров. Шторный фотозатвор обеспечивает выдержку 1/50 секунды. Пленка каждого фотоаппарата рассчитана на 440 кадров.

После съемки пленка подвергается химической обработке и сушке. Изображения с проявленной пленки считываются специальным фототелевизионным устройством в различных режимах. В просмотровом режиме каждый кадр передается в виде 250 строк по 250 элементов, в режиме номинальной четкости – 1000×1000, а в режиме с максимальной четкостью – 2000×2000. Время передачи одного кадра во время воспроизведения по сантиметровой радиолинии в просмотровом режиме составляет 140 секунд, а в режиме номинальной четкости (1000×1000) ~35 минут.

Воспроизведение изображений с ФТУ можно вести и по дециметровой радиолинии. При этом время передачи одного кадра существенно возрастает.

Кроме того, информация с ФТУ может переписываться на магнитофон телеметрической системы с последующим воспроизведением по сантиметровой или дециметровой радиолинии.

Дополнительно на орбитальном аппарате «Марса-3» установлен французский прибор «Стерео» для измерения всплесков радиоизлучения Солнца в метровом диапазоне (169 МГц). Штыревые антенны прибора «Стерео» были установлены на панелях солнечных батарей.

Спускаемый аппарат

Для проведения исследований на участке парашютного спуска и непосредственно на поверхности Марса спускаемый аппарат оснащен комплексом научной аппаратуры.

В верхней части АМС установлены два телефотометра, аналогичных оптико-механической телевизионной камере (телефотометру) Я-198, примененной на «Луне-9». Они обеспечивают передачу черно-белой панорамы марсианской поверхности размером 500 на 6000 элементов изображения с перекрытием полей обзора поверхности порядка 130º. Передача одной панорамы должна начинаться сразу после посадки, еще одна – через сутки.

Для определения физико-механических свойств грунта на АМС установлен прибор ПрОП-М, представляющий собой маленький, шагающий марсоход, управляемый по проводам.

Состав научной аппаратуры, установленной на АМС:

Прибор ИТД для измерения температуры и давления марсианской атмосферы;

Масс-спектрометр МХ‑6408 для определения химического состава атмосферы;

Автоматическая активационная лаборатория ААЛ-2 для определения типа поверхностных пород;

Прибор ИПС для измерения скорости ветра и плотности газа;

Два телефотометра для получения панорамных фотоснимков;

Прибор ПрОП-М для определения прочности поверхностного слоя грунта.

Результаты полета

Полет космических аппаратов «Марс-2» и «Марс-3» к Марсу продолжался более 6 месяцев. С «Марсом-2» проведено 153, с «Марсом-3» 159 сеансов радиосвязи, получен большой объем научной информации и опыт управления КА на марсианском направлении. На расстоянии около 20 млн. км от Земли обнаружен магнитный шлейф ее магнитного поля. С увеличением расстояния от Солнца наблюдалось уменьшение электронной концентрации в межпланетной среде, а электронная температура оказалась в несколько раз меньше, чем вблизи Земли.
Более 8 месяцев орбитальные станции «Марс-2» и «Марс-3» проводили исследования планеты. За это время станция «Марс-2» совершила 362 оборота, «Марс-3» - 320 оборотов вокруг планеты, в результате чего были определены свойства поверхности и атмосферы Марса по характеру излучения в видимом, инфракрасном, ультрафиолетовом диапазонах спектра и в радиодиапазоне. Орбитальные аппараты определили давление и температуру атмосферы у поверхности, температуру поверхностного слоя Марса и ее изменения в зависимости от времени и широты. Были получены сведения о характере поверхностных пород и высотных профилях поверхности, о плотности грунта, его теплопроводности, диэлектрической проницаемости и отражательной способности, выявлены тепловые аномалии на поверхности Марса, установлено, что его северная полярная шапка имеет температуру ниже минус 110°С и что содержание водяного пара в атмосфере Марса в пять тысяч раз меньше, чем на Земле. Получены данные о структуре верхней атмосферы Марса, зарегистрировано наличие у него собственного магнитного поля. По изменению прозрачности атмосферы получены данные о высоте пылевых облаков (до 10 км) и размерах пылевых частиц (отмечено большое содержание мелких частиц - около 1 мкм). Фотографии позволили уточнить оптическое сжатие планеты, построить профили рельефа по изображению края диска и получить цветные изображения Марса, обнаружить свечение атмосферы на 200 км за линией терминатора, изменение цвета вблизи терминатора, проследить слоистую структуру марсианской атмосферы.
Выдающимся достижением было и то, что впервые в истории аппарат с Земли совершил мягкую посадку на поверхность планеты Марс.

Реферат по астрономии.

Марс.

Учеников 11 «Б» класса

школы №68

Янькова Романа

Рязань 1998 г.

Преобладающие формы рельефа северного полушария непосредственно связаны с активными геологическими процессами . В первую очередь внимание привлекают проявления вулканизма - громадные щитовые вулканы с четко очерченными кратерами на вершинах - кальдерами. Такие кратеры образуются при частичном обрушении вершины вулканического конуса, сопровождающем сильные извержения. Четыре вулкана в области Фарсида в несколько раз больше существующих на Земле.

Крупнейшие вулканические конусы называются горами Арсия, Акреус, Павонис и Олимп. Они достигают 500-600 км в основании, поднимаясь над окружающей равниной на 20-21 км. По отношению же к среднему уровню поверхности Марса высота Арсии и Акреуса 27 км, а Олимпа и Павониса - 26 км. Поражают воображение не только высота этих гор, но и диаметры кратеров на их вершинах: около 100 км у Арсии и 60 км у Олимпа. Гора Олимп - это хорошо известное астрономам наиболее светлое пятно, наблюдаемое на диске Марса в средних широтах, обозначавшееся на прежних картах как Никс Олимпика (Снега Олимпа). Само название говорит о том, что его считали возвышением; мало кто мог предполагать, что это возвышение столь грандиозно по своим размерам.

Отсутствие в областях Марса, где сосредоточены вулканы, кратеров ударного происхождения, а также хорошо сохранившиеся следы лавовых потоков на склонах гор позволяют предположить, что вулканы действовали еще сравнительно недавно (по оценкам не более нескольких сотен миллионов лет назад). Свидетельства широко развитого вулканизма на планете дают также хорошо сохранившиеся остатки лавовых потоков на панорамах, переданных с посадочного аппарата "Викинг-2". Место посадки на обширной марсианской равнине Утопия буквально усыпано многочисленными камнями, с характерными сколами и ноздреватыми поверхностями типа пемз. Подобные продукты раздробления пемзовых лав в виде обломочных рыхлых глыб часто встречаются на Земле.

Об интенсивной тектонической активности свидетельствуют многочисленные разломы и сбросы марсианской коры, образовавшиеся утесы, грабены, обширные ущелья с системой ветвящихся каньонов. Они достигают несколько километров в глубину, десятков километров в ширину, сотен и даже тысяч километров в длину. Сетки мощных каньонов зачастую отделены друг от друга плоскими плато или горами с плоскими вершинами и крутыми склонами, которые сложены наиболее прочными породами, противостоящими разрушению. Такие горы называют столовыми. Очевидно, эти образования, а также цепочки кратеров при наблюдении с Земли и создавали иллюзию марсианских "кратеров" - одной из наиболее известных и притягательных гипотез в истории астрономии конца XIX и первой половины XX столетий.

Рисунок 2.

Панорама Марса.

Вследствие наличия атмосферы и значительной эффективности эрозии на Марсе кратеры метеоритного происхождения сильно модифицированы. По этой же причине образовалось огромное количество пылепесчаного материала, что стало характерной чертой марсианской поверхности. Перемещение пыли ветром, обусловленное как локальными метеорологическими, так и глобальными циркуляционными процессами на планете, вызывает периодические изменения очертаний светлых и темных областей, причем темные области систематически на несколько Кельвинов теплее светлых. В относительно спокойные периоды тонкозернистый материал преимущественно скапливается в углублениях, а при сильных ветрах выдувается из них, образуя характерные светлые шлейфы у кромок кратеров, ориентированные в направлении ветра. Это преимущественная ориентировка может сохраняться в течение определенного времени и внутри кратеров, где преобладающими становятся более крупные частицы песка и пыли.

С переносом пыли и динамикой сезонных изменений полярных шапок связана и природа знаменитой "волны потемнения", распространяющейся с наступлением весны от широты примерно 70 o к экватору со скоростью около 5 м/с, так что до экватора она докатывается меньше чем за два земных месяца, покрывая расстояние свыше 4000 км. К лету, когда шапка уменьшается до минимальных размеров, темная полоса достигает широты 40 o в противоположном полушарии, а к осени, с началом роста шапки, быстро откатывается назад, и "моря" светлеют. В увлекательной теории Ловелла это объяснялось весенним пробуждением и быстрым распространением растительности вдоль живительных артерий - каналов, заполняемых водой с началом таяния шапки. Эта грандиозная ирригационная система высокоразвитых марсиан рассматривалась им как единственно мыслимое средство противостоять суровой природе на планете, преобладающими ландшафтами которой являются пустыни , а вода в условиях сухой и менее плотной, чем земная, атмосферы быстро испаряется.

Обилие и интенсивный перенос пыли объясняют и то, почему не было найдено сколько-нибудь определенной взаимосвязи неоднородностей рельефа с отражательными свойствами (альбедо) поверхности Марса, а также, почему для большинства районов планеты характерна малая плотность грунта. Альбедо поверхности претерпевает значительные изменения, и многие черты рельефа попросту маскируются. Иногда возникают мощные пылевые вихри, неслучайно называемые "пылевыми дьяволами". Ситуация приобретает глобальный характер в период пылевых бурь - грандиозного природного явления, периодически охватывающего всю планету. Пыль во время бурь поднимается на высоту до 10 и более километров, так что выступающими над этой сплошной пеленой оказываются только вершины крупнейших вулканов , а вся остальная поверхность приобретает ровный желтый фон, без каких-либо деталей.

Рисунок 3.

«Пылевой дьявол»

4. Реки и ледники на Марсе.

Бомбардировка метеоритами , глобальная тектоника, широко развитый вулканизм и ветровая эрозия - не единственные активные процессы , формировавшие поверхность Марса. На фотоснимках, переданных космическими аппаратами, обнаруживаются длинные ветвящиеся долины протяженностью в сотни километров, по своей морфологии напоминающие высохшие русла земных рек, выглаженные ложбины и другие характерные конфигурации, свидетельствующие также о водной и ледниковой эрозии. Это приводит к предположению, что в некоторый период марсианской истории поверхность планеты бороздили потоки воды, образовавшие русла с развитой системой притоков, и перемещались ледники. Они образовали в областях ледникового сноса, при обтекании кратеров, каплевидные острова и другие формы разрушения горных пород и выпахивания поверхности. Например, на рис.4 отчетливо видны следы мощного выглаживания, вероятнее всего вызванного ледниками, но, возможно, определенную роль здесь сыграла и вода, при течении которой образовались протоки между локальными уплотнениями материала поверхности. Наибольшие уплотнения, однако, связаны с кратерами ударного происхождения, поперечники которых на рис.4 достигают 10-15 км.

Рисунок 4.

Выглаженные ложбины марсианской поверхности с характерными каплевидными островами около кратеров, вероятно, оставленными движущимися ледниками, возможно, с участием потоков воды; размер кратеров 10-15 км (снимок «Викинга-1»).

О водном происхождении сохранившихся многочисленных русел, общее число которых оценивается в несколько десятков тысяч, говорит и факт перепада высот в направлении течения древних рек от истока к устью. Часть этих русел протянулась между углублениями на кратерированных участках поверхности, по-видимому, служивших местными водными резервуарами.

Насколько древними являются речные русла, корытообразные долины, оставленные ледниками, и некоторые другие образования, явно свидетельствующие о присутствии воды на поверхности Марса? К какому периоду (или периодам) марсианской истории относятся эти события? Данная проблема, как и проблема общих запасов воды на Марсе, непосредственно связана с палеоклиматом планеты, химическим составом и эволюцией ее атмосферы. Четкость многих сохранившихся флювиогляциальных форм, отсутствие следов их захоронения позднейшими наслоениями указывают на относительно недавнее происхождение, в пределах последнего миллиарда лет. По конфигурации некоторых желобов на склонах возвышенностей можно даже предполагать, что с них когда-то стекали дождевые потоки - ситуация , совершенно невозможная в современных условиях на Марсе при ничтожном содержании в атмосфере водяного пара и очень низком атмосферном давлении у поверхности, при котором вода в жидком виде практически не удерживается, быстро испаряясь.

Исходя из общих геохимических закономерностей о высвобождении воды из планетных недр, подкрепленных теперь явно выраженными признаками вулканической деятельности на всех планетах земной группы, многие исследователи уже давно высказали идею о том, что основные водные массы на Марсе сосредоточены в приповерхностном слое вечной мерзлоты, особенно в слоях наносов и в крупных равнинных бассейнах типа Эллады. Не исключалась даже возможность того , что за счет обычного геотермического температурного градиента внутри этих бассейнов под слоем льда температура может оказаться достаточной для сохранения воды в жидком состоянии. Такое предположение было высказано советскими учеными А.И.Лебединским и В.Д.Давыдовым.

В пользу представлений о существовании на Марсе обширных районов вечной мерзлоты действительно свидетельствует ряд деталей. К ним, в частности, относятся специфические долины с обнажением на их склонах внутренних пустот типа карстовых на Земле. Весьма вероятно, что они образовались при первоначальном обнажении и последующей сублимации ледяных прослоев (линз) и что подобных резервуаров, покрытых сыпучим грунтом, сохранилось на Марсе довольно много. Примерно аналогичную природу могут иметь встречающиеся на планете территории с хаотическим рельефом , содержащие замысловато изломанные блоки горных пород. Они, вероятнее всего, образовались за счет проседания наружных слоев вследствие ухода подповерхностного материала. О районах вечной мерзлоты свидетельствуют также специфические формы выбросов на внешних склонах некоторых кратеров, напоминающие снежные лавины. Происхождение таких конфигураций, не имеющих аналогов на других планетах, можно объяснить плавлением подповерхностного льда при ударе метеорита и стеканием грязевых потоков по склонам образовавшегося кратера.

Обширные области вечной мерзлоты на Марсе дают основание предположить наличие на его поверхности изверженных пород типа палагонитов - стекловатого минерала желто-бурого (или темно-бурого) цвета, встречающегося на Земле в базальтах, диабазах и туфах преимущественно в полярных районах. Палагониты образуются при взаимодействии магмы с водой или при извержении ее сквозь ледовую толщу. Они богаты железом и обеднены кремнием , что как раз подтверждается анализом элементного состава пород на поверхности Марса. Вместе с тем из-за меньшего атмосферного давления марсианские палагониты могут отличаться от земных меньшим содержанием летучих элементов и менее прочной структурой.

При определенных условиях, когда за счет падения метеорита, вулканического извержения или другого местного геотермального источника происходит таяние льда, на поверхности Марса могли бы образовываться (или вскрываться) водные резервуары.

Эту проблему исследовали известный американский планетолог К.Саган вместе с Д.Уоллесом. Их расчеты показали, что испарение очень быстро практически прекращается за счет появления на жидкой поверхности ледяного покрова, достигающего толщины не менее метра. Чем меньше давление атмосферы, тем интенсивнее испарение и тем сильнее охлаждение поверхности за счет высвобождения скрытой теплоты испарения, а значит, толще образующийся слой льда. В конечном итоге толщина ледяного покрова в среднем должна составлять 10-30 метров, что соответствует условиям равновесия между его ростом и сублимацией. Как известно, лед является хорошим теплоизоляционным материалом, и одновременно он достаточно прозрачен для солнечных лучей, которые частично проникают сквозь него и поглощаются в самой водной толще. Вместе с высвобождающейся скрытой теплотой плавления на нижней поверхности льда это препятствует дальнейшему промерзанию резервуара, обеспечивая сохранение в нем жидкой воды.

Все это привело авторов к интересной гипотезе о существовании на Марсе не только обширных водоемов (озер) под слоем вечной мерзлоты, но и о продолжающемся поныне течении рек, скованных ледяным щитом только с поверхности. А если это действительно так, то естественно предположить, что формирование по крайней мере некоторых из наблюдаемых русел происходило непрерывно. Можно было бы возразить, что большинство замерзших рек, вероятно, покрыто песчаными наносами и что в этом случае резко уменьшается как скорость сублимации, так и количество проникающего внутрь тепла, а значит, условие равновесия смещается. Действительно, в таких местах ледяной покров, вероятно, толще, однако вследствие регулярного переноса пыли условия могут изменяться.

Противоположный эффект должен наблюдаться при увеличении инсоляции, приводящей к уменьшению толщины ледяного покрова. На определенных участках поверхности, где промерзание было полным, возможно появление под слоем льда жидкой воды, так что этот слой по существу становится айсбергом . Такая ситуация могла бы, в частности, возникать в приполярных областях вследствие периодического изменения наклона оси вращения Марса относительно плоскости эклиптики. При таянии южной полярной шапки, которая в современную эпоху стаивает почти целиком вследствие заметного эксцентриситета орбиты планеты, обнаруживаются слои, образованные осадочными породами. В этих концентрических наслоениях вокруг полюса различается несколько сот слоев толщиной от единиц до десятков метров, имеющих вид террас. Такие структуры можно объяснить деятельностью ледников полярной шапки при изменении наклона оси планеты, от которого сильно зависит интенсивность их таяния. Предполагается, что последовательные процессы отложения осадков при таянии ледников с образованием "водяных подушек" и айсбергов , частично сглаживавших при своем перемещении неровности рельефа, происходили с периодом в сотни тысяч лет.

Белые полярные шапки Марса - одна из наиболее примечательных черт на диске планеты, хорошо наблюдаемых в телескоп. Аналогичным образом выделялись бы полярные области Земли при наблюдении, например с Марса, особенно - далеко простирающиеся к средним широтам обширные заснеженные пространства северного полушария зимой. Однако до недавнего времени велись споры о том, из чего состоят марсианские шапки - из обычного, водяного льда или твердой углекислоты. Последнее предположение связано с тем, что на полюсах отмечается самая низкая температура поверхности Марса, 148K=-125 o C. А это как раз соответствует температуре замерзания углекислоты, из которой преимущественно состоит марсианская атмосфера. Измерения с космических аппаратов показали, что в общем-то правы были защитники как той, так и другой гипотезы, однако в основной своей массе полярные шапки образованы обычным льдом. Оказалось, что интенсивный рост шапок происходит в период с начала марсианской осени до начала весны в соответствующем полушарии за счет конденсации из атмосферы углекислоты. При этом образуется слой сухого льда толщиной в несколько сантиметров, быстро исчезающий с наступлением весны. После этого остается нестаивающая за лето часть, имеющая температуру около -70 o C(203K), то есть значительно превышающую температуру замерзания углекислоты. Она-то и состоит в основном из обычного льда, покрываемого, как и прилегающая поверхность, слоем углекислоты в зимнее время. Весьма вероятно, что шапки содержат также обширные включения газовых гидратов - так называемых клатратов, представляющих собой соединения, которые образуются при внедрении молекул углекислого газа (или других газов) в пустоты кристаллической структуры водяного льда. По внешнему виду они напоминают спрессованный снег и хорошо известны прежде всего как побочный продукт при добыче природного газа. На Марсе клатраты, возможно, образуются и в средних широтах ночью , особенно внутри углублений и кратеров, как это было замечено на фотопанорамах "Викингов". С восходом Солнца конденсат быстро сублимирует. Измеренные температуры как раз хорошо соответствует фазовому переходу при образовании и исчезновении клатратов CO 2 . Тем не менее, окончательного отождествления пока не сделано, поэтому как эти, так и другие обширные белые образования на дне некоторых кратеров, обнаруживаемые на снимках с орбитальных аппаратов, получили пока условное название "белая порода".

Толщина северной полярной шапки может быть сопоставимой с толщиной ледяного панциря Антарктиды, достигающей 4,3 км, а отношение площади этого панциря к площади земной поверхности меньше, чем нестаивающей части шапки к площади поверхности Марса. Но лед Антарктиды содержит свыше 90% запасов всей пресной воды на Земле, и нельзя исключить, что подобный резервуар существует и на Марсе.

Все, что связано с водой на Марсе чрезвычайно важно для понимания общих проблем планетной эволюции. Сейчас о предполагаемых водных резервуарах ученые судят только по косвенным данным, прямых доказательств их существования пока нет. Эти доказательства могут дать только эксперименты.

5.Фобос и Деймос.

Важнейшим критерием для оценок возраста тех или иных структур на поверхности планеты служит число кратеров ударного происхождения в зависимости от их размеров и степени разрушения. Однако в условиях сильной эрозии трудно установить истинную плотность кратеров на Марсе. К тому же плотность кратеров в отдельных районах может быть частично связана с позднейшей вулканической активностью, а не только с возрастом древних форм рельефа. На наиболее сильно кратерированных участках поверхности число кратеров и их распределение по размерам сравнимы со степенью насыщенности лунной поверхности, в то время как на других участках они практически отсутствуют.

7. Атмосфера Марса.

Атмосфера представляет собой самую внешнюю и потому наиболее доступную дистанционным методам исследований оболочку планеты, формирование которой непосредственно связано с ее эволюцией.

Давление атмосферы у поверхности Марса на два порядка меньше, чем у поверхности Земли. Средняя температура у поверхности Марса -60оС(~210K). Преобладающий компонент в атмосфере Марса - углекислый газ, относительное объемное содержание которого свыше 95%.

Таблица 2.

Относительные параметры атмосферы Марса.

Химический состав (объемные проценты по отношению к средней плотности)

CO 2

95

N 2

2-3

Ar

1-2

H 2 O

10 -3 -10 -1

CO

4*10 -3

O 2

0,1-0,4

SO 2

10 -5

Ne

<10 -3

Kr

<2*10 -3

Xe

<5*10 -3

Средняя молекулярная масса

43,5

Температура у поверхности

T max (K)

270

T min (K)

200

Среднее давление у поверхности P (атм.)

6*10 -3

Средняя плотность у поверхности (г/см 3)

1,2*10 -5

Для атмосферы Марса характерно низкое относительное содержание водяного пара, на уровне сотых и тысячных долей процента. Около 80% количества H 2 O сосредоточено в приповерхностном слое атмосферы толщиной в несколько километров. Содержание водяного пара в зависимости от сезона, широты и времени суток колеблется в сто раз. Наиболее сухая атмосфера - в высоких широтах зимой, а наиболее влажная - над полярными областями летом. На Марсе обнаружены также отдельные районы повышенной влажности в средних широтах и общее уменьшение влагосодержания в атмосфере в период пылевой бури.

В разреженной атмосфере Марса тепловые неоднородности у поверхности резко выражены, и температурный профиль испытывает значительные сезонно-суточные изменения, достигающие 100-150 K. С высотой глубина вариаций сильно уменьшается. За среднее давление, примерно соответствующее среднеуровенной поверхности Марса, принято 6,1 мбар. Оно совпадает с положением тройной точки на фазовой диаграмме воды. В зависимости от рельефа давление колеблется от ~2 до ~ 10 мбар. Днем температура поверхности выше, а ночью ниже, чем температура атмосферы. У полюсов температура атмосферы опускается зимой ниже температуры фазового перехода углекислого газа(148 K при давлении 6 мбар), в результате чего CO 2 превращается в сухой лед.

Рисунок 5.

Высотный профиль температуры атмосферы Марса, показанный на рисунке 5, отвечает средним условиям, т.е. относится к послеполуденному времени приэкваториальных широт. Температурный градиент днем близок к адиабатическому, от поверхности до 20-30 км, а выше, в стратосфере, достигаются условия, близкие к изотермии, с отдельными инверсионными слоями. В стратосфере Марса, так же как и на полюсах, может конденсироваться углекислота, однако марсианские облака преимущественно состоят из кристаллов водяного льда и расположены ниже, в тропосфере. Положение и температура мезопаузы на Марсе примерно такие же, как на Венере, а дневная экзосферная температура ~350 K, и она испытывает меньшие вариации в зависимости от времени суток.

8. Ионосфера.

Интенсивным высвечиванием энергии в инфракрасных полосах углекислого газа в верхних атмосферах Марса, по-видимому, объясняются их существенно более низкие по сравнению с Землей средние экзосферные температуры. Так называют температуру выше той области верхней атмосферы (термосферы), где происходит основной приток энергии за счет прямого поглощения атмосферными молекулами и атомами солнечного ультрафиолетового и рентгеновского излучения, и профиль температуры становится почти изотермическим. Экзосферная температура Марса не превышает 200-350 К, а основания экзосфер лежат примерно на 200 км ниже.

Измерения по методу радиопросвечивания с космических аппаратов показали, что Марс обладает ионосферой, однако менее плотной, чем земная, и ближе поджатыми к планете.

Основной максимум дневного слоя марсианской ионосферы лежит на высоте 135-140 км и имеет электронную концентрацию не более 2*10 5 эл/см 3 , т.е. почти на порядок меньше концентрации в дневном слое F 2 ионосферы Земли. Второй максимум обнаружен на высоте около 110 км с электронной концентрацией 7*10 4 эл/см 3 . Основной компонентой марсианской ионосферы является ион O 2 + с примесями O+ и др.; выше 200 км преобладают ионы O+. Ее дневной максимум с концентрацией (3-5)*10 5 эл/см 3 расположен на высоте 140 км, резкий спад электронной концентрации наблюдается на уровне 250-400 км: здесь находится ионопауза - граница между тепловыми ионами ионосферы и потоками энергичных частиц солнечной плазмы. С ночной стороны образуется протяженная зона до высоты свыше 3000 км, со средней концентрацией электронов до 10 3 эл/см 3 и несколькими локальными максимумами на высотах ниже 150 км, где концентрация в 5-10 раз выше, а основной ион O 2 +. Состав и содержание ионов в ионосфере Марса подвержены существенным вариациям.

Образование переходной зоны - ионопаузы с дневной стороны планеты в области, расположенной за ударной волной на высотах выше примерно 300-500 км, является наиболее характерной особенностью взаимодействия солнечной плазмы с Марсом. Радиационных поясов у него нет. Ионопауза образуется в зоне, где давление солнечного ветра примерно уравновешивается давлением ионосферных заряженных частиц вместе с давлением собственного магнитного поля планеты. В идеальной модели ионосферы бесконечной проводимости токи, индуцированные потоком солнечного ветра, текут по поверхности ионопаузы и непосредственно примыкающей к ней сверху области. Поэтому результирующее индуцированное магнитное поле расположено вне ионосферы. Примерно аналогичная ситуация сохраняется и в более реальном случае ионосферы конечной проводимости, поскольку время магнитной диффузии значительно больше времени изменения направления межпланетного магнитного поля, и диффузия последнего в невозмущенную ионосферу пренебрежимо мала.

На самом деле картина взаимодействия является значительно более сложной и имеет ряд специфических черт отдельно для Марса, как это было выявлено по результатам плазменных экспериментов на искусственных спутниках планеты. Комплексный характер процессов в области обтекания, помимо образования промежуточной зоны, отождествляемой с ионопаузой, включает также в себя последовательность разогрева и термализации ионов, образование зоны разрежения за ударной волной и много других особенностей.

9. Особенности теплового режима и атмосферной динамики.

Отдельный комплекс проблем представляет тепловой режим планетной атмосферы и ее динамика. Тепловой режим определяется количеством падающей на планету солнечной лучистой энергии (энергетической освещенностью) за вычетом энергии, отражаемой обратно в космическое пространство . Он зависит, таким образом, от расстояния a планеты от Солнца и ее интегрального сферического альбедо A , поскольку внутренними источниками тепла для всех планет земной группы можно пренебречь. Величина потока солнечной радиации, падающая по нормали на единичную площадку поверхности планеты в отсутствие атмосферы, определяет солнечную постоянную E c . Через эти три величины и постоянную закона Стефана-Больцмана выражается важный параметр, служащий мерой поступающей на планету энергии - ее равновесная (эффективная) температура

T e = 1/4 .

Здесь a выражается в а.е., а четверка в знаменателе учитывает то обстоятельство, что поток энергии падает на диск, а излучается со сферы.

Планетарная динамика отражает баланс между скоростями генерации потенциальной энергии за счет солнечной радиации и скоростью потери механической энергии за счет диссипации.

Источником атмосферных движений различных пространственных масштабов служит отсутствие равенства между поступающей и отдаваемой энергией в отдельных участках планеты при общем строгом выполнении условия теплового баланса в глобальном масштабе, характеризуемого эффективной температурой. Другими словами, возникновение горизонтальных температурных градиентов вследствие дифференциального нагрева должно компенсироваться развитием крупномасштабных движений, с широким спектром пространственных размеров.

Ветровая система на планете, создаваемая за счет неодинакового распределения солнечного тепла в пространстве и во времени, зависит также от того, имеет ли механизм теплового воздействия период больший или меньший периода собственного вращения планеты.

Вследствие термического расширения, обусловленного зависимостью плотности газов, помимо давления, также от температуры, сильнее нагретый, а значит, наименее плотный воздух поднимается вверх, а более холодный и тяжелый опускается вниз. Поэтому кажется очевидным, что возникающие из-за различия инсоляции, а значит, и горизонтальных градиентов температуры перепады давления должны приводить к регулярному переносу воздушных масс из тропиков к полюсам. Вдоль меридиана при этом образуется гигантская замкнутая конвективная ячейка, в верхней части которой теплый воздух будет переноситься от экватора к полюсу, а вдоль поверхности – холодный воздух от полюса к экватору. Сама такая ячейка носит название гадлеевской по имени известного английского астронома Д.Гадлея. На самом деле такая симметричная относительно экватора циркуляция в атмосферах планет не устанавливается. Причиной является наличие из-за вращения планет сил Кориолиса. В динамике атмосферы определяющую роль играет ее горизонтальная составляющая, благодаря которой воздушные течения отклоняются от направления своего движения в северном полушарии вправо, а в южном - влево. В результате протяженность меридиональной циркуляции сильно ограничивается.

При определении поля ветров удобным приближением служит понятие геострофического потока, или геострофического ветра, соответствующего условию, когда градиенты горизонтального давления сбалансированы силами Кориолиса. Сила такого термического ветра зависит от градиента давления и направлена вдоль линий изобар.

Влияние сил Кориолиса на форму движений характеризуется числом Россби:

R o = U /2 L sin ,

где U – типичная горизонтальная скорость движений, L – их характерный масштаб, – угловая скорость вращения планеты, – широта. Силы Кориолиса являются преобладающими при R o <=1.

Данная схема является весьма идеализированной. Реальный характер циркуляции определяется наложением нескольких типов движений, степень неупорядоченности которых сильно зависит от угловой скорости вращения планеты. На вращающейся планете развиваются волновые движения, называемые волнами Россби. С ростом угловой скорости и при больших перепадах температур вдоль меридиана такие волны становятся неустойчивыми, при их разрушении возникают вихри.

В анализе теплового режима планетной атмосферы обычно используется понятие о постоянной тепловой релаксации , характеризующей время реакции атмосферы на тепловое возмущение. Эта постоянная представляет собой отношение теплосодержания единичного атмосферного столба к величине излучаемой энергии, пропорциональной четвертой степени эффективной температуры, т.е. характеризует время, за которое запасенная энергия высветится:

= mC p T ср / T e 4 .

Таблица 3.

Эффективная температура и параметры тепловой инерции Марса

T e , K

T ср , K

3*10 5

Атмосфера Марса практически прозрачна для приходящего солнечного излучения, и постоянная тепловой релаксации у него на два-четыре порядка меньше, чем у Венеры и Юпитера , чьи атмосферы намного более плотные. На Марсе, вследствие малой тепловой инерции грунта и малой теплоемкости атмосферы, поверхностная температура оказывается близкой к ее местному лучисто-равновесному значению в каждой точке планеты. В связи с этим более резко выражена суточная составляющая скорости ветра.

Важным метеорологическим фактором в марсианской атмосфере является четко выраженная сезонная вариация давления вследствие конденсации углекислого газа в зимней полярной шапке. Этот эффект обнаружен экспериментально в обоих местах посадки аппаратов "Викинг". Наблюдения охватывают почти целиком марсианский год в северном полушарии планеты. Самый глубокий минимум давления (примерно 120-е сутки от начала измерений) составляет ~7 мбар и соответствует максимальной аккумуляции CO2 к концу зимы на южной полярной шапке, а другой минимум (430-е сутки) ~8,5 мбар – его вымерзанию на северной шапке. Эти минимумы оказываются вблизи осеннего и весеннего равноденствия, в то время как максимум давления наблюдается вблизи перигелия во время зимнего солнцестояния и составляет ~9,7 мбар. С таким общим изменением давления связана перестройка циркуляционной системы, а локальные флуктуации отражают изменения ветрового режима, в том числе возникновение пылевых бурь. По результатам измерений температуры атмосферы Марса в инфракрасном диапазоне, по данным о перемещении пыли на поверхности и данным непосредственных измерений с посадочных аппаратов получены оценки интенсивности и смены направлений ветра в различные периоды времени. Летом в тропических широтах на высотах 15-20 км преобладают западные ветры со скоростью 30-50 м/с, в то время как в тропосфере у поверхности направление ветра испытывает сильные суточные изменения, а среднесуточная составляющая мала, меньше 10 м/с. Наибольшей скорости (порядка 70-100 м/с) ветер достигает во время сильных пылевых бурь, обычно совпадающих с периодами противостояний Марса. Измерения, проводившиеся во время пылевой бури 1971 г., продолжавшейся около четырех месяцев, дали возможность выявить ряд интересных особенностей этого уникального природного явления, имеющего глобальный характер. Темные облака пыли, поднятой до 10 и более километров, наблюдались по всему диску, полностью сглаживая контрасты на поверхности. Было обнаружено существенное потепление самой атмосферы и более низкая температура поверхности (стремление температурного профиля к изотермическому) вследствие прозрачности атмосферы для солнечного излучения, которое задерживалось пылью. Плотность пылевых частиц в атмосфере со средними размерами 5-10 мкм составляла около 10 -9 г/см 3 . В атмосферу было поднято свыше миллиарда тонн пыли, спектральные характеристики которой по высокому содержанию окиси кремния (около 50%) примерно соответствовали составу поверхностных пород.

10. Проблемы климатической эволюции.

В комплексах атмосферных параметров, соединенных на достаточно больших пространственно-временных интервалах, выявляются статистические закономерности, определяющие климат на планете или в отдельных ее регионах.

Равновесная температура Марса существенно ниже нуля, и отгонявшаяся из недр вода могла находиться на поверхности в жидком состоянии лишь при достаточно плотной атмосфере благодаря парниковому эффекту и росту температуры. Неизвестно, была ли вода на поверхности Марса лишь на определенном этапе эволюции или появлялась регулярно на протяжении длительного периода, но оставленные ею следы в виде высохших речных русел и ледниковых выпахиваний довольно очевидны.

В первом случае следует допустить, что на планете однажды произошло резкое изменение климата , вероятно, где-то в пределах 1 млрд. лет назад, и что до этого момента Марс, проходивший вершину своей геологической эволюции, был больше всего похож на Землю. Такое изменение могло быть обусловлено резким уменьшением выделения внутреннего тепла, с чем естественно связать и заключительный этап вулканической активности на Марсе. Но нельзя исключить, что колебания марсианского климата происходили неоднократно, подобно периодам великих оледенений на Земле. Высказываются даже предположения, что они происходят и сейчас с периодом от нескольких сот тысяч до миллиона лет. Эти предположения основываются на расчетах периодических колебаний наклонения экватора Марса к плоскости его орбиты вследствие приливных возмущений планет и Солнца и соответственно изменения инсоляции на полюсах. Расчеты К.Сагана, П.Гираша и О.Туна привели к выводу о том, что за счет изменения наклонения, эквивалентного колебаниям светимости Солнца, могут быть два предельных устойчивых состояния атмосферы Марса: одно с такой разреженной атмосферой, как сейчас, а другое - с атмосферой, по плотности равной земной. Источником возрастания плотности более чем в 100 раз в данной модели служили полюса, в полярных шапках которых предполагалось вымораживание больших количеств углекислоты. Было показано, что повышенное облучение полюсов за счет большего наклона оси вращения по сравнению с нынешним (примерно на 4-5 о ), сопровождаемое уменьшением их альбедо, в принципе способно создать такую атмосферу и одновременно растопить водяной лед.

Более поздними измерениями, выполненными "Викингами", не было, однако, обнаружено значительного количества "сухого" льда в шапках в чистом виде. По-видимому, основная масса дегазированной углекислоты находится в марсианском реголите, а также в отложениях тонкодисперсного пылевого материала вокруг полюсов и в напластованиях равнинных областей приполярных широт. Особенно большие наслоения такого грунта следует ожидать в северной полярной области за счет различия инсоляции марсианских полушарий: в северном зима длиннее. Тем не менее и в этом случае равновесное состояние между количеством адсорбированного углекислого газа и его парциальным давлением в атмосфере определяется температурой. Поэтому представления о возможности изменения плотности атмосферы в зависимости от изменения наклона оси вращения в целом остаются, по-видимому, справедливыми.

Конечно, было бы заманчиво поверить, что нам просто не довелось увидеть Марс другим, с более благоприятным климатом , из-за недостаточно большого наклона оси его вращения в современную эпоху и что это посчастливится увидеть нашим далеким потомкам примерно сто тысяч лет спустя. Однако против такой привлекательной гипотезы говорит тот факт, что прорытые водой и ледниками русла и ложбины, по-видимому, образовались раньше, чем относительно более молодые кратеры ударного происхождения на их высохшей поверхности, возраст которых оценивается по меньшей мере в десятки миллионов лет. Поэтому большего внимания заслуживает, на наш взгляд, предположение о циклических изменениях уровня светимости Солнца, выдвинутое американским астрофизиком В.Фаулером в связи с попытками объяснения парадокса солнечных нейтрино. Так называют значительно меньший (примерно в 5 раз) регистрируемый на Земле поток нейтрино от Солнца по сравнению с ожидаемым их выходом в результате реакций термоядерного синтеза, считающихся главным механизмом генерации солнечной энергии. Найденная корреляция этих циклов, повторяющаяся с периодичностью ~10 8 лет, с великими оледенениями на Земле естественным образом могла бы объяснить как периодические колебания марсианского климата, так и, возможно, значительные климатические вариации на других планетах.

Для выяснения путей эволюции атмосферы и древнего климата Марса очень важное значение имеют результаты масс-спектрометрических измерений в атмосфере планеты содержания малых примесей, в первую очередь инертных газов (см. табл. 2) и отношений основных изотопов. Путем сопоставления измеренных концентраций инертных газов с их абсолютным и относительным содержанием в земной атмосфере и газовой фракции метеоритов можно судить о степени их первичного фракционирования на стадии аккумуляции и происшедшей за геологическое время степени дегазации на планете. Анализ изотопного состава позволяет дополнительно выяснить степень дегазации и фракционирования летучих при диссипации газов из планетной атмосферы.

Результаты изотопного анализа и соотношений летучих (CO 2 / 36 Ar ; N 2 / 36 Ar ) на Марсе дают основание считать, что когда-то он действительно обладал более плотной атмосферой за счет приблизительно в 20 раз большего по отношению к существующему содержания углекислого газа и примерно от 10 до 100 раз большего содержания азота. Последняя оценка сделана на основании измеренного изотопного отношения азота ( 15 N / 14 N ), которое оказалось примерно на 75% выше, чем в атмосфере Земли, в то время как изотопные соотношения других распространенных составляющих – кислорода и углерода – сохраняются примерно аналогичными земным. Это приводит к важному выводу о том, что, хотя даже в самые благоприятные периоды атмосфера Марса оставалась по крайней мере вдесятеро менее плотной чем земная, такая атмосфера была способна создать заметный парниковый эффект и сохранить на поверхности жидкую воду.

Общее отогнанное количество воды на Марсе оценивается значением ~5*10 21 г, что соответствует средней глубине равномерно разлитого на поверхности слоя около 20 м; это примерно на два порядка меньше, чем на Земле, но вместе с тем на порядок больше, чем на Венере. Можно ожидать, что почти вся эта масса отогнанной воды захоронена сейчас на Марсе в приповерхностных ледниках и полярных шапках, если исходить из предположения, что скорость диссипации атомов водорода на протяжении всей геологической истории планеты соответствовала современной величине потока (около 10 8 см -2 *с -1 ). В этом случае количество потерянной воды, отнесенное к толщине эффективного слоя, не должно превысить 3-5 м.

Помимо адсорбирования на марсианском реголите и в напластованиях приполярных областей, одним из каналов эвакуации CO 2 из атмосферы могли бы быть уже упоминавшиеся соединения включения – клатраты. Легко убедиться в том, что для оцененного выше количества H 2 O и CO 2 молярное отношение для клатрата CO 2 nH 2 O соответствует n ≈4-5, что почти совпадает с нижним пределом для газовых гидратов при нормальном давлении.

Может возникнуть вполне естественный вопрос: только ли удаленность от Солнца повлияла на климат Марса и что случилось бы с ним, окажись он по своим размерам таким же, как Земля и Венера ? Можно предполагать, что в этом случае Марс аккумулировал и удержал бы существенно большее количество летучих, а вследствие иного хода тепловой эволюции степень дифференциации слагающего вещества и дегазации была более полной. Такой Марс, очевидно, обладал бы значительно более плотной атмосферой и умеренным климатом.

Состав атмосферы Марса, включающий кислород , азот , углерод , близкая к арктическим и антарктическим районам Земли температура поверхности и обилие воды в ее верхних горизонтах, казалось бы, благоприятствуют оптимистическим надеждам обнаружить признаки жизни на этой планете. К сожалению, биологические эксперименты с марсианским грунтом на посадочных аппаратах «Викинг» оставили этот вопрос без ответа или скорее принесли больше отрицательных, чем положительных результатов. Видимо, в условиях эффективной естественной стерилизации за счет проникающей до поверхности коротковолнового ультрафиолетового излучения (с энергией фотонов до 6-7 эВ) и сильно окисленной среды в грунте, содержащем перекисные соединения (пероксиды), шансов обнаружить жизнь на Марсе мало.

Есть основания полагать, что ряд казавшихся позитивными свидетельств биологической активности в каждом из трех типов биологических экспериментов на «Викингах» – газовый обмен , разложение метки и ассимиляция углерода (в двух последних случаях с использованием меченых атомов углерода 14 С) – объясняются процессами химического взаимодействия. В частности, интенсивное выделение кислорода в начальной фазе эксперимента по газовому обмену скорее всего связано с обилием в грунте пероксидов, а не с процессами метаболизма . Важным аргументом против наличия живых форм служит также чрезвычайно низкий порог обнаружения на поверхности и в приповерхностном слое органических молекул (~10 -6 по массе по отношению к неорганическим). Вместе с тем вполне возможно, что отрицательный результат миссии «Викингов» был предопределен недостаточной чувствительностью использованных методов в столь неблагоприятных для жизни современных условиях на Марсе. Нельзя, конечно, исключить того, что эти условия могли быть значительно более благоприятными в ранней истории планеты или на определенных этапах ее климатической эволюции, когда на поверхности появлялась жидкая вода. Поэтому большой интерес представили бы попытки обнаружения простейших форм палеожизни в марсианском грунте, доступном непосредственным методам анализа в земных лабораториях.

Пока еще надежды найти признаки жизни на Марсе принципиально сохраняются, хотя вероятность ее существования там ничтожно мала. Если же в дальнейшем с этими надеждами придется окончательно расстаться, то это лишь с большей остротой поставит вопрос о том, почему жизнь возникла и интенсивно развивалась лишь на третьей от Солнца планете, - вопрос, имеющий не только естественнонаучное, но и громадное философское, мировоззренческое значение.

Список использованной литературы.

«Марс-3» (СССР)

Конструктивно "Марс-3" и "Марс-2" были аналогичны и дублировали друг друга на случай возможного сбоя. На аппаратах находились 2 фототелевизионные камеры с различными фокусными расстояниями для фотографирования поверхности Марса, а на "Марсе-3" также аппаратура "Стерео" для проведения совместного советско-французского эксперимента по изучению радиоизлучения Солнца на частоте 169 МГц. В составе КА был орбитальный отсек и спускаемый аппарат.

Компоновку АМС предложил молодой конструктор В. А. Асюшкин. Система управления, массой 167 кг и потребляемой мощностью 800 ватт, разработана и изготовлена НИИ автоматики и приборостроения.

В состав автоматической марсианской станции входил марсоход ПрОП-М (Прибор оценки проходимости - Марс).

ПрОП-М (Прибор оценки проходимости - Марс)

МАРС-3

Используя опыт работы с «Луноходом», конструкторы Института транспортного машиностроения (ВНИИ-ТРАНСМАШ) под руководством А.Л. Кемурджиана создали небольшого, размером 25 см х 22 см х 4 см и массой 4,5 кг, робота, которому предстояло высадиться на Марс.

Задачи у этого мини-марсохода были скромные - он должен был пройти лишь небольшое расстояние, оставаясь соединенным с посадочным аппаратом кабелем длиной 15 м. Свойства марсианского грунта были неизвестны, поэтому, чтобы не провалиться в пыль или песок, марсоходу были сделаны стальные опоры в виде лыж.

На нем был установлен конический штамп, вдавливание которого в грунт дало бы сведения о прочности марсианской поверхности. По следам от лыж, зафиксированным на телевизионной панораме, также можно было бы судить о механических свойствах грунта. На грунт, в область видимости телекамер, его помещал манипулятор.

Движение осуществлялось следующим образом: опираясь на лыжи, корпус переносился вперед,аппарат садился на днище и лыжи перемещались на следующий шаг. Поворот производился путем перемещения лыж в разные стороны. В случае, если аппарат встречал препятствие (касание двухконтактного бампера спереди), он самостоятельно делал маневр объезда: отход назад, поворот на некоторый угол, движение вперед.

Схема спуска марсохода на грунт и движение с препятствиями.

МАРС-3

Каждые 1,5 метра предусматривалась остановка для подтверждения правильности курса движения. Этот элементарный искусственный интеллект был необходим для марсианских подвижных аппаратов, так как сигнал от Земли до Марса идет от 4 до 20 минут, а это слишком долго для подвижного робота. К моменту прихода команд с Земли, ровер, возможно, уже вышел бы из строя.

Запуск и итоги миссии:

Станция была запущена с космодрома Байконур при помощи ракеты-носителя Протон-К с дополнительной 4-й ступенью - разгонным блоком Д 28 мая 1971 года в 18:26:30 по московскому времени. Марс-3 был сначала выведен на промежуточную орбиту искусственного спутника Земли, а затем разгонным блоком Д переведён на межпланетную траекторию.

Полёт к Марсу продолжался более 6 месяцев. До момента сближения с Марсом полёт проходил по программе. Прилёт станции к планете совпал с большой пылевой бурей.

Спускаемый аппарат Марса-3 совершил первую в мире мягкую посадку на поверхность Марса 2 декабря 1971 года. Посадка начинается после третьей коррекции межпланетной траектории полета АМС и отделения спускаемого аппарата от орбитальной станции. Перед отделением станция Марс-3 была сориентирована так, чтобы спускаемый аппарат после отделения мог двигаться в требуемом направлении. Отделение произошло в 12 часов 14 минут московского времени 2 декабря 1971 года когда АМС подлетала к планете, до торможения орбитальной станции и перехода её на орбиту спутника Марса.

МАРС-3

Через 15 минут сработал твёрдотопливный двигатель перевода спускаемого аппарата с пролётной траектории на траекторию встречи с Марсом. Получив дополнительную скорость, равную 120 м/с, спускаемый аппарат направился в расчетную точку входа в атмосферу. Затем система управления, размещенная на ферме, развернула спускаемый аппарат коническим тормозным экраном вперед по направлению движения, чтобы обеспечить правильно ориентированный вход в атмосферу планеты. Для поддержания спускаемого аппарата в такой ориентации во время полета к планете была осуществлена гироскопическая стабилизация. Раскрутка аппарата по продольной оси проводилась с помощью двух малых твердотопливных двигателей установленных на периферии тормозного экрана. Ферма с системой управления и двигателем перевода, ставшая теперь ненужной, была отделена от спускаемого аппарата.

Полет от разделения до входа в атмосферу продолжался около 4,5 часов. По команде от программно-временного устройства были включены два других твердотопливных двигателя, также расположенных на периферии тормозного экрана, после чего вращение спускаемого аппарата прекратилось. В 16 часов 44 минуты спускаемый аппарат вошел в атмосферу под углом близким к расчетному со скоростью около 5,8 километров в секунду и началось аэродинамическое торможение. В конце участка аэродинамического торможения еще на сверхзвуковой скорости полета по команде датчика перегрузки с помощью порохового двигателя, расположенного на крышке отсека вытяжного парашюта, был введен вытяжной парашют. Спустя 1,5 с с помощью удлиненного заряда разрезался торовый парашютный отсек, и верхняя часть отсека (крышка) была уведена от спускаемого аппарата вытяжным парашютом. Крышка, в свою очередь, ввела основной парашют с зарифленным куполом. Стропы основного парашюта крепились за связку твердотопливных двигателей, которые уже крепились непосредственно к спускаемому аппарату. Когда аппарат затормозился до околозвуковой скорости, то по сигналу от программно-временного устройства была проведена разрифовка - полное раскрытие купола основного парашюта.

Схема посадки на Марс:
1 - отделения СА;
2 - перевод СА с пролетной траектории на траекторию спуска;
3 - закрутка и отделение фермы с агрегатами системы управления;
4 - прекращение закрутки;
5 - аэродинамическое торможение;
6 - введение парашютной системы и отделение тормозного конуса;
7 - условная граница атмосферы;
8 - основной парашют;
9 - вытяжной парашют;
10 - отделение и увод парашюта, включение ДУ мягкой посадки,
отделение и увод ДУ мягкой посадки, посадка АМС;
11 - наддув вытеснительного мешка и отделение защитного корпуса от АМС;
12 - раскрытие лепестков, антенн и механизмов; передача информации с поверхности Марса на ИСМ

ПРОЕКТ М-71

Спустя 1-2 с был сброшен аэродинамический конус и открылись антенны радиовысотомера системы мягкой посадки. За время спуска на парашюте в течение нескольких минут скорость движения снизилась примерно до 60 м/с. На высоте 20-30 метров по команде радиовысотомера был включен тормозной двигатель мягкой посадки. Парашют в это время был уведен в сторону другим ракетным двигателем, чтобы его купол не накрыл автоматическую марсианскую станцию. Спустя некоторое время двигатель мягкой посадки выключился, и спускаемый аппарат, отделившись от парашютного контейнера, опустился на поверхность. При этом парашютный контейнер с двигателем мягкой посадки с помощью двигателей малой тяги был уведен в сторону. В момент посадки толстое пенопластовое покрытие защитило станцию от ударной нагрузки.

Посадка была осуществлена между областями Электрида и Фаэтонтия. Координаты точки посадки 45° ю.ш., 158° з.д. на плоском дне крупного кратера Птолемей, западнее кратера Реутов, и между малыми кратерами Белёв и Тюратам.

Мягкая посадка на Марс является сложной научно-технической задачей. Во время разработки станции Марс-3 рельеф поверхности Марса был малоизучен, сведений о грунте было крайне мало. Кроме того атмосфера очень разрежена, возможны сильные ветры. Конструкция аэродинамического конуса, парашютов, двигателя мягкой посадки выбраны с учетом работы в широком диапазоне возможных условий спуска и характеристик марсианской атмосферы причем их вес минимальный.

В течение 1,5 минут после посадки автоматическая марсианская станция готовилась к работе, а затем начала передачу панорамы окружающей поверхности, но через 14,5 секунд трансляция прекратилась. АМС передала только первые 79 строк фототелевизионного сигнала (правый край панорамы). Полученное изображение представляло собой серый фон без единой детали. То же самое повторилось со вторым телефотометром - однострочным оптико-механическим сканером.

Впоследствии были выдвинуты несколько гипотез о том, что стало причиной внезапного прекращения сигнала с поверхности: предполагали коронный разряд в антеннах передатчика, повреждение аккумуляторной батареи и др.

В наше время после уточнённых расчётов выдвинута версия, что причиной потери сигнала был уход орбитальной станции из зоны видимости антенны СА.

Орбитальная станция после отделения спускаемого аппарата выполнила 2 декабря 1971 года торможение и вышла на нерасчетную орбиту искусственного спутника Марса с периодом обращения 12 суток 16 часов 3 минуты (планировалась орбита с периодом обращения 25 часов. Расхождение фактического и запланированного периода обращения можно объяснить недостатком времени, который не позволил надлежащим образом оттестировать программное обеспечение системы автоматической навигации).

Более 8 месяцев орбитальная станция выполняла комплексную программу исследования Марса, совершив 20 витков вокруг планеты. АМС продолжала исследования до исчерпания азота в системе ориентации и стабилизации. ТАСС сообщил о завершении программы исследований Марса 23 августа 1972 года. В течение четырех месяцев поводились ИК-радиометрия, фотометрия, измерения состава атмосферы, магнитного поля и плазмы.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта