Главная » Заготовка и хранение » Что получится разделить на 0. Можно ли делить на ноль? Отвечает математик

Что получится разделить на 0. Можно ли делить на ноль? Отвечает математик

В курсе школьной арифметики все математические операции проводятся с вещественными числами. Множество этих чисел (или непрерывное упорядоченное поле) имеет ряд свойств (аксиом): коммутативность и ассоциативность умножения и сложения, существование нуля, единицы, противоположного и обратного элементов. Также аксиомы порядка и непрерывности, применяемые для сравнительного анализа, позволяют определить все свойства вещественных чисел.

Поскольку деление является операцией, обратной умножению, при делении на ноль вещественных чисел неизбежно возникновение двух неразрешимых проблем. Во-первых, проверка результата деления на ноль при помощи умножения не имеет числового выражения. Каким бы числом не было частное, если его умножить на ноль, делимое получить невозможно. Во-вторых, в примере 0:0 ответом может служить абсолютно любое число, которое при перемножении с делителем всегда обращается в ноль.

Деление на ноль в высшей математике

Перечисленные трудности деления на ноль привели к наложению табу на эту операцию, по крайней мере, в рамках школьного курса. Однако в высшей математике находят возможности обойти этот запрет.

Например, за счет построения другой алгебраической структуры, отличной от знакомой всем числовой прямой. Примером такой структуры является колесо. Здесь существуют свои законы и правила. В частности, деление не привязано к умножению и превращается из бинарной операции (с двумя аргументами) в унарную (с одним аргументом), обозначается символом /х.

Расширение поля вещественных чисел происходит за счет введения гиперреальных чисел, которое охватывает бесконечно большие и бесконечно малые величины. Такой подход позволяет рассматривать термин «бесконечность» как некое число. Причем это число при расширении числовой прямой теряет свой знак, превращаясь в идеализированную точку, соединяющую два конца этой прямой. Такой подход можно сравнить с линией смены дат, когда при переходе между двумя часовыми поясами UTC+12 и UTC-12 можно оказаться в следующем дне или же в предыдущем. При этом становится верным утверждение х/0=∞ для любых х≠0.

Чтобы устранить неопределенность 0/0, для колеса вводится новый элемент ⏊=0/0. При этом в данной алгебраической структуре есть свои нюансы: 0·х≠0; х-х≠0 в общем случае. Также х·/х≠1, поскольку деление и умножение больше не считаются обратными операциями. Но данные особенности колеса хорошо объясняются с помощью тождеств дистрибутивного закона, действующего в такой алгебраической структуре несколько иначе. Более подробные разъяснения можно найти в специализированной литературе.

Алгебра, к которой все привыкли, является, по сути, частным случаем более сложных систем, например, того же колеса. Как видим, делить на ноль в высшей математике можно. Для этого требуется выйти за границы привычных представлений о числах, алгебраических операциях и законах, которым они подчиняются. Хотя это вполне естественный процесс, сопровождающий любой поиск новых знаний.

Говорят, можно поделить на ноль если определить результат деления на ноль. Просто нужно расширить алгебру. По странному стечению обстоятельств найти хоть какой-то, а лучше понятный и простой, пример такого расширения не удается. Чтобы исправить интернет нужна либо демонстрация одного из способов такого расширения, либо описание почему это не возможно.


Статья написана в продолжение тренда:

Disclaimer

Цель данной статьи - объяснить «человеческим языком», как работают фундаментальные основы математики, структурировать знания и восстановить упущенные причинно-следственные связи между разделами математики. Все рассуждения являются философскими, в части суждений расходятся с общепринятыми (следовательно, не претендует на математическую строгость). Статья рассчитана на уровень читателя «сдал вышку много лет назад».

Понимание принципов арифметики, элементарной, общей и линейной алгебры, математического и нестандартного анализа, теории множеств, общей топологии, проективной и аффинной геометрии - желательно, но не обязательно.

В ходе экспериментов ни одна бесконечность не пострадала.

Пролог

Выход «за рамки» - это естественный процесс поиска новых знаний. Но не всякий поиск приносит новое знание и следовательно пользу.

1. Вобще-то уже все поделили до нас!

1.1 Аффинное расширение числовой прямой

Начнем с того, с чего начинают, наверное, все искатели приключений при делении на ноль. Вспомним график функции .


Слева и справа от нуля функция уходит в разные стороны «небытия». В самом нуле вообще “омут” и ничего не видно.

Вместо того, чтобы бросаться в «омут» с головой, посмотрим что туда втекает и что оттуда вытекает. Для этого воспользуемся пределом - основным инструментом математического анализа . Основная “фишка” в том, что предел позволяет идти к заданной точке так близко, как это возможно, но не “наступить на нее”. Такая себе “оградка” перед “омутом”.


Оригинал

Хорошо, «оградку» поставили. Уже не так страшно. У нас есть два пути к «омуту». Зайдем слева - крутой спуск, справа - крутой подъем. Сколько к “оградке” не иди, ближе она не становится. Пересечь нижнее и верхнее «небытие» никак не выходит. Возникают подозрения, может мы идем по кругу? Хотя нет, числа-то меняются, значит не по кругу. Пороемся в сундучке с инструментами математического анализа еще. Кроме пределов с «оградкой» в комплекте идет положительная и отрицательная бесконечности . Величины совершенно абстрактные (не являются числами), хорошо формализованы и готовы к употреблению! Это нам подходит. Дополним наше «бытие» (множество вещественных чисел) двумя бесконечностями со знаком.


Математическим языком:
Именно это расширение позволяет брать предел при аргументе стремящемся к бесконечности и получить бесконечность в качестве результата взятия предела.

Есть два раздела математики которые описывают одно и тоже используя разную терминологию.

Подытожим:

В сухом остатке. Старые подходы перестали работать. Сложность системы, в виде кучи “если”, “для всех, кроме” и т.п., возросла. У нас было только две неопределенности 1/0 и 0/0 (мы не рассматривали степенные операции), стало пять. Раскрытие одной неопределенности породило еще больше неопределенностей.

1.2 Колесо

На введении беззнаковой бесконечности все не остановилось. Для того чтобы выбраться из неопределенностей нужно второе дыхание.

Итак, у нас есть множество вещественных чисел и две неопределенности 1/0 и 0/0. Для устранения первой мы выполнили проективное расширение числовой прямой (то есть ввели беззнаковую бесконечность). Попробуем разобраться со второй неопределенностью вида 0/0. Сделаем аналогично. Дополним множество чисел новым элементом, представляющим вторую неопределенность.


Определение операции деления основано на умножении. Это нам не подходит. Отвяжем операции друг от друга, но сохраним привычное поведение для вещественных чисел. Определим унарную операцию деления, обозначаемую знаком "/".


Доопределим операции.


Данная структура называется «Колесом» (Wheel). Термин был взят из-за схожести с топологической картинкой проективного расширения числовой прямой и точки 0/0.


Вроде все неплохо выглядит, но дьявол кроется в деталях:

Чтобы устаканить все особенности, дополнительно к расширению множества элементов прилагается бонус в виде не одного, а двух тождеств, описывающих дистрибутивный закон.


Математическим языком:
С точки зрения общей алгебры мы оперировали полем . А в поле, как известно, определены всего две операции (сложение и умножение). Понятие деления выводится через обратные, а если еще глубже, то единичные элементы. Внесенные изменения превращают нашу алгебраическую систему в моноид как по операции сложения (с нулем в качестве нейтрального элемента), так и по операции умножения (с единицей в качестве нейтрального элемента).

В трудах первооткрывателей не всегда используются символы ∞ и ⊥. Вместо этого можно встретить запись в виде /0 и 0/0.


Мир уже не так прекрасен, не правда ли? Все же не стоит спешить. Проверим, справятся ли новые тождества дистрибутивного закона с нашим расширенным множеством .


На этот раз результат намного лучше.

Подытожим:

В сухом остатке. Алгебра работает отлично. Однако за основу было взято понятие «не определено» которое стали считать чем-то существующим и оперировать им. Однажды кто-нибудь скажет, что все плохо и нужно разбить данное «не определено» еще на несколько “не определено", но помельче. Общая алгебра скажет: “Без проблем, Бро!".
Примерно так постулированы дополнительные (j и k) мнимые единицы в кватернионах Добавить метки

Ноль сам по себе цифра очень интересная. Сам по себе означает пустоту, отсутствие значения, а рядом с другой цифрой увеличивает ее значимость в 10 раз. Любые числа в нулевой степени всегда дают 1. Этот знак использовали еще в цивилизации майя, причем он у них еще обозначал понятие «начало, причина». Даже календарь у начинался с нулевого дня. А еще эта цифра связана со строгим запретом.

Еще с начальных школьных лет все мы четко усвоили правило «на ноль делить нельзя». Но если в детстве многое воспринимаешь на веру и слова взрослого редко вызывают сомнения, то со временем иногда хочется все-таки разобраться в причинах, понять, почему были установлены те или иные правила.

Почему нельзя делить на ноль? На этот вопрос хочется получить понятное логическое объяснение. В первом классе учителя это сделать не могли, потому как в математике правила объясняются с помощью уравнений, а в том возрасте мы и представления не имели о том, что это такое. А теперь пришла пора разобраться и получить понятное логическое объяснение того, почему нельзя делить на ноль.

Дело в том, что в математике лишь две из четырех основных операций (+, - , х, /) с числами признаются независимыми: умножение и сложение. Остальные же операции принято считать производными. Рассмотрим простенький пример.

Вот скажите, сколько получится, если от 20 отнять 18? Естественно, в нашей голове моментально возникает ответ: это будет 2. А как мы пришли к такому результату? Кому-то этот вопрос покажется странным - ведь и так все ясно, что получится 2, кто-то пояснит, что от 20 копеек отнял 18 и у него получилось две копейки. Логически все эти ответы не вызывают сомнений, однако с точки зрения математики решать эту задачу следует по-другому. Еще раз напомним, что главными операциями в математике являются умножение и сложение и поэтому в нашем случае ответ кроется в решении следующего уравнения: х + 18 = 20. Из которого и вытекает, что х = 20 - 18, х =2. Казалось бы, зачем так подробно все расписывать? Ведь и так все элементарно просто. Однако без этого тяжело объяснить почему нельзя делить на ноль.

А теперь посмотрим что получится если мы пожелаем 18 разделить на ноль. Снова составим уравнение: 18: 0 = х. Поскольку операция деления является производной от процедуры умножения, то преобразовав наше уравнение получим х * 0 = 18. Вот здесь как раз и начинается тупик. Любое число на месте икса при умножении на ноль даст 0 и получить 18 нам никак не удастся. Теперь становится предельно ясно почему нельзя делить на ноль. Сам ноль можно делить на какое-угодно число, а вот наоборот - увы, никак нельзя.

А что получится, если ноль разделить на самого себя? Это можно записать в таком виде: 0: 0 = х, или х * 0 = 0. Это уравнение имеет бесчисленное число решений. Поэтому в итоге получается бесконечность. Поэтому операция и в этом случае тоже не имеет смысла.

Деление на 0 лежит в корне многих мнимых математических шуток, которыми при желании можно озадачить любого несведущего человека. К примеру, рассмотрим уравнение: 4*х - 20 = 7*х - 35. Вынесем за скобки в левой части 4, а в правой 7. Получим: 4*(х - 5) = 7*(х - 5). Теперь умножим левую и правую часть уравнения на дробь 1 / (х - 5). Уравнение примет такой вид: 4*(х - 5)/(х - 5) = 7*(х - 5)/ (х - 5). Сократим дроби на (х - 5) и у нас выйдет, что 4 = 7. Из этого можно сделать вывод, что 2*2 = 7! Конечно, подвох здесь в том, что равен 5 и сокращать дроби было нельзя, поскольку это приводило к делению на ноль. Поэтому при сокращении дробей нужно всегда проверять чтобы ноль случайно не оказался в знаменателе, иначе результат получится совсем непредсказуемым.

  • Tutorial

Моя трёхлетняя дочка София в последнее время частенько упоминает «ноль», например, в таком контексте:

- Соня, вот ты вроде сначала не послушалась, а затем послушалась, что же получается?..
- Ну… ноль!

Т.е. ощущение отрицательных чисел и нейтральности нуля уже имеет, о как. Скоро поинтересуется: почему же это на ноль делить нельзя?
И вот решил я простыми словами записать всё, что я ещё помню про деление на ноль и всё такое.

Деление вообще лучше один раз увидеть, чем сто раз услышать.
Ну, или один разделить на икс раз увидеть…

Тут сразу видно, что ноль - это центр жизни, вселенной и всего такого. Ответом на главный вопрос про всё это пусть себе будет 42, а вот центр - по-любому 0. У него даже знака нет, ни плюс (послушалась), ни минус (не послушалась), он таки реально ноль. И в поросятах знает толк.

Потому что если любого поросёнка умножить на ноль, то поросёнка засасывает в эту круглую чёрную дыру, и получается опять ноль. Не такой уж этот ноль и нейтральный, когда дело от сложения-вычитания доходит до умножения, не говоря уже про деление… Там если ноль сверху «0/x» - то опять чёрная дыра. Всё поедает в ноль. А вот если при делении, да ещё и снизу - «x/0», то начинается… следуй за белым кроликом, Соня!

В школе тебе скажут «на ноль делить нельзя» и не покраснеют. В доказательство тыкнут на калькуляторе «1/0=» и обычный калькулятор, тоже не покраснев, напишет «E», «Error», мол, «нельзя - значит нельзя». Хотя что там у тебя будет считаться обычным калькулятором - ещё вопрос. Мне вот сейчас, в 2014-ом, стандартный калькулятор на телефоне-андроиде пишет совсем другое:

Ничего себе бесконечность. Скользи себе взглядом, круги нарезай. Вот тебе и нельзя. Оказывается можно. Если осторожно. Потому что не осторожно мой Android пока тоже не согласен: «0/0=Error», опять нельзя. Попробуем ещё разок: «-1/0 = -∞», о как. Интересное мнение, но я с ним не согласен. Как не согласен и с «0/0=Error».

Кстати, JavaScript, который питает нынешние сайты, тоже не согласен с калькулятором андроида: зайди в консоль браузера (ещё F12?) и напиши там: «0/0» (ввод). JS тебе ответит: «NaN». Это не ошибка. Это «Not a Number» - т.е. какая-то штука такая, но не число. При том что «1/0» JS тоже понимает как «Infinity». Это уже ближе. Но пока только тепло…

В университете - высшая математика. Там пределы, полюса, и прочее шаманство. И всё усложняется, усложняется, ходят вокруг да около, но только бы не нарушать хрустальные законы математики. А вот если не пытаться вписать деление на ноль в эти существующие законы, то можно прочувствовать эту фантастику - на пальцах.

Для этого посмотрим-ка ещё раз на деление:

Следи за правой линией, справа налево. Чем ближе икс к нулю, тем сильнее взлетает вверх разделённое на икс. И где-то там в облаках «плюс бесконечность». Она всегда дальше, как горизонт, её не догонишь.

А теперь следи за левой линией, слева направо. Та же история, только теперь разделённое улетает вниз, бесконечно вниз, в «минус бесконечность». Отсюда и мнение, что «1/0= +∞», а «-1/0 = 1/-0 = -∞».

Но фокус в том, что «0 = -0», нету у нуля знака, если не усложнять с пределами. И вот если поделить единицу на такой «простой» ноль без знака, то не логично ли предположить, что получится и бесконечность - «просто» бесконечность, без знака, как ноль. Где она - сверху или снизу? Она везде - бесконечно далеко от нуля во всех направлениях. Это и есть ноль, вывернутый наизнанку. Ноль - нет ничего. Бесконечность - есть всё. И положительное, и отрицательное. Вообще всё. И сразу. Абсолют.

Но там что-то было про «0/0», что-то другое, не бесконечность… Сделаем такой трюк: «2*0=0», ага, скажет учительница в школе. Ещё: «3*0=0» - опять ага. И немного наплевав на «на ноль делить нельзя», мол, весь мир и так потихоньку делит, получим: «2=0/0» и «3=0/0». В каком там классе это проходят, только без нуля, конечно.

Минуточку, получается «2 = 0/0 = 3», «2=3»?! Вот поэтому и боятся, вот поэтому и «нельзя». Страшнее «1/0» только «0/0», его даже калькулятор андроида боится.

А мы не боимся! Потому что у нас есть сила математики воображения. Мы можем представить себя бесконечным Абсолютом где-то там в звёздах, посмотреть оттуда на грешный мир конечных чисел и людей и понять, что с этой точки зрения они все одинаковые. И «2» c «3», и даже «-1», и училка в школе, возможно, тоже.

Так вот, я скромно предполагаю, что 0/0 - это весь конечный мир, точнее всё, что и не бесконечно и не пустота.

Вот как выглядит ноль, делённый на икс, в моих фантазиях, далёких от официальной математики. На самом деле похоже на 1/х, только перегиб не в единице, а в нуле. Кстати, у 2/x перегиб в двойке, а у 0.5/x - в 0.5.

Получается, 0/x при x=0 принимает все конечные значения - не бесконечности, не пустоту. Там в графике дырочка в нуле, оси проглядывают.

Можно конечно возразить, что «0*0 = 0», а значит ноль (пустота) тоже попадает в категорию 0/0. Чуть забегу вперёд - там будут степени нуля и это возражение разлетится в осколки.

Упс, единичка-то в бесконечности тоже может быть тоже записана как 0/0, получится (0/0)/0 - бесконечность. Вот теперь порядок, всё можно выразить соотношением нулей.

Например, если к бесконечности прибавить конечное, то бесконечность поглотит конечное, останется бесконечностью:
1/0 + 0/0 = (1+0)/0 = 1/0.

А если бесконечность умножить на пустоту, то они поглощают друг друга, и получается конечный мир:
1/0 * 0 = (1*0)/0 = 0/0.

Но это только первый уровень сновидений. Можно копать глубже.

Если ты уже знаешь понятие «степень числа», и что «1/x = x^-1», то, подумав, сможешь перейти от всех этих делений и скобок (вроде (0/0)/0) просто к степеням:

1/0 = 0^-1
0/0 = 0^0
0 = 0^1

Подсказка.
Тут с бесконечностью и пустотой всё просто, как в школе. А конечный мир переходит к степеням вот так:
0/0
= (0*1)/0
= 0*(1/0)
= 0 * 1/0
= 0^1 * 0^-1
= 0^(1 + -1)
= 0^(1-1)
= 0^0.

Уфф!

Получается, что положительные степени нуля - это нули, отрицательные степени нуля - это бесконечности, а нулевая степень нуля - это конечный мир.

Такой вот получается универсальный объект «0^x». Такие объекты прекрасно между собой взаимодействуют, опять-таки многим законам подчиняются, красота, в общем.

Моих скромных познаний математики хватило, чтобы нарисовать из них абелеву группу, которая, будучи изолированной в вакууме («просто абстрактные объекты, такая форма записи, вроде экспоненты»), даже выдержала проверку крутейшим преподом по матану с вердиктом «интересно, но ничего не получится». Ещё бы тут что-нить получилось, это ж табуированная тема - деление на ноль. В общем, не грузись.

Попробуем лучше просто умножить бесконечность на конечное число:
0^-1 * 0^0 = 0^(-1 + 0) = 0^-1.

Опять же, бесконечность поглотила конечное число так же, как и её антипод ноль поглощает конечные числа, та же чёрная дыра:
0^1 * 0^0 = 0^(1 + 0) = 0^1.

А ещё оказывается что степени - это как сила. Т.е. ноль второй степени сильнее нуля обычного (первой степени, 0^1). И бесконечность минус второй степени сильнее бесконечности обычной (0^-1).

А когда пустота сталкивается с абсолютом, они меряются силой - у кого больше, тот и победит:
0^1 * 0^-2 = 0^(1 + -2) = 0^-1 = ∞.
0^2 * 0^-1 = 0^(2 + -1) = 0^1 = 0.

Если же они равны силами, то аннигилируются и остаётся конечный мир:
0^1 * 0^-1 = 0^(1 + -1) = 0^0.

Кстати, официальная математика уже рядом. Её представители знают про «полюса» и что у полюсов разная сила (порядок), а так же про «нуль порядка k». Но они всё топчутся на прочной поверхности «рядом с» и боятся прыгнуть в чёрную нору дыру.

И последний для меня - третий уровень сновидений. Вот, например, эти все 0^-1 и 0^-2 - бесконечности разной силы. Или 0^1, 0^2 - нули разной силы. Но ведь и «-1» и «-2» и «+1» и «+2» - это всё - 0/0, равное 0^0, уже проходили. Получается, что с этого уровня сновидений, уже всё равно вообще что это - нули, бесконечности, и даже конечный мир туда при некотором просветлении попадает. В одну точку. В одну категорию. Называется это счастье - Сингулярность.

Надо признать, что вне состояния просветления одной точки я не наблюдаю, но одну категорию - объединение «0^0 U 0^(0^0)» - вполне.

Какую из всего этого можно вынести пользу? Ведь даже чуть менее безумные «мнимые числа», что тоже рвут калькуляторы в Error = √-1, и те смогли стать официальной математикой и теперь упрощают расчёты сталеварения.

Как листья на дереве издалека кажутся одинаковыми, но если рассмотреть их внимательнее - они все разные. А если задуматься, то опять одинаковые. И мало чем отличаются от тебя или меня. Вернее, вообще ничем не отличаются, если крепко задуматься.

Польза тут в умении и фокусироваться на отличиях и абстрагироваться. Это очень полезно и в работе, и в жизни, и даже в отношении к смерти.

Вот такие путешествия в кроличью нору, Соня!

Строгий запрет на деление на ноль налагается ещё в младших классах школы. Дети обычно и не задумываются о его причинах, но на самом деле знать, почему что-нибудь запрещается, и интересно, и полезно.

Арифметические действия

Арифметические действия, которые изучаются в школе, неравноценны с точки зрения математиков. Они признают полноправными только две из этих операций - сложение и умножение. Они входят в само понятие числа, и все остальные действия с числами так или иначе строятся на этих двух. То есть невозможно не только деление на ноль, но и деление вообще.

Вычитание и деление

Чего же не хватает остальным действиям? Опять же, из школы известно, что, например, вычесть из семи четыре - значит, взять семь конфет, четыре из них съесть и посчитать те, что останутся. Но математики поеданием конфет и вообще воспринимают их совершенно иначе. Для них есть только сложение, то есть запись 7 - 4 означает число, которое в сумме с числом 4 будет равно 7. То есть для математиков 7 - 4 - это краткая запись уравнения: х + 4 = 7. Это не вычитание, а задача - найти такое число, которое нужно поставить вместо х.

То же самое относится к делению и умножению. Деля десять на два, младшеклассник раскладывает десять конфет на две одинаковые кучки. Математик же и здесь видит уравнение: 2 · х = 10.

Так и выясняется, почему запрещено деление на ноль: оно просто невозможно. Запись 6: 0 должна превращаться в уравнение 0 · х = 6. То есть требуется найти число, которое можно умножить на ноль и получить 6. Но известно, что умножение на ноль всегда даёт ноль. Это сущностное свойство ноля.

Таким образом, нет такого числа, которое, умножаясь на ноль, давало бы какое-то число, отличное от ноля. Значит, у этого уравнения нет решения, нет такого числа, которое соотносилось бы с записью 6: 0, то есть она не имеет смысла. О её бессмысленности и говорят, когда запрещают деление на ноль.

Делится ли ноль на ноль?

А можно ли ноль разделить на ноль? Уравнение 0 · х = 0 не вызывает затруднений, и можно взять за х этот самый ноль и получить 0 · 0 = 0. Тогда 0: 0 = 0? Но, если, например, принять за х единицу, тоже получится 0 · 1 = 0. Можно принять за х вообще какое угодно число и делить на ноль, и результат останется прежним: 0: 0 = 9, 0: 0 = 51 и так далее.

Таким образом, в это уравнение можно вставить совершенно любое число, и невозможно выбрать какое-то конкретное, невозможно определить, какое число обозначается записью 0: 0. То есть и эта запись тоже не имеет смысла, и деление на ноль всё равно невозможно: он не делится даже сам на себя.

Такова важная особенность операции деления, то есть умножения и связанного с ним числа ноль.

Остаётся вопрос: но вычитать его можно? Можно сказать, что настоящая математика начинается с этого интересного вопроса. Чтобы найти ответ на него, необходимо узнать формальные математические определения числовых множеств и познакомиться с операциями над ними. Например, существуют не только простые, но и делениекоторых отличается от деления обычных. Это не входит в школьную программу, но университетские лекции по математике начинаются именно с этого.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта