Главная » Заготовка и хранение » Гироскоп краткая теория. Теория гироскопа и гироскопических приборов

Гироскоп краткая теория. Теория гироскопа и гироскопических приборов

Предисловие
Введение
Глава I. Основы динамики твердого тела
§ 1. Эйлеровы углы. Углы Резаля
§ 2. Угловая скорость
§ 3. Линейные скорости точек твердого тела
§ 4. Кинетическая энергия твердого тела
§ 5. Кинетический момент твердого тела
§ 6. Закон моментов. Теорема Резаля
§ 7. Эйлеровы дифференциальные уравнения вращения твердого тела
§ 8. Уравнения моментов в подвижных осях, не связанных с телом. Обобщение уравнений Эйлера
§ 9. Дифференциальные уравнения движения свободного твердого тела
§ 10. Дифференциальные уравнения движения центра инерции в подвижных осях, связанных или не связанных с твердым телом
§ 11. Лагранжевы дифференциальные уравнения движения в обобщенных координатах
Глава II. Приближенная элементарная теория быстро-вращающегося симметричного гироскопа
§ 12. Симметричный гироскоп. Кинетический момент быстро вращающегося гироскопа
§ 13. Правило прецессии
§ 14. Прецессия оси гироскопа, вызываемая непрерывно действующей силой
Глава III. Гироскопический момент
§ 15. Главный вектор сил инерции твердого тела.
§ 16. Гироскопический момент в случае регулярной прецессии симметричного гироскопа. Правило Фуко
§ 17. Внешнее усилие, приложенное к прецессирующему гироскопу. Регулярная прецессия симметричного гироскопа по инерции
§ 18. Регулярная прецессия симметричного гироскопа под действием силы тяжести. Медленная и быстрая прецессия
§ 19. Мельничные бегуны
§ 20. Неуравновешенный ротор
§ 21. Гироскопический момент в общем случае движения симметричного гироскопа
§ 22. Случай быстро вращающегося гироскопа
§ 23. Судовая турбина
Глава IV. Дифференциальные уравнения вращения симметричного гироскопа
§ 24. Дифференциальные уравнения вращения симметричного гироскопа с тремя степенями свободы
§ 25 Случай быстро вращающегося гироскопа
§ 26. Устойчивость оси быстро вращающегося астатического гироскопа с тремя степенями свободы
§ 27. Потеря устойчивости оси быстро вращающегося астатического гироскопа при ограничении числа его степеней свободы
§ 28. Псевдорегулярная прецессия под действием постоянного момента. Псевдорегулярная прецессия под действием силы тяжести
Глава V. Движение симметричного гироскопа под действием силы тяжести (случай Лагранжа)
§ 29. Дифференциальные уравнения задачи
§ 30. Дифференциальное уравнение, определяющее угол нутации
§ 31. Границы изменения угла нутации
§ 32. Определение угла нутации, как функции времени
§ 33. Случай быстро вращающегося гироскопа. Псевдорегулярная прецессия
§ 34. Влияние трения на оси гироскопа
§ 35. Устойчивость вертикального положения оси гироскопа
Глава VI. Движение гироскопа в кардановом подвесе
§ 36. Гироскоп в кардановом подвесе
§ 37. Угловые скорости ротора и кардановых колец
§ 38. Кинетические моменты ротора и кардановых колец
§ 39. Дифференциальные уравнения движения гироскопа в кардановом подвесе
§ 40. Случай быстро вращающегося гироскопа
Глава VII. Гироскопический компас
§ 41. Составляющие вращения земли
§ 42. Первоначальная идея Фуко
§ 43. Гирокомпас Сперри с маятником
§ 44. Незатухающие колебания оси гирокомпаса около ее равновесного положения в плоскости меридиана Уравнения первого приближения
§ 45. Затухание колебаний оси гирокомпаса с маятником
§ 46. Гирокомпас Сперри с ртутными сосудами
§ 47. Малые колебания гирокомпаса с ртутными сосудами
§ 48. Уравнения движения гирокомпаса с ртутными сосудами с учетом движения основания прибора
§ 49. Курсовая девиация гирокомпаса
§ 50. Баллистические девиации гирокомпаса
Глава VIII. Теория гибкого вала с учетом гироскопического эффекта
§ 51. Постановка задачи
§ 52. Координаты диска
§ 53. Угловая скорость диска
§ 54. Дифференциальные уравнения движения диска
§ 55. Статическая задача
§ 56 Окончательный вид дифференциальных уравнений движения
§ 57. Собственные колебания. Собственные частоты
§ 58. Вынужденные колебания
§ 59. Критические числа оборотов гибкого вала
§ 60. Критические числа оборотов, соответствующие "обратной" прецессии

Лекция 11. Гироскопы.

В данной лекции рассматриваются следующие вопросы:

1. Гироскопы. Свободный гироскоп.

2. Прецессия гироскопа под действием внешних сил. Угловая скорость прецессии. Нутации.

3. Гироскопические силы, их природа и проявление.

4. Волчки. Устойчивость вращения симметричного волчка.

Изучение данных вопросов необходимо в дисциплине «Детали машин».

Гироскопы. Свободный гироскоп.

Гироскоп - это массивное аксиально-симметричное тело, вращающееся с большой угловой скоростью вокруг своей оси симметрии.

В этом случае моменты всех внешних сил, включая и силу тяжести, относительно центра масс гироскопа равны нулю. Это можно реализовать, например, поместив гироскоп в карданов подвес, изображенный на рис.1.

Рис.1

При этом

и момент импульса сохраняется:

L = const (2)

Гироскоп ведет себя так же, как и свободнее тело вращения. В зависимости от начальных условий возможны два варианта поведения гироскопа:

1. Если гироскоп раскручен вокруг оси симметрии, то направления момента импульса и угловой скорости совпадают:

, (3)

и направление оси симметрии гироскопа остается неизменным. В этом можно убедиться, поворачивая подставку, на которой расположен карданов подвес - при произвольных поворотах подставки ось гироскопа сохраняет неизменное направление в пространстве. По этой же причине волчок, "запущенный" на листе картона и подброшенный вверх (рис.2), сохраняет направление своей оси во время полета, и, падая острием на картон, продолжает устойчиво вращаться, пока не израсходуется запас его кинетической энергии.

Рис.2

Свободный гироскоп, раскрученный вокруг оси симметрии, обладает весьма значительной устойчивостью. Из основного уравнения моментов следует, что изменение момента импульса

Если интервал времени мал, то и мало, то есть при кратковременных воздействиях даже очень больших сил движение гироскопа изменяется незначительно. Гироскоп как бы сопротивляется попыткам изменить его момент импульса и кажется "затвердевшим".

Возьмем гироскоп конусообразной формы, опирающийся на стержень подставки в своем центре масс О (рис. 3). Если тело гироскопа не вращается, то оно находится в состоянии безразличного равновесия, и малейший толчок сдвигает его с места. Если же это тело привести в быстрое вращение вокруг своей оси, то даже сильные удары деревянным молотком не смогут сколько-нибудь значительно изменить направление оси гироскопа в пространстве. Устойчивость свободного гироскопа используется в различных технических устройствах, например, в автопилоте.

Рис.3

2. Если свободный гироскоп раскручен так, что вектор мгновенной угловой скорости и ось симметрии гироскопа не совпадают (как правило, это несовпадение при быстром вращении бывает незначительным), то наблюдается движение, описанное как "свободная регулярная прецессия". Применительно же к гироскопу его называют нутацией. При этом ось симметрии гироскопа, векторы L и лежат в одной плоскости, которая вращается вокруг направления L = const с угловой скоростью, равной где - момент инерции гироскопа относительно главной центральной оси, перпендикулярной оси симметрии. Эта угловая скорость (назовем ее скоростью нутации) при быстром собственном вращении гироскопа оказывается достаточно большой, и нутация воспринимается глазом как мелкое дрожание оси симметрии гироскопа.

Нутационное движение легко продемонстрировать с помощью гироскопа, показанного на рис. 3 - оно возникает при ударах молотком по стержню вращающегося вокруг своей оси гироскопа. При этом чем сильнее раскручен гироскоп, тем больше его момент импульса L - тем больше скорость нутации и тем "мельче" дрожания оси фигуры. Этот опыт демонстрирует еще одну характерную особенность нутации - с течением времени она постепенно уменьшается и исчезает. Это - следствие неизбежного трения в опоре гироскопа.

Наша Земля - своего рода гироскоп, и ей тоже свойственно нутационное движение. Это связано с тем, что Земля несколько приплюснута с полюсов, в силу чего моменты инерции относительно оси симметрии и относительно оси, лежащей в экваториальной плоскости различаются. При этом , а . В системе отсчета, связанной с Землей, ось вращения движется по поверхности конуса вокруг оси симметрии Земли с угловой скоростью w 0 , то есть она совершает один оборот примерно за 300 дней. На самом деле в силу, как предполагается, неабсолютной жесткости Земли, это время оказывается больше - оно составляет около 440 суток. При этом расстояние точки земной поверхности, через которую проходит ось вращении, от точки, через которую проходит ось симметрии (Северный полюс), равно всего нескольким метрам. Нутационное движение Земли не затухает - по-видимому, его поддерживают сезонные изменения, происходящие на поверхности

Прецессия гироскопа под действием внешних сил. Элементарная теория.

Рассмотрим теперь ситуацию, когда к оси гироскопа приложена сила, линия действия которой не проходит через точку закрепления. Опыты показывают, что в этом случае гироскоп ведет себя весьма необычным образом.

Если к оси шарнирно закрепленного в точке О гироскопа (рис. 4) прикрепить пружину и тянуть за нее вверх с силой F , то ось гироскопа будет перемещаться не в направлении силы, а перпендикулярно к ней, вбок. Это движение называется прецессией гироскопа под действием внешней силы.

Рис.4

Опытным путем можно установить, что угловая скорость прецессии зависит не только от величины силы F (рис.4), но и от того, к какой точке оси гироскопа эта сила приложена: с увеличением F и ее плеча l относительно точки закрепления О скорость прецессии увеличивается. При этом оказывается, что чем сильнее раскручен гироскоп, тем меньше угловая скорость прецессии при данных F и l .

В качестве силы F , вызывающей прецессию, может выступать сила тяжести, если точка закрепления гироскопа не совпадает с центром масс. Так, если стержень с быстро вращающимся диском подвесить на нитке (рис. 5), то он не опускается вниз, как это можно было бы предположить, а совершает прецессионное движение вокруг нитки. Наблюдение прецессии гироскопа под действием силы тяжести в некотором смысле даже удобнее - линия действия силы "автоматически" смещается вместе с осью гироскопа, сохраняя свою ориентацию в пространстве.

Рис.5

Можно привести и другие примеры прецессии - например, движение оси хорошо известной детской игрушки - юлы с заостренным концом (рис.6). Юла, раскрученная вокруг своей оси и поставленная на горизонтальную плоскость слегка наклонно, начинает прецессировать вокруг вертикальной оси под действием силы тяжести (рис.6).

Рис.6

Точное решение задачи о движении гироскопа в поле внешних сил довольно выражение для угловой скорости прецессии можно легко получить в рамках так называемой элементарной теории гироскопа. В этой теории делается допущение, что мгновенная угловая скорость вращения гироскопа и его момент импульса направлены вдоль оси симметрии гироскопа. Другими словами, предполагается, что угловая скорость вращения гироскопа вокруг своей оси значительно больше угловой скорости прецессии:

так что вкладом в L , обусловленным прецессионным движением гироскопа, можно пренебречь. В этом приближении момент импульса гироскопа, очевидно, равен

где - момент инерции относительно оси симметрии.

Итак, рассмотрим тяжелый симметричный гироскоп, у которого неподвижная точка S (точка опоры о подставку) не совпадает с центром масс О (рис. 7).

Рис.7

Момент силы тяжести относительно точки S

где θ - угол между вертикалью и осью симметрии гироскопа. Вектор M направлен по нормали к плоскости, в которой лежат ось симметрии гироскопа и вертикаль, проведенная через точку S (рис. 7). Сила реакции опоры проходит через S, и ее момент относительно этой точки равен нулю.

Изменение момента импульса L определяется выражением

dL = Mdt (8)

При этом и L , и ось волчка прецессируют вокруг вертикального направления с угловой скоростью . Еще раз подчеркнем: делается допущение, что выполнено условие (5) и что L постоянно направлен вдоль оси симметрии гироскопа. Из рис.95 следует, что

В векторном виде

(10)

Сравнивая (8) и (10), получаем следующую связь между моментом силы M , моментом импульса L и угловой скоростью прецессии :

(11)

Это соотношение позволяет определить направление прецессии при заданном направлении вращения волчка вокруг своей оси.

Обратим внимание, что M определяет угловую скорость прецессии, а не угловое ускорение, поэтому мгновенное "выключение" M приводит к мгновенному же исчезновению прецессии, то есть прецессионное движение является безынерционным.

Сила, вызывающая прецессионное движение, может иметь любую природу. Для поддержания этого движения важно, чтобы вектор момента силы M поворачивался вместе с осью гироскопа. Как уже было отмечено, в случае силы тяжести это достигается автоматически. При этом из (11) (см. также рис. 7) можно получить:

(12)

Если учесть, что в нашем приближении справедливо соотношение (6), то для угловой скорости прецессии получим

Следует отметить, что не зависит от угла наклона оси гироскопа и обратно пропорциональна w, что хорошо согласуется с опытными данными.

Прецессия гироскопа пол действием внешних сил. Отход от элементарной теории. Нутации.

Опыт показывает, что прецессионное движение гироскопа под действием внешних сил в общем случае сложнее, чем то, которое было описано выше в рамках элементарной теории. Если сообщить гироскопу толчок, изменяющий угол (см. рис.7), то прецессия перестанет быть равномерной (часто говорят: регулярной), а будет сопровождаться мелкими вращениями и дрожаниями вершины гироскопа - нутациями. Для их описания необходимо учесть несовпадение вектора полного момента импульса L , мгновенной угловой скорости вращения w и оси симметрии гироскопа.

Точная теория гироскопа выходит за рамки курса общей физики. Из соотношения dL = Mdt следует, что конец вектора L движется в направлении M , то есть перпендикулярно к вертикали и к оси гироскопа. Это значит, что проекции вектора L на вертикаль L B и на ось гироскопа L 0 остаются постоянными. Еще одной постоянной является энергия

(14)

где T - кинетическая энергия гироскопа. Выражая L B , L 0 и T через углы Эйлера и их производные, можно, с помощью уравнений Эйлера, описать движение тела аналитически.

Результат такого описания оказывается следующим: вектор момента импульса L описывает неподвижный в пространстве конус прецессии, и при этом ось симметрии гироскопа движется вокруг вектора L по поверхности конуса нутаций. Вершина конуса нутаций, как и вершина конуса прецессии, находится в точке закрепления гироскопа, а ось конуса нутаций совпадает по направлению с L и движется вместе с ним. Угловая скорость нутаций определяется выражением

где и - моменты инерции тела гироскопа относительно оси симметрии и относительно оси, проходящей через точку опоры и перпендикулярной оси симметрии, - угловая скорость вращения вокруг оси симметрии.

Таким образом, ось гироскопа участвует в двух движениях: нутационном и прецессионном. Траектории абсолютного движения вершины гироскопа представляют собой замысловатые линии, примеры которых представлены на рис. 8.

Рис.8

Характер траектории, по которой движется вершина гироскопа, зависит от начальных условий. В случае рис. 8,а гироскоп был раскручен вокруг оси симметрии, установлен на подставке под некоторым углом к вертикали и осторожно отпущен. В случае рис. 8,б ему, кроме того, был сообщен некоторый толчок вперед, а в случае рис. 8,в - толчок назад по ходу прецессии. Кривые на рис. 8 вполне аналогичны циклоидам, описываемым точкой на ободе колеса, катящегося по плоскости без проскальзывания или с проскальзыванием в ту или иную сторону. И лишь сообщив гироскопу начальный толчок вполне определенной величины и направления, можно добиться того, что ось гироскопа будет прецессировать без нутаций. Чем быстрее вращается гироскоп, тем больше угловая скорость нутаций и тем меньше их амплитуда. При очень быстром вращении нутации делаются практически незаметными для глаза.

Может показаться странным: почему гироскоп, будучи раскручен, установлен под углом к вертикали и отпущен, не падает под действием силы тяжести, а движется вбок? Откуда берется кинетическая энергия прецессионного движения?

Ответы на эти вопросы можно получить только в рамках точной теории гироскопам. На самом деле гироскоп действительно начинает падать, а прецессионное движение появляется как следствие закона сохранения момента импульса. В самом деле, отклонение оси гироскопа вниз приводит к уменьшению проекции момента импульса на вертикальное направление. Это уменьшение должно быть скомпенсировано моментом импульса, связанным с прецессионным движением оси гироскопа. С энергетической точки зрения кинетическая энергия прецессии появляется за счет изменения потенциальной энергии гироскопам.

Если за счет трения в опоре нутации гасятся быстрее, чем вращение гироскопа вокруг оси симметрии (как правило, так и бывает), то вскоре после "запуска" гироскопа нутации исчезают и остается чистая прецессия (рис. 9). При этом угол наклона оси гироскопа к вертикали оказывается больше, чем он был вначале , то есть потенциальная энергия гироскопа уменьшается. Таким образом, ось гироскопа должна немного опуститься, чтобы иметь возможность прецессировать вокруг вертикальной оси.

Рис.9

Гироскопические силы.

Обратимся к простому опыту: возьмем в руки вал АВ с насаженным на него колесом С (рис. 10). Пока колесо не раскручено, не представляет никакого труда поворачивать вал в пространстве произвольным образом. Но если колесо раскручено, то попытки повернуть вал, например, в горизонтальной плоскости с небольшой угловой скоростью приводят к интересному эффекту: вал стремится вырваться из рук и повернуться в вертикальной плоскости; он действует на кисти рук с определенными силами R A и R B (рис. 10). Требуется приложить ощутимое физическое усилие, чтобы удержать вал с вращающимся колесом в горизонтальной плоскости.

Рис. 10

Рассмотрим эффекты, возникающие при вынужденном вращении оси гироскопа, более подробно. Пусть ось гироскопа будет укреплена в U-образной раме, которая может поворачиваться вокруг вертикальной оси OO" (рис. 11). Такой гироскоп обычно называют несвободным - его ось лежит в горизонтальной плоскости и выйти из нее не может.

Рис. 11

Раскрутим гироскоп вокруг его вокруг его оси симметрии до большой угловой скорости (момент импульса L ) и станем поворачивать раму с укрепленным в ней гироскопом вокруг вертикальной оси OO" с некоторой угловой скоростью как показано на рис. 11. Момент импульса L , получит при этом приращение dL которое должно быть обеспечено моментом сил M , приложенным к оси гироскопа. Момент M , в свою очередь, создан парой сил возникающих при вынужденном повороте оси гироскопа и действующих на ось со стороны рамы. По третьему закону Ньютона ось действует на раму с силами (рис. 11). Эти силы называются гироскопическими; они создают гироскопический момент . Появление гироскопических сил называют гироскопическим эффектом. Именно эти гироскопические силы мы и чувствуем, пытаясь повернуть ось вращающегося колеса (рис.10).

Гироскопический момент нетрудно рассчитать. Положим, согласно элементарной теории, что

(16)

где J - момент инерции гироскопа относительно его оси симметрии, а ω - угловая скорость собственного вращения. Тогда момент внешних сил, действующих на ось, будет равен

(17)

где ω - угловая скорость вынужденного поворота (иногда говорят: вынужденной прецессии). Со стороны оси на подшипники действует противоположный момент

(18)

Таким образом, вал гироскопа, изображенного на рис. 11, будет прижиматься кверху в подшипнике В и оказывать давление на нижнюю часть подшипника А.

Направление гироскопических сил можно легко найти с помощью правила, сформулированного Н.Е. Жуковским: гироскопические силы стремятся совместить момент импульса L гироскопа с направлением угловой скорости вынужденного поворота. Это правило можно наглядно продемонстрировать с помощью устройства, представленного на рис. 12.

Рис. 12

Ось гироскопа закреплена в кольце, которое может свободно поворачиваться в обойме. Приведем обойму во вращение вокруг вертикальной оси с угловой скоростью (вынужденный поворот), и кольцо с гироскопом будет поворачиваться в обойме до тех пор, пока направления L и не совпадут. Такой эффект лежит в основе известного магнитомеханического явления - намагничивания железного стержня при его вращении вокруг собственной оси - при этом спины электронов выстраиваются вдоль оси стержня (опыт Барнетта ).

Гироскопические усилия испытывают подшипники осей быстро вращающихся частей машины при повороте самой машины (турбины на корабле, винта на самолете и т.д.). При значительных величинах угловой скорости вынужденной прецессии и собственного вращения а также больших размерах маховика эти силы могут даже разрушить подшипники. Рассмотрим некоторые примеры проявления гироскопических сил.

Пример 1. Легкий одномоторный самолет с правым винтом совершает левый вираж (рис. 13). Гироскопический момент передается через подшипники А и В на корпус самолета и действует на него, стремясь совместить ось собственного вращения винта (вектор ) с осью вынужденной прецессии (вектор ). Самолет начинает задирать нос кверху, и летчик должен "дать ручку от себя", то есть опустить вниз руль высоты. Таким образом, момент гироскопических сил будет компенсирован моментом аэродинамических сил.

Рис. 13

Пример 2. При килевой качке корабля (с носа на корму и обратно) ротор быстроходной турбины участвует в двух движениях: во вращении вокруг своей оси с угловой скоростью и в повороте вокруг горизонтальной оси, перпендикулярной валу турбины, с угловой скоростью (рис. 14). При этом вал турбины будет давить на подшипники с силами лежащими в горизонтальной плоскости. При качке эти силы, как и гироскопический момент, периодически меняют свое направление на противоположное и могут вызвать "рыскание" корабля, если он не слишком велик (например, буксира).

Рис. 14

Допустим, что масса турбины m =3000 кг ее радиус инерции R ин = 0,5 м, скорость вращения турбины n =3000 об/мин, максимальная угловая скорость корпуса судна при килевой качке =5 град/с, расстояние между подшипниками l =2 м. Максимальное значение гироскопической силы, действующей на каждый из подшипников, составляет

После подстановки числовых данных получим то есть около 1 тонны.

Пример 3. Гироскопические силы могут вызвать так называемые колебания "шимми" колес автомобиля (рис. 15) [В.А. Павлов, 1985]. Колесу, вращающемуся вокруг оси AA" с угловой скоростью w в момент наезда на препятствие сообщается дополнительная скорость вынужденного поворота вокруг оси, перпендикулярной плоскости рисунка. При этом возникает момент гироскопических сил, и колесо начнет поворачиваться вокруг оси BB". Приобретая угловую скорость поворота вокруг оси BB", колесо снова начнет поворачиваться вокруг оси, перпендикулярной плоскости рисунка, деформируя упругие элементы подвески и вызывая силы, стремящиеся вернуть колесо в прежнее вертикальное положение. Далее ситуация повторяется. Если в конструкции автомобиля не принять специальных мер, возникшие колебания "шимми" могут привести к срыву покрышки с обода колеса и к поломке деталей его крепления.

Рис. 15

Пример 4. С гироскопическим эффектом мы сталкиваемся и при езде на велосипеде (рис. 16). Совершая, например, поворот направо, велосипедист инстинктивно смещает центр тяжести своего тела вправо, как бы заваливая велосипед. Возникшее принудительное вращение велосипеда с угловой скоростью приводит к появлению гироскопических сил с моментом . На заднем колесе этот момент будет погашен в подшипниках, жестко связанных с рамой. Переднее же колесо, имеющее по отношению к раме свободу вращения в рулевой колонке, под действием гироскопического момента начнет поворачиваться как раз в том направлении, которое было необходимо для правого поворота велосипеда. Опытные велосипедисты совершают подобные повороты, что называется, "без рук".

Рис. 16

Вопрос о возникновении гироскопических сил можно рассматривать и с другой точки зрения. Можно считать, что гироскоп, изображенный на рис. 11, участвует в двух одновременных движениях: относительном вращении вокруг собственной оси с угловой скоростью w и переносном, вынужденном повороте вокруг вертикальной оси с угловой скоростью . Таким образом, элементарные массы , на которые можно разбить диск гироскопа (маленькие кружки на рис. 17), должны испытывать кориолисовы ускорения

(20)

Эти ускорения будут максимальны для масс, находящихся в данный момент времени на вертикальном диаметре диска, и равны нулю для масс, которые находятся на горизонтальном диаметре (рис. 17).

Рис. 17

В системе отсчета, вращающейся с угловой скоростью (в этой системе отсчета ось гироскопа неподвижна), на массы будут действовать кориолисовы силы инерции

(21)

Эти силы создают момент который стремится повернуть ось гироскопа таким образом, чтобы вектор совместился с . Момент должен быть уравновешен моментом сил реакции действующих на ось гироскопа со стороны подшипников. По третьему закону Ньютона, ось будет действовать на подшипники, а через них и на раму, в которой эта ось закреплена, с гироскопическими силами . Поэтому и говорят, что гироскопические силы обусловлены силами Кориолиса.

Возникновение кориолисовых сил можно легко продемонстрировать, если вместо жесткого диска (рис. 17) взять гибкий резиновый лепесток (рис. 18). При повороте вала с раскрученным лепестком вокруг вертикальной оси лепесток изгибается при прохождении через вертикальное положение так, как изображено на рис. 18.

Рис. 18

Волчки.

Волчки кардинально отличаются от гироскопов тем, что в общем случае они не имеют ни одной неподвижной точки. Произвольное движение волчков имеет весьма сложный характер: будучи раскручены вокруг оси симметрии и поставлены на плоскость, они прецессируют , "бегают" по плоскости, выписывая замысловатые фигуры, а иногда даже переворачиваются с одного конца на другой. Не вдаваясь в детали такого необычного поведения волчков, отметим лишь, что немаловажную роль здесь играет сила трения, возникающая в точке соприкосновения волчка и плоскости.

Кратко остановимся на вопросе об устойчивости вращения симметричного волчка произвольной формы. Опыт показывает, что если симметричный волчок привести во вращение вокруг оси симметрии и установить на плоскость в вертикальном положении, то это вращение в зависимости от формы волчка и угловой скорости вращения будет либо устойчивым, либо неустойчивым.

Пусть имеется симметричный волчок, изображенный на рис. 19. Введем следующие обозначения: О - центр масс волчка, h - расстояние от центра масс до точки опоры; K - центр кривизны волчка в точке опоры, r - радиус кривизны; - момент инерции относительно оси симметрии, - момент инерции относительно главной центральной оси, перпендикулярной оси симметрии.

А Рис. 21

Следует обратить внимание, что в процессе переворачивания волчка результирующий момент импульса сохраняет свое первоначальное направление, то есть вектор L , все время направлен вертикально вверх. Это означает, что в ситуации, изображенной на рис. 21,б , когда ось волчка горизонтальна, вращение вокруг оси симметрии волчка отсутствует! Далее, при опрокидывании на ножку, вращение вокруг оси симметрии будет противоположно исходному (если смотреть все время со стороны ножки, рис. 21,в ).

В случае яйцеобразного волчка поверхность тела в окрестности точки опоры не является сферой, но существуют два взаимно перпендикулярных направления, для которых радиус кривизны в точке опоры принимает экстремальные (минимальное и максимальное) значения. Опыты показывают, что в случае, изображенном на рис. 21,а , вращение будет неустойчивым, и волчок принимает вертикальное положение, раскручиваясь вокруг оси симметрии и продолжая устойчивое вращение на более остром конце. Это вращение будет продолжаться до тех пор, пока силы трения не погасят в достаточной мере кинетическую энергию волчка, угловая скорость уменьшится (станет меньше ω 0 ), и волчок упадет.

Рис. 22

Вопросы для самопроверки

Какое твердое тело называют гироскопом?

Чему равен и как направлен кинетический момент быстровращающегося гироскопа относительно его неподвижной точки?

Какими физическими свойствами обладает быстровращающийся гироскоп с тремя степенями свободы?

Какой эффект производит действие одной и той же силы, приложенной к оси неподвижного и быстровращающегося гироскопа с тремя степенями свободы?

Выведите формулу для вычисления угловой скорости прецессии оси гироскопа.

В чем состоит разница в свойствах гироскопов с двумя и тремя степенями свободы?

Какова физическая сущность гироскопического эффекта и при каких условиях он наблюдается?

По каким формулам определяются динамические реакции подшипников, в которых вращается рама вращающегося гироскопа с двумя степенями свободы?

Литература

1. А.Н. Матвеев. Механика и теория относительности. М.: Высшая школа, 1986.

2. С.П. Стрелков. Механика. М.: Наука, 1975.

3. С.Э. Хайкин. Физические основы механики. М.: Наука, 1971.

4. Д.В. Сивухин . Общий курс физики. Т.1. Механика. М.: Наука, 1989.

5. Р.В. Поль. Механика, акустика и учение о теплоте. М.: Наука, 1971.

6. Р. Фейнман и др. Фейнмановские лекции по физике. М.: Мир, 1977. Прикладная механика Детали машин Теория машин и механизмов

ГИРОСКОП (от греч. gyreuо - кружусь, вращаюсь и skopeo - смотрю, наблюдаю) - быстровращающееся симметричное твёрдое тело, ось вращения (ось ) к-рого может изменять своё направление в пространстве. Свойствами Г. обладают вращающиеся небесные тела, артиллерийские снаряды, роторы турбин, устанавливаемых на судах, винты самолётов и т. п. В совр. технике Г.- осн. элемент всевозможных гироскопич. устройств или приборов, широко применяемых для автоматич. управления движением самолётов, судов, торпед, ракет и в ряде др. систем гироскопич. стабилизации, для целей навигации (указатели курса, поворота, горизонта, стран света и др.), для измерения угловых или поступат. скоростей движущихся объектов (напр., ракет) и во мн. др. случаях (напр., при прохождении стволов штолен, строительстве метрополитенов, при бурении скважин).

Чтобы ось Г. могла свободно поворачиваться в пространстве, Г. обычно закрепляют в кольцах т. н. карданова подвеса (рис. 1), в к-ром оси внутр. и внеш. колец и ось Г. пересекаются в одной точке, наз. центром подвеса. Закреплённый в таком подвесе Г. имеет 3 степени свободы и может совершать любой поворот около центра подвеса. Если центр тяжести Г. совпадает с центром подвеса, Г. наз. уравновешенным, или астатическим. Изучение законов движения Г.- задача динамики твёрдого тела.

Рис. 1. Классический карданов подвес, а - внешнее кольцо, б - внутреннее кольцо, в - ротор.

Рис. 2. Прецессия гироскопа. Угловая скорость прецессии направлена так, что вектор собственного кинетического момента Н стремится к совмещению с вектором момента М пары, действующей на гироскоп .

Основные свойства гироскопа. Если к оси быстровращающегося свободного Г. приложить пару сил (P - F )с моментом (h - плечо силы) (рис. 2), то (против ожидания) Г. начнёт дополнительно поворачиваться не вокруг оси х , перпендикулярной к плоскости пары, а вокруг оси у , лежащей в этой плоскости и перпендикулярной к собств. оси тела z. Это дополнит. движение наз. прецессией. Прецессия Г. будет происходить по отношению к инерциалъной системе отсчета (к осям, направленным на неподвижные звёзды) с угловой скоростью

Рис 13. Гироскоп направления.

В ряде приборов используется также свойство Г. равномерно прецессировать под действием постоянно приложенных сил. Так, если посредством дополнит. груза вызвать прецессию Г. с угловой скоростью, численно равной и противоположно направленной вертикальной составляющей угловой скорости вращения Земли (где U - угловая скорость Земли, - широта места), то ось такого Г. с той или иной степенью точности будет сохранять неизменное направление относительно стран света. В течение неск. часов, пока не накопится ошибка в 1-2°, такой Г., именуемый гироазимутом, или Г. направления (рис. 13), может заменить компас (напр., на самолётах, в частности в полярной авиации, где показания магн. компаса ненадёжны). Аналогичным Г., но со значительно большим смещением центра тяжести от оси прецессии, можно определять поступат. скорость объекта, движущегося в направлении оси bb 1 , с любым ускорением (рис. 14). Если отвлечься от влияния силы тяжести, то можно считать, что на Г. действует момент переносной силы инерции Q , где т - масса Г., l - плечо. Тогда, по ф-ле (1), Г. будет прецессировать вокруг оси bb 1 с угловой скоростью . После интегрирования последнего равенства получаем , где - нач. скорость объекта. T. о., оказывается возможным определить скорость объекта v в любой момент времени по углу , на к-рый Г. повернётся к этому моменту вокруг оси bb 1 . Для этого прибор должен быть снабжён счётчиком оборотов и устройством, вычитающим из полного угла поворота угол, на к-рый Г. повернётся вследствие действия на него момента силы тяжести. Таким прибором (интегратором продольных кажущихся ускорений) определяют скорости вертик. взлёта ракеты; при этом ракета должна быть стабилизирована так, чтобы она не имела вращения вокруг своей оси симметрии.

Рис. 14. Гироскопический измеритель скорости подъема ракеты. - ускорение подъёма; g - ; P - сила тяжести, Q - сила инерции, - собственный кинетический момент.

В ряде совр. конструкций применяют т. н. поплавковый, или интегрирующий, Г. Ротор такого Г. помещён в кожух - поплавок, погружённый в жидкость (рис. 15). При вращении поплавка вокруг его оси х на Г. будет действовать момент M x вязкого трения, пропорциональный угловой скорости вращения . Благодаря этому оказывается, что если Г. сообщить принудит. вращение вокруг оси у , то угловая скорость этого вращения в соответствии с равенством (1) будет пропорциональна . В результате угол поворота поплавка вокруг оси х будет, в свою очередь, пропорционален интегралу по времени от (поэтому Г. и наз. интегрирующим). Дополнит. электрич. и электромеханич. устройства позволяют или измерять этим Г. угловую скорость, или сделать его элементом стабилизирующего устройства. В первом случае спец. электромагнитами создаётся момент относительно оси х , направленный против вращения поплавка; величина этого момента регулируется так, чтобы поплавок остановился. Тогда момент M 1 как бы заменит момент M x сил вязкого трения и, следовательно, по ф-ле (1), угловая скорость будет пропорциональна величине М 1 , определяемой по силе тока, протекающего по обмоткам электромагнита. Во втором случае, при стабилизации, напр., вокруг неподвижной оси у , корпус интегрирующего Г. размещается на платформе, к-рую может вращать вокруг оси у спец. электродвигатель (рис. 16). Для объяснения принципа стабилизации предположим, что основание, на к-ром расположены подшипники платформы, само повернётся вокруг оси у на нек-рый угол . При неработающем двигателе платформа повернётся в этом случае вместе с основанием на тот же угол , а поплавок совершит поворот вокруг оси х на угол , пропорциональный углу . Если теперь двигатель будет вращать платформу в обратном направлении до тех пор, пока поплавок не вернётся в исходное положение, то одновременно в исходное положение вернётся и платформа. Можно непрерывно управлять двигателем так, чтобы угол поворота поплавка сводился к нулю, тогда платформа окажется стабилизированной. Сочетание двух поплавковых Г. в общем подвесе с аналогично управляемыми электродвигателями приводит к стабилизации фиксированного направления, а трёх - к пространств. стабилизации, используемой, в частности, в схемах инерциальной навигации.

Рис. 15. Поплавковый интегрирующий гироскоп: а - ротор гироскопа; б - поплавок, в теле к-рого расположен подшипник оси ротора; в - поддерживающая жидкость; г - корпус; д - стальные цапфы в камневых опорах; е - датчик угла поворота поплавка относительно корпуса; ж - электромагнитное устройство, прилагающее момент вокруг оси поплавка.

Рис. 16. Стабилизация вокруг неподвижной оси посредством поплавкового гироскопа а - гироскоп-поплавок; б - усилитель, в - электродвигатель; г - платформа, д - основание.

Рис. 17. Силовая гироскопическая рама: а - собственно рама; б - гироскоп; в - спарник; г - датчик угла поворота гироскопа относительно рамы; д - усилитель сигнала датчика; е - стабилизирующий двигатель; ж - датчик момента.

В рассмотренной системе стабилизации Г. играет роль чувствит. элемента, обнаруживающего отклонения объекта от заданного положения, а возвращение в это положение производится электродвигателем, получающим соответствующий сигнал. Подобные системы гироскопич. стабилизации наз. индикаторными (стабилизаторы непрямого действия). Наряду с этим в технике применяются системы т. н. силовой гироскопич. стабилизации (стабилизаторы прямого действия), в к-рых Г. непосредственно воспринимают на себя усилия, мешающие осуществлению стабилизации, а двигатели играют вспомогат. роль, разгружая частично или полностью Г. и ограничивая тем самым углы их прецессии. Конструктивно такие системы проще индикаторных. Примером может служить одноосная двухгироскопич. рама (рис. 17); роторы находящихся в раме Г. вращаются в разные стороны. Допустим, что на раму подействует сила, стремящаяся повернуть её вокруг оси х и сообщить угловую скорость . Тогда, по правилу Жуковского, на кожух 1 начнёт действовать пара, стремящаяся совместить ось ротора с осью х . В результате Г. начнёт прецессировать вокруг оси y 2 с нек-рой угловой скоростью . Кожух 2 по той же причине будет прецессировать вокруг оси y 2 в противоположную сторону. Углы поворотов кожухов будут при этом одинаковы, т. к. кожухи связаны зубчатым сцеплением. Вследствие этой прецессии на подшипники кожуха 1 подействует новая пара, стремящаяся совместить ось ротора с осью y 1 . Такая же пара будет действовать на подшипники кожуха 2 . Моменты этих пар направлены противоположно (что следует из правила Жуковского) и стабилизируют раму, т. е. удерживают её от поворота вокруг оси х . Однако если прецессии Г. не будут ограничены, то, как видно из ф-лы (3), при повороте кожухов вокруг осей y 1 , у 2 на угол 90° стабилизация прекратится. Поэтому на оси одного из кожухов имеется датчик, регистрирующий угол поворота кожуха относительно рамы и управляющий двигателем стабилизации. Возникающий у двигателя вращающий момент направлен противоположно моменту, стремящемуся повернуть раму вокруг оси х; вследствие этого прецессия Г. прекращается. Рассмотренная рама стабилизирована по отношению к поворотам вокруг оси х . Повернуть раму вокруг любой оси, перпендикулярной х , можно беспрепятственно, но возникающий при этом гироскопич. момент может вызвать значит. давления на подшипники Г. и их кожухов. Сочетание трёх таких рам с взаимно перпендикулярными осями приводит к пространств. стабилизации (напр., искусств. спутника).

В силовых гироскопич. системах, в отличие от свободных Г., из-за больших моментов инерции стабилизируемых масс возникают весьма заметные колебат. движения типа нутаций. Должны быть приняты спец. меры для того, чтобы эти колебания были затухающими, иначе в системе возникают . В технике применяются и др. гироскопич. приборы, принципы действия к-рых основаны на свойствах Г.

Лит.: Булгаков Б. В., Прикладная теория гироскопов, 3 изд., M., 1976; Николаи E. Л., Гироскоп в кардановом подвесе, 2 изд., M., 1964; Малеев П. И., Новые типы гироскопов, Л., 1971; Магнус К., Гироскоп. Теория и применение, пер. с нем., M., 1974; Ишлинский А. Ю, Ориентация, гироскопы и инерциальная навигация, M., 1976; его же, Механика относительного движения и силы инерции, M., 1981; Климов Д. M., Харламов С. А., Динамика гироскопа в кардановом подвесе, M., 1978; Журавлев В. Ф., Климов Д. M., Волновой твердотельный гироскоп, M., 1985; Новиков Л. 3., Шаталов M. Ю., Механика динамически настраиваемых гироскопов, M., 1985.

А. Ю. Ишлинский .

Опыт показывает, что прецессионное движение гироскопа под действием внешних сил в общем случае сложнее, чем то, которое было описано выше в рамках элементарной теории. Если сообщить гироскопу толчок, изменяющий угол (см. рис. 4.6), то прецессия перестанет быть равномерной (часто говорят: регулярной), а будет сопровождаться мелкими вращениями и дрожаниями вершины гироскопа - нутациями . Для их описания необходимо учесть несовпадение вектора полного момента импульса L , мгновенной угловой скорости вращения и оси симметрии гироскопа.

Точная теория гироскопа выходит за рамки курса общей физики. Из соотношения следует, что конец вектора L движется в направлении M , то есть перпендикулярно к вертикали и к оси гироскопа. Это значит, что проекции вектора L на вертикаль и на ось гироскопа остаются постоянными. Еще одной постоянной является энергия

(4.14)

где - кинетическая энергия гироскопа. Выражая и через углы Эйлера и их производные, можно, с помощью уравнений Эйлера , описать движение тела аналитически.

Результат такого описания оказывается следующим: вектор момента импульса L описывает неподвижный в пространстве конус прецессии, и при этом ось симметрии гироскопа движется вокруг вектора L по поверхности конуса нутаций. Вершина конуса нутаций, как и вершина конуса прецессии, находится в точке закрепления гироскопа, а ось конуса нутаций совпадает по направлению с L и движется вместе с ним. Угловая скорость нутаций определяется выражением

(4.15)

где и - моменты инерции тела гироскопа относительно оси симметрии и относительно оси, проходящей через точку опоры и перпендикулярной оси симметрии, - угловая скорость вращения вокруг оси симметрии (сравн. с (3.64)).

Таким образом, ось гироскопа участвует в двух движениях: нутационном и прецессионном. Траектории абсолютного движения вершины гироскопа представляют собой замысловатые линии, примеры которых представлены на рис. 4.7.

Рис. 4.7.

Характер траектории, по которой движется вершина гироскопа, зависит от начальных условий. В случае рис. 4.7а гироскоп был раскручен вокруг оси симметрии, установлен на подставке под некоторым углом к вертикали и осторожно отпущен. В случае рис. 4.7б ему, кроме того, был сообщен некоторый толчок вперед, а в случае рис. 4.7в - толчок назад по ходу прецессии. Кривые на рис. 4.7 вполне аналогичны циклоидам, описываемым точкой на ободе колеса, катящегося по плоскости без проскальзывания или с проскальзыванием в ту или иную сторону. И лишь сообщив гироскопу начальный толчок вполне определенной величины и направления, можно добиться того, что ось гироскопа будет прецессировать без нутаций. Чем быстрее вращается гироскоп, тем больше угловая скорость нутаций и тем меньше их амплитуда. При очень быстром вращении нутации делаются практически незаметными для глаза.

Может показаться странным: почему гироскоп, будучи раскручен, установлен под углом к вертикали и отпущен, не падает под действием силы тяжести, а движется вбок? Откуда берется кинетическая энергия прецессионного движения?

Ответы на эти вопросы можно получить только в рамках точной теории гироскопам. На самом деле гироскоп действительно начинает падать, а прецессионное движение появляется как следствие закона сохранения момента импульса. В самом деле, отклонение оси гироскопа вниз приводит к уменьшению проекции момента импульса на вертикальное направление. Это уменьшение должно быть скомпенсировано моментом импульса, связанным с прецессионным движением оси гироскопа. С энергетическое точки зрения кинетическая энергия прецессии появляется за счет изменения потенциальной энергии гироскопам

Если за счет трения в опоре нутации гасятся быстрее, чем вращение гироскопа вокруг оси симметрии (как правило, так и бывает), то вскоре после "запуска" гироскопа нутации исчезают и остается чистая прецессия (рис. 4.8). При этом угол наклона оси гироскопа к вертикали оказывается больше, чем он был вначале то есть потенциальная энергия гироскопа уменьшается. Таким образом, ось гироскопа должна немного опуститься, чтобы иметь возможность прецессировать вокруг вертикальной оси.

Рис. 4.8.

Гироскопические силы.

Обратимся к простому опыту: возьмем в руки вал АВ с насаженным на него колесом С (рис. 4.9). Пока колесо не раскручено, не представляет никакого труда поворачивать вал в пространстве произвольным образом. Но если колесо раскручено, то попытки повернуть вал, например, в горизонтальной плоскости с небольшой угловой скоростью приводят к интересному эффекту: вал стремится вырваться из рук и повернуться в вертикальной плоскости; он действует на кисти рук с определенными силами и (рис. 4.9). Требуется приложить ощутимое физическое усилие, чтобы удержать вал с вращающимся колесом в горизонтальной плоскости.

Раскрутим гироскоп вокруг его вокруг его оси симметрии до большой угловой скорости (момент импульса L ) и станем поворачивать раму с укрепленным в ней гироскопом вокруг вертикальной оси OO" с некоторой угловой скоростью как показано на рис. 4.10. Момент импульса L , получит при этом приращение которое должно быть обеспечено моментом сил M , приложенным к оси гироскопа. Момент M , в свою очередь, создан парой сил возникающих при вынужденном повороте оси гироскопа и действующих на ось со стороны рамы. По третьему закону Ньютона ось действует на раму с силами (рис. 4.10). Эти силы называются гироскопическими; они создают гироскопический момент Появление гироскопических сил называют гироскопическим эффектом . Именно эти гироскопические силы мы и чувствуем, пытаясь повернуть ось вращающегося колеса (рис. 4.9).


где - угловая скорость вынужденного поворота (иногда говорят: вынужденной прецессии). Со стороны оси на подшипники действует противоположный момент

(4.)

Таким образом, вал гироскопа, изображенного на рис. 4.10, будет прижиматься кверху в подшипнике В и оказывать давление на нижнюю часть подшипника А.

Направление гироскопических сил можно легко найти с помощью правила, сформулированного Н.Е. Жуковским: гироскопические силы стремятся совместить момент импульса L гироскопа с направлением угловой скорости вынужденного поворота. Это правило можно наглядно продемонстрировать с помощью устройства, представленного на рис. 4.11.

Гироскопом называется быстро вращающееся твердое тело, ось которого может изменять свое направление в пространстве. Большие скорости вращения гироскопа требуют, чтобы ось гироскопа была осью симметрии. Подвижность оси гироскопа обеспечивается кардановым подвесом или каким-либо другим аналогичным устройством. При этом вращение оси гироскопа происходит таким образом, что некоторая точка O этой оси (например, центр масс гироскопа) остается неподвижной. При вращении оси соответствующая угловая скорость Ω (скорость прецессии) много меньше угловой скорости вращения гироскопа вокруг своей оси, которую будем обозначать ω.

Если на ось гироскопа действует некоторая сила, создающая момент M , то момент импульса относительно точки O (главный момент импульса) L изменяется в соответствии с уравнением моментов.

Анализ уравнения (1) упрощается вследствие того, что угловая скорость вращения гироскопа очень большая. А это означает, что при относительно медленном изменении ориентации оси гироскопа главный момент импульса практически направлен по оси гироскопа. Момент внешних сил M направлен перпендикулярно оси гироскопа, т.е. практически перпендикулярно главному моменту импульса L . Приращение dL момента импульса должно быть направлено по моменту M , т.е. практически перпендикулярно моменту импульса L . Такое приращение вызовет изменение направления момента импульса L , т.е. изменение направления оси гироскопа. Если при этом ось поворачивается на угол Ωdt , то соответствующее изменение момента импульса

. (2)

Следовательно, под действием постоянного момента сил M возникнет вращение оси гироскопа с постоянной угловой скоростью Ω. При этом изменение момента импульса L в единицу времени, равное L Ω, будет определяться уравнением (1). Отсюда следует, что

L Ω = M . (3)

Учитывая, что для быстро вращающегося гироскопа

, (4)

где – момент инерции гироскопа относительно его оси, получим для угловой скорости

Вращение оси гироскопа с угловой скоростью Ω под действием постоянного момента сил M называется прецессией гироскопа.

Отметим две особенности прецессионного движения. Во-первых, прецессия не обладает «инертностью» (прецессия существует, пока действует момент). Во-вторых, ось вращения прецессии не совпадает с направлением момента силы M , а перпендикулярна ему (приращение
параллельно вектору)
.

Контрольные вопросы и задания

1. Почему знание массы тела является недостаточным для описания его инерционных свойств?

2. Где должна быть приложена и как направлена внешняя сила, чтобы ее момент вызвал максимальное угловое ускорение тела?

3. В чем состоит физическая суть гироскопического эффекта и возникающих при этом гироскопических сил? Как они согласуются с законами вращательного движения?

4. Назовите факторы, которые влияют на скорость регулярной прецессии гироскопа с неподвижной точкой опоры.

5. Объясните поведение быстро вращающегося китайского волчка, исходя из гироскопического эффекта.

Задачи

1. Проведите оценку порядка величины момента импульса колеса взрослого велосипеда, если скорость велосипеда 30 км/ч.

2. Чему должен быть равен момент силы, который следует приложить к рулю, чтобы повернуть велосипед на угол 1 рад за 0,1 с?

3. Два маленьких шарика массами m 1 = 40 г и m 2 = 120 г соединены стержнем длиной l = 20 см, масса которого ничтожно мала. Система вращается вокруг оси, перпендикулярной стержню и проходящей через центр масс системы. Определите импульс и момент импульса системы. Частота вращения равна 3 с -1 .

4. Двигатель равномерно вращает маховик. После отключения двигателя маховик в течение времениt = 30 с после

N = 120 оборотов останавливается. Момент инерции маховика

= 0,3 кг/м 2 . Принимая, что угловое ускорение маховика после отключения двигателя постоянно, определить мощность двигателя при равномерном вращении маховика.

5

Рис. 2 (к задаче 5)

. Однородный сплошной цилиндр радиусомR раскрутили вокруг его оси до угловой скорости ω 0 и затем поместили в угол (рис. 2). Коэффициент трения между цилиндром и стенками равен µ. Сколько времени цилиндр будет вращаться в этом положении?

6. Чему равно отношение кинетических энергий вращательного и поступательного движения твердого цилиндра, скатывающегося с наклонной плоскости без скольжения?

7. Твердый цилиндр массой m скатывается без скольжения по плоскости длиной l , наклоненной под углом α к горизонту (трением пренебречь). Чему равна скорость центра масс цилиндра в нижней части плоскости? Чему равна конечная скорость цилиндра, если он соскальзывает по плоскости без вращения?

8. Какую работу нужно совершить, чтобы увеличить частоту вращения маховика массой 0,5 т от 0 до 120 мин -1 ? Массу маховика можно считать распределенной по ободу диаметром d =1,5 м. Трением пренебречь.

9. Вертикальный столб высотой h = 5 м подпиливается у основания и падает на землю. Определите линейную скорость его верхнего конца в момент удара о землю.

10. По условиям предыдущей задачи определить, какая точка столба будет в любой момент падения иметь такую же скорость, какую имело бы тело, падая с такой же высоты, как и данная точка?

11. Однородный круглый диск массой m = 5 10 4 кг и радиусом R = 2 м является стабилизатором корабля массой M = 10 7 кг. Угловая скорость вращения корабля равна 15 об/с. Чему равен момент импульса стабилизатора?

12. В предыдущей задаче ширина корабля D = 20 м, эффективный радиус поперечного сечения корабля R = 10 м. Время свободного поворота при крене (считая крен от –20 0 до +20 0) составляет 12 с. Оцените величину момента импульса корабля при таком крене. Каким путем гироскопический стабилизатор может помочь уменьшить угол крена?

13. Волчок массой m = 0.5 кг, ось которого наклонена под углом α = 30 0 к вертикали, прецессирует под действием силы тяжести. Момент инерции волчка относительно его оси симметрии = 2 г∙м 2 , угловая скорость вращения вокруг этой оси

ω = 350 рад/с, расстояние от точки опоры до центра масс волчка l = 10 см. Найти угловую скорость прецессии волчка.

14. Гироскопические эффекты используются в дисковых мельницах. Массивный цилиндрический каток (бегун) вращается вокруг вертикальной оси с угловой скоростью Ω и одновременно катится по горизонтальной опорной плите. Такое вращение можно рассматривать как вынужденную прецессию гироскопа (бегуна). При этом возрастает сила давления бегуна на горизонтальную плиту, по которой он катится. Эта сила растирает и измельчает материал, подсыпаемый под каток на плиту. Вычислить силу давления катка на плиту, если радиус бегуна

r = 50 см, а скорость 1 об/с.

15. Диск радиусом r , вращающийся вокруг собственной оси с угловой скоростью ω, катится без скольжения в наклонном положении по горизонтальной плоскости, описывая окружность за время T . Определить T и радиус окружности R , если R > r , а угол между горизонтальной плоскостью и плоскостью диска равен α.

16. Гироскоп в виде однородного диска радиусом R = 8 см вращается вокруг своей оси с угловой скоростью ω = 300 рад/с. Угловая скорость прецессии гироскопа Ω = 1 рад/с. Определить расстояние l от точки опоры до центра масс гироскопа.

17. Гироскоп массой m = 1 кг, имеющий момент инерции I = 4,905 10 -3 кг м 2 , вращается с угловой скоростью

ω = 100 рад/с. Расстояние от точки опоры до центра масс l = 5 см. Угол между вертикалью и осью гироскопа α = 30 о. Найти модуль угловой скорости прецессии Ω.

18. Симметричный волчок, ось которого наклонена под углом α к вертикали (рис.3), совершает регулярную прецессию под действием силы тяжести. Точка опоры волчкаО неподвижна. Определить, под каким углом β к вертикали направлена сила, с которой волчок действует на плоскость опоры.

19. Какова физическая природа подъема центра масс быстро вращающегося китайского волчка с последующим его опрокидыванием? Качественно объясните поведение этой детской игрушки, исходя из теории простого гироскопа.

20. Найти угловую скорость прецессии наклоненного волчка, прецессирующего под действием силы тяжести. Волчок имеет момент инерции I , угловую скорость вращения ω, расстояние от точки опоры до центра масс волчка равно l . В каком направлении будет прецессировать волчок?



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта