Главная » Заготовка и хранение » Кислоты краткое описание. Кислоты

Кислоты краткое описание. Кислоты

Кислоты

Кислоты представляют собой химически сложные вещества, молекулы которых состоят из кислотного остатка и атомов Н водорода (одного или нескольких). Недаром слова «кислый» и «кислота» - однокоренные: по своим вкусовым качествам все кислоты имеют кислый привкус, что совсем не означает, что кислотные составы можно пробовать. Среди них, большая половина - едкие, а остальные даже токсичные. Есть, конечно, и исключения – уксусная, лимонная, яблочная, аскорбиновая и щавелевая, которые знакомы каждому с детства, и их успешно используют в пищевой промышленности.

Какого бы происхождения ни была кислота (природного или синтетического), она всегда в своей структуре будет иметь определенное количество атомов водорода, которые могут вступать в реакционные соединения. В ходе химической реакции каждая молекула кислоты будет отдавать атомы водорода, а взамен будет принимать атомы различных металлов. Так происходит замещение.

Кислоты принято классифицировать по двум признакам:

1.­­ ­или есть атомы кислорода в молекуле,
2.­­ ­по количеству водородных атомов, которые способны замещаться на атомы металлов.

Первая группа, в свою очередь, имеет две подгруппы:

­- бескислородные кислоты (фтороводородная кислота HF, соляная HCl, бромоводородная HBr, иодоводородная HI, сероводородная H 2 S).
­- кислородосодержащие кислоты (серная H 2 SO 4 , сернистая H 2 SO 3 , фосфорная H 3 PO 4 , угольная H 2 CO 3 , азотная HNO 3 , кремниевая H 2 SiO 3).

Вторая группа тоже имеет несколько подгрупп:

­- одноосновные кислоты (имеют 1 атом водорода),
­- двухосновные кислоты (имеют 2 атома водорода),
­- трехосновные кислоты (имеют 3 атома водорода).

Химические свойства кислот описываются следующими правилами:

1.­­ ­Кислоты взаимодействуют с основаниями, образуя соль, которая всегда будет содержать неизменный кислотный остаток. Эта реакция получила название нейтрализации. Второй продукт, образующийся в ходе протекания реакции нейтрализации, это – вода.

Чтобы нейтрализация состоялась, требуется выполнить следующее условие: хотя бы один из компонентов должен хорошо растворяться в воде. А так как кислоты отлично соответствуют этому параметру, они могут взаимодействовать как с нерастворимыми, так и с растворимыми основаниями. Исключение – кремниевая кислота, которая практически не растворяется в воде, поэтому может вступать в реакцию только с растворимыми основаниями (KOH, NaOH).

2.­­ ­Растворы кислот действуют на индикаторы (специальные вещества), изменяя их окраску в воде. Кислоты изменяют цветовую окраску индикатора в один определенный цвет, поэтому всегда можно точно определить, что в составе вещества присутствует кислота.­ Так, лакмус и оранжевый метиловый станут красными.

Индикаторы – вещества довольно сложного строения. В основаниях и нейтральных растворах они будут совсем другого цвета, чем в кислотной среде.

3.­­ ­Кислоты реагируют с металлами при выполнении такого условия:

­- металл по шкале активности должен быть максимально реакционноспособным. Так серебро, золото и медь с кислотой реагировать не будут, а цинк, кальций и натрий, наоборот, будут взаимодействовать очень активно. Причем будет выделяться много газов водорода и большое количество тепла.

Некоторые металлы будут вступать в реакцию только с разбавленными кислотами. Если же кислоты концентрированные (безводные), то никакого замещения не произойдет.

) и кислотного остатка.

Есть несколько определений кислот и основания, в зависимости от теорий:

Классификация кислот.

2KHSO 3 + H 2 SO 4 = K 2 SO 4 + 2SO 2 + 2H 2 O,

2 CO3 + 4HBr = 2CuBr 2 + CO 2 + 3H 2 O.

4. В случае многоосновности кислот они диссоциируют ступенчато, поэтому часто наблюдается образование кислых солей вместо средних:

KOH + H 2 S = KHS + H 2 O.

5. Реакция с индикатором: Лакмус в кислой среде становится красного цвета, метилоранж - красный, конго красный - синий.

6. Специфические свойства кислот:

Образование нерастворимых солей:

AgNO 3 + HCl = AgCl↓ (белый осадок) + HNO 3.

2KMnO 4 + 16HCl = 5Cl 2 + 2KCl + 2MnCl 2 +8H 2 O.

3AgNO 3 + H 3 PO 4 = Ag 3 PO 4 ↓ (желтый осадок)+ 3HNO 3.

H 2 S + Br 2 = S + 2HBr.

Если в реакцию вступает кислородосодержащая кислота, то окисляться она может только если находится в промежуточной степени окисления:

H 2 SO 3 + Cl 2 + H 2 O = H 2 SO 4 + 2HCl.

В остальных случаях они - окислители. Особенно это свойства проявляется во взаимодействии с простыми веществами:

Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O.

Кислоты - это сложные химические соединения, в основе которых содержится один или несколько атомов водорода и кислотный остаток. Слово «кислота» по значению связано со словом «кислый», так как имеют общий корень. Отсюда следует, что растворы всех кислот имеют кислый вкус. Несмотря на это, не все растворы кислот можно пробовать на вкус, так как некоторые из них относятся к едким и ядовитым растворам. Кислоты, благодаря своим свойствам, широко применяются в быту, медицине, промышленности и других сферах.

История изучения кислот

Человечеству кислоты были известны еще с древних времен. Очевидно, первой кислотой, полученной человеком в результате брожения (окисления на воздухе) вина, стала уксусная кислота. Уже тогда были известны некоторые свойства кислот, которые применялись для растворения металлов, получения минеральных пигментов, например: карбоната свинца. В период средневековья алхимики «открывают» новые кислоты - минерального происхождения. Первую попытку объединить все кислоты общим свойством сделал физикохимик Сванте Аррениус (Стокгольм, 1887 год). В настоящее время наука придерживается теории кислот и оснований Брёнстеда — Лоури и Льюиса, основанная в 1923 году.

Щавелевая кислота (этандиовая кислота) относится к сильным органическим кислотам и обладает всеми свойствами карбоновых кислот. Она представляет собой бесцветные кристаллы, которые хорошо растворяются в воде, неполностью в этиловом спирте и нерастворимы в бензоле. В природе щавелевая кислота встречается в таких растениях, как: щавель, карамболь, ревень 3уи др.

Применение:

В химической промышленности (для изготовления чернил, пластмассы);

В металлургии (для очистки ржавчины, накипи);

В текстильной промышленность (при покраске мехов и тканей);

В косметологии (отбеливающее средство);

Для очистки и снижения жесткости воды;

В медицине;

В фармакологии.

Щавелевая кислота ядовита и токсична, при попадании на кожу, слизистые оболочки и органы дыхания вызывает раздражение.

В нашем интернет-магазине можно щавелевую кислоту купить всего за 258 руб.

Салициловая кислота - это кристаллический порошок, который хорошо растворяется в спирте, но плохо в воде. Впервые был получен из коры ивы (откуда и получила свое название) химиком Рафаэлем Пириа в 1838 году в Италии.

Широко применяется:

В фармакологии;

В медицине (противовоспалительное, ранозаживляющее, антисептическое средство для лечения ожогов, бородавок, угревой сыпи, экземы, выпадения волос, обильного потовыделения, ихтиоза, мозолей, отрубевидных лишаев и т.д.);

В косметологии (как отшелушивающее, антисептическое средство);

В пищевой промышленности (при консервировании продуктов).

При передозировке данная кислота убивает полезные бактерии, пересушивает кожу, что может спровоцировать появление угрей. В качестве косметологического средства не рекомендуется использовать больше одного раза в день.

Салициловая кислота цена всего за 308 руб.

Борная кислота (ортоборная кислота) имеет вид блестящего кристаллического порошка, жирного на ощупь. Относится к слабым кислотам, лучше растворяется в горячей воде и в растворах солей, менее - в холодной воде и минеральных кислотах. В природе встречается в виде минерала сассолина, в минеральных водах, природных рассолах и горячих источниках.

Применяется:

В промышленности (при изготовлении эмали, цемента, моющих средств);

В косметологии;

В сельском хозяйстве (в качестве удобрения);

В лабораториях;

В фармакологии и медицине (антисептик);

В быту (для борьбы с насекомыми);

В кулинарии (при консервировании и в качестве пищевой добавки).

Борную кислоту купить в Москве всего за 114 руб.

Лимонная кислота - это пищевая добавка (Е330/ Е333) в виде белого кристаллического вещества. Хорошо растворяется как в воде, так и в этиловом спирте. В природе она содержится во многих цитрусовых плодах, ягодах, хвое и др. Лимонная кислота впервые была получена из сока незрелых лимонов фармацевтом Карл Шееле (Швеция, 1784 год).

Лимонная кислота нашла свое применение:

В пищевой промышленности (как ингредиент в приправах, соусах, полуфабрикатах);

В нефтяной и газовой промышленности (при бурении скважин);

В косметологии (в кремах, шампунях, лосьонах, средствах для ванн);

В фармакологии;

В быту (при изготовлении моющих средств).

Однако при попадании концентрированного раствора лимонной кислоты на кожу, слизистую оболочку глаз или зубную эмаль может нанести вред.

Лимонная кислота купить на нашем сайте от 138 руб.

Молочная кислота - это прозрачная жидкость со слабовыраженным запахом, которая относится к пищевым добавкам (Е270). Впервые молочная кислота, также как и лимонная, была получена химиком Карлом Шееле. В настоящее время ее получают в результате брожения молока, вина или пива.

Применение:

В промышленности (для приготовления сыра, майонеза, йогурта, кефира, кондитерских изделий);

В сельском хозяйстве (для приготовления кормов);

В ветеринарии (антисептик);

В косметологии (отбеливающее средство).

При работе с молочной кислотой нужно соблюдать меры предосторожности, так как она может вызвать сухость кожи, некроз слизистой оболочки глаз и др..

Молочную кислоту купить прямо сейчас за 129 руб.

Магазин химических реактивов в Москве розница «Прайм Кемикалс Групп» - это отличный выбор лабораторного оборудования и химических реактивов по доступным ценам.

Кислоты - сложные вещества, состоящие из одного или нескольких атомов водорода, способных замещаться на атома металлов, и кислотных остатков.


Классификация кислот

1. По числу атомов водорода: число атомов водорода (n ) определяет основность кислот:

n = 1 одноосновная

n = 2 двухосновная

n = 3 трехосновная

2. По составу:

а) Таблица кислород содержащих кислот, кислотных остатков и соответствующих кислотных оксидов:

Кислота (Н n А)

Кислотный остаток (А)

Соответствующий кислотный оксид

H 2 SO 4 серная

SO 4 (II) сульфат

SO 3 оксид серы (VI )

HNO 3 азотная

NO 3 (I) нитрат

N 2 O 5 оксид азота (V )

HMnO 4 марганцевая

MnO 4 (I) перманганат

Mn 2 O 7 оксид марганца (VII )

H 2 SO 3 сернистая

SO 3 (II) сульфит

SO 2 оксид серы (IV )

H 3 PO 4 ортофосфорная

PO 4 (III) ортофосфат

P 2 O 5 оксид фосфора (V )

HNO 2 азотистая

NO 2 (I) нитрит

N 2 O 3 оксид азота (III )

H 2 CO 3 угольная

CO 3 (II) карбонат

CO 2 оксид углерода (IV )

H 2 SiO 3 кремниевая

SiO 3 (II) силикат

SiO 2 оксид кремния (IV)

НСlO хлорноватистая

СlO (I) гипохлорит

С l 2 O оксид хлора (I)

НСlO 2 хлористая

СlO 2 (I) хлорит

С l 2 O 3 оксид хлора (III)

НСlO 3 хлорноватая

СlO 3 (I) хлорат

С l 2 O 5 оксид хлора (V)

НСlO 4 хлорная

СlO 4 (I) перхлорат

С l 2 O 7 оксид хлора (VII)

б) Таблица бескислородных кислот

Кислота (Н n А)

Кислотный остаток (А)

HCl соляная, хлороводородная

Cl (I ) хлорид

H 2 S сероводородная

S (II ) сульфид

HBr бромоводородная

Br (I ) бромид

HI йодоводородная

I (I ) йодид

HF фтороводородная,плавиковая

F (I ) фторид

Физические свойства кислот

Многие кислоты, например серная, азотная, соляная – это бесцветные жидкости. известны также твёрдые кислоты: ортофосфорная, метафосфорная HPO 3 , борная H 3 BO 3 . Почти все кислоты растворимы в воде. Пример нерастворимой кислоты – кремниевая H 2 SiO 3 . Растворы кислот имеют кислый вкус. Так, например, многим плодам придают кислый вкус содержащиеся в них кислоты. Отсюда названия кислот: лимонная, яблочная и т.д.

Способы получения кислот

бескислородные

кислородсодержащие

HCl, HBr, HI, HF, H 2 S

HNO 3 , H 2 SO 4 и другие

ПОЛУЧЕНИЕ

1. Прямое взаимодействие неметаллов

H 2 + Cl 2 = 2 HCl

1. Кислотный оксид + вода = кислота

SO 3 + H 2 O = H 2 SO 4

2. Реакция обмена между солью и менее летучей кислотой

2 NaCl (тв .) + H 2 SO 4 (конц .) = Na 2 SO 4 + 2HCl ­

Химические свойства кислот

1. Изменяют окраску индикаторов

Название индикатора

Нейтральная среда

Кислая среда

Лакмус

Фиолетовый

Красный

Фенолфталеин

Бесцветный

Бесцветный

Метилоранж

Оранжевый

Красный

Универсальная индикаторная бумага

Оранжевая

Красная

2.Реагируют с металлами в ряду активности до H 2

(искл. HNO 3 –азотная кислота)

Видео "Взаимодействие кислот с металлами"

Ме + КИСЛОТА =СОЛЬ + H 2 (р. замещения)


Zn + 2 HCl = ZnCl 2 + H 2

3. С основными (амфотерными) оксидами – оксидами металлов

Видео "Взаимодействие оксидов металлов с кислотами"

Ме х О у + КИСЛОТА= СОЛЬ + Н 2 О (р. обмена)

4. Реагируют с основаниями реакция нейтрализации

КИСЛОТА + ОСНОВАНИЕ= СОЛЬ+ H 2 O (р. обмена)

H 3 PO 4 + 3 NaOH = Na 3 PO 4 + 3 H 2 O

5. Реагируют с солями слабых, летучих кислот - если образуется кислота, выпадающая в осадок или выделяется газ:

2 NaCl (тв .) + H 2 SO 4 (конц .) = Na 2 SO 4 + 2HCl ­ ( р . обмена )

Видео "Взаимодействие кислот с солями"

6. Разложение кислородсодержащих кислот при нагревании

(искл. H 2 SO 4 ; H 3 PO 4 )

КИСЛОТА = КИСЛОТНЫЙ ОКСИД + ВОДА (р. разложения)

Запомните! Неустойчивые кислоты (угольная и сернистая) – разлагаются на газ и воду :

H 2 CO 3 ↔ H 2 O + CO 2

H 2 SO 3 ↔ H 2 O + SO 2

Сероводородная кислота в продуктах выделяется в виде газа:

СаS + 2HCl = H 2 S + Ca Cl 2

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

№1. Распределите химические формулы кислот в таблицу. Дайте им названия:

LiOH , Mn 2 O 7 , CaO , Na 3 PO 4 , H 2 S , MnO , Fe (OH ) 3 , Cr 2 O 3 ,HI , HClO 4 , HBr , CaCl 2 , Na 2 O , HCl , H 2 SO 4 , HNO 3 , HMnO 4 , Ca (OH ) 2 , SiO 2 , Кислоты

Бес-кисло-

родные

Кислород- содержащие

растворимые

нераст-воримые

одно-

основные

двух-основные

трёх-основные

№2. Составьте уравнения реакций:

Ca + HCl

Na + H 2 SO 4

Al + H 2 S

Ca + H 3 PO 4
Назовите продукты реакции.

№3. Составьте уравнения реакций, назовите продукты:

Na 2 O + H 2 CO 3

ZnO + HCl

CaO + HNO 3

Fe 2 O 3 + H 2 SO 4

№4. Составьте уравнения реакций взаимодействия кислот с основаниями и солями:

KOH + HNO 3

NaOH + H 2 SO 3

Ca(OH) 2 + H 2 S

Al(OH) 3 + HF

HCl + Na 2 SiO 3

H 2 SO 4 + K 2 CO 3

HNO 3 + CaCO 3

Назовите продукты реакции.

ТРЕНАЖЁРЫ

Тренажёр №1. "Формулы и названия кислот"

Тренажёр №2. " Установление соответствия: формула кислоты - формула оксида"

Техника безопасности - Оказание первой помощи при попадании кислот на кожу

Техника безопасности -

Кислоты можно классифицировать исходя из разных критериев:

1) Наличие атомов кислорода в кислоте

2) Основность кислоты

Основностью кислоты называют число «подвижных» атомов водорода в ее молекуле, способных при диссоциации отщепляться от молекулы кислоты в виде катионов водорода H + , а также замещаться на атомы металла:

4) Растворимость

5) Устойчивость

7) Окисляющие свойства

Химические свойства кислот

1. Способность к диссоциации

Кислоты диссоциируют в водных растворах на катионы водорода и кислотные остатки. Как уже было сказано, кислоты делятся на хорошо диссоциирующие (сильные) и малодиссоциирующие (слабые). При записи уравнения диссоциации сильных одноосновных кислот используется либо одна направленная вправо стрелка (), либо знак равенства (=), что показывает фактически необратимость такой диссоциации. Например, уравнение диссоциации сильной соляной кислоты может быть записано двояко:

либо в таком виде: HCl = H + + Cl —

либо в таком: HCl → H + + Cl —

По сути направление стрелки говорит нам о том, что обратный процесс объединения катионов водорода с кислотными остатками (ассоциация) у сильных кислот практически не протекает.

В случае, если мы захотим написать уравнение диссоциации слабой одноосновной кислоты, мы должны использовать в уравнении вместо знака две стрелки . Такой знак отражает обратимость диссоциации слабых кислот — в их случае сильно выражен обратный процесс объединения катионов водорода с кислотными остатками:

CH 3 COOH CH 3 COO — + H +

Многоосновные кислоты диссоциируют ступенчато, т.е. катионы водорода от их молекул отрываются не одновременно, а по очереди. По этой причине диссоциация таких кислот выражается не одним, а несколькими уравнениями, количество которых равно основности кислоты. Например, диссоциация трехосновной фосфорной кислоты протекает в три ступени с поочередным отрывом катионов H + :

H 3 PO 4 H + + H 2 PO 4 —

H 2 PO 4 — H + + HPO 4 2-

HPO 4 2- H + + PO 4 3-

Следует отметить, что каждая следующая ступень диссоциации протекает в меньшей степени, чем предыдущая. То есть, молекулы H 3 PO 4 диссоциируют лучше (в большей степени), чем ионы H 2 PO 4 — , которые, в свою очередь, диссоциируют лучше, чем ионы HPO 4 2- . Связано такое явление с увеличением заряда кислотных остатков, вследствие чего возрастает прочность связи между ними и положительными ионами H + .

Из многоосновных кислот исключением является серная кислота. Поскольку данная кислота хорошо диссоциирует по обоим ступеням, допустимо записывать уравнение ее диссоциации в одну стадию:

H 2 SO 4 2H + + SO 4 2-

2. Взаимодействие кислот с металлами

Седьмым пунктом в классификации кислот мы указали их окислительные свойства. Было указано, что кислоты бывают слабыми окислителями и сильными окислителями. Подавляющее большинство кислот (практически все кроме H 2 SO 4(конц.) и HNO 3) являются слабыми окислителями, так как могут проявлять свою окисляющую способность только за счет катионов водорода. Такие кислоты могут окислить из металлов только те, которые находятся в ряду активности левее водорода, при этом в качестве продуктов образуется соль соответствующего металла и водород. Например:

H 2 SO 4(разб.) + Zn ZnSO 4 + H 2

2HCl + Fe FeCl 2 + H 2

Что касается кислот-сильных окислителей, т.е. H 2 SO 4 (конц.) и HNO 3 , то список металлов, на которые они действуют, намного шире, и в него входят как все металлы до водорода в ряду активности, так и практически все после. То есть концентрированная серная кислота и азотная кислота любой концентрации, например, будут окислять даже такие малоактивные металлы, как медь, ртуть, серебро. Более подробно взаимодействие азотной кислоты и серной концентрированной с металлами, а также некоторыми другими веществами из-за их специфичности будет рассмотрено отдельно в конце данной главы.

3. Взаимодействие кислот с основными и амфотерными оксидами

Кислоты реагируют с основными и амфотерными оксидами. Кремниевая кислота, поскольку является нерастворимой, в реакцию с малоактивными основными оксидами и амфотерными оксидами не вступает:

H 2 SO 4 + ZnO ZnSO 4 + H 2 O

6HNO 3 + Fe 2 O 3 2Fe(NO 3) 3 + 3H 2 O

H 2 SiO 3 + FeO ≠

4. Взаимодействие кислот с основаниями и амфотерными гидроксидами

HCl + NaOH H 2 O + NaCl

3H 2 SO 4 + 2Al(OH) 3 Al 2 (SO 4) 3 + 6H 2 O

5. Взаимодействие кислот с солями

Данная реакция протекает в случае, если образуется осадок, газ либо существенно более слабая кислота, чем та, которая вступает в реакцию. Например:

H 2 SO 4 + Ba(NO 3) 2 BaSO 4 ↓ + 2HNO 3

CH 3 COOH + Na 2 SO 3 CH 3 COONa + SO 2 + H 2 O

HCOONa + HCl HCOOH + NaCl

6. Специфические окислительные свойства азотной и концентрированной серной кислот

Как уже было сказано выше, азотная кислота в любой концентрации, а также серная кислота исключительно в концентрированном состоянии являются очень сильными окислителями. В частности, в отличие от остальных кислот они окисляют не только металлы, которые находятся до водорода в ряду активности, но и практически все металлы после него (кроме платины и золота).

Так, например, они способны окислить медь, серебро и ртуть. Следует однако твердо усвоить тот факт, что ряд металлов (Fe, Cr, Al) несмотря на то, что являются довольно активными (находятся до водорода), тем не менее, не реагируют с концентрированной HNO 3 и концентрированной H 2 SO 4 без нагревания по причине явления пассивации — на поверхности таких металлов образуется защитная пленка из твердых продуктов окисления, которая не позволяет молекулами концентрированной серной и концентрированной азотной кислот проникать вглубь металла для протекания реакции. Однако, при сильном нагревании реакция все таки протекает.

В случае взаимодействия с металлами обязательными продуктами всегда являются соль соответствующего метала и используемой кислоты, а также вода. Также всегда выделяется третий продукт, формула которого зависит от многих факторов, в частности, таких, как активность металлов, а также концентрация кислот и температура проведения реакций.

Высокая окислительная способность концентрированной серной и концентрированной азотной кислот позволяет им реагировать не только практическим со всеми металлами ряда активности, но даже со многими твердыми неметаллами, в частности, с фосфором, серой, углеродом. Ниже в таблице наглядно представлены продукты взаимодействия серной и азотной кислот с металлами и неметаллами в зависимости от концентрации:

7. Восстановительные свойства бескислородных кислот

Все бескислородные кислоты (кроме HF) могут проявлять восстановительные свойства за счет химического элемента, входящего в состав аниона, при действии различных окислителей. Так, например, все галогеноводородные кислоты (кроме HF) окисляются диоксидом марганца, перманганатом калия, дихроматом калия. При этом галогенид-ионы окисляются до свободных галогенов:

4HCl + MnO 2 MnCl 2 + Cl 2 + 2H 2 O

18HBr + 2KMnO 4 2KBr + 2MnBr 2 + 8H 2 O + 5Br 2

14НI + K 2 Cr 2 O 7 3I 2 ↓ + 2Crl 3 + 2KI + 7H 2 O

Среди всех галогеноводородных кислот наибольшей восстановительной активностью обладает иодоводородная кислота. В отличие от других галогеноводородных кислот ее могут окислить даже оксид и соли трехвалентного железа.

6HI + Fe 2 O 3 2FeI 2 + I 2 ↓ + 3H 2 O

2HI + 2FeCl 3 2FeCl 2 + I 2 ↓ + 2HCl

Высокой восстановительной активностью обладает также и сероводородная кислота H 2 S. Ее может окислить даже такой окислитель, как диоксид серы.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта