Главная » Заготовка и хранение » Платформа земной коры.

Платформа земной коры.

Платформа (от франц.plat - плоский иforme - форма) - крупная (несколько тыс. км в поперечнике), относительно устойчивая часть земной коры, характеризующаяся очень низкой степенью сейсмичности.

Платформа имеет двухэтажное строение (рис. 2). Нижний этаж -фундамент - это древняя геосинклинальная область - образован метаморфизованными породами, верхний -чехол - морскими осадочными отложениями небольшой мощности, что свидетельствует о небольшой амплитуде колебательных движений.

Рис. 2. Строение платформы

Возраст платформ различен и определяется по времени становления фундамента. Наиболее древними являются платформы, фундамент которых образован смятыми в складки кристаллическими породами докембрия. Таких платформ на Земле десять (рис. 3).

Поверхность докембрийского кристаллического фундамента очень неровная. В одних местах он выходит на поверхность илизалегает вблизи нее, образуящиты, в других -антеклизы (от греч.anti - против иklisis - наклонение) исинеклизы (от греч. syn - вместе,klisis - наклонение). Однако эти неровности перекрыты осадочными отложениями со спокойным, близким к горизонтальному залеганием. Осадочные породы могут быть собраны в пологие валы, куполовидные поднятия, ступенеобразные изгибы, а иногда наблюдаются и разрывные нарушения с вертикальным смешением пластов. Нарушения в залегании осадочных пород обусловлены неодинаковой скоростью и разными знаками колебательных движений блоков кристаллического фундамента.

Рис. 3. До кембрийские платформы: I - Северо-Американская; II - Восточно-Европейская; III - Сибирская; IV - Южно-Американская; V - Африкано-Аравийская; VI - Индийская; VII - Восточно-Китайская; VIII - Южно-Китайская; IX - Австралийская; X - Антарктическая

Фундамент более молодых платформ образован в периодыбайкальской ,каледонской или герцинской складчатости. Области мезозойской складчатости не принято называть платформами, хотя они и являются таковыми на сравнительно раннем этапе развития.

В рельефе платформам соответствуют равнины. Однако некоторые платформы испытали серьезную перестройку, выразившуюся в общем поднятии, глубоких разломах и крупных вертикальных перемещениях глыб относительно друг друга. Так возникли складчато-глыбовые горы, примером которых могут служить горы Тянь-Шань, где возрождение горного рельефа произошло во время альпийского орогенеза.

На протяжении всей геологической истории в континентальной земной коре происходило наращивание площади платформ и сокращение геосинклинальных зон.

Внешние (экзогенные) процессы обусловлены поступающей на Землю энергией солнечного излучения. Экзогенные процессы сглаживают неровности, выравнивают поверхности, заполняют понижения. Они проявляются на земной поверхности и как разрушительные, и как созидательные.


Разрушительные процессы - это разрушение горных пород, происходящее из-за перепада температур, действия ветра, размывания потоками воды, движущимися ледниками.Созидательные процессы проявляются в накоплении переносимых водой и ветром частиц в понижениях суши, на дне водоемов.

Самым сложным внешним фактором является выветривание.

Выветривание - совокупность естественных процессов, приводящих к разрушению горных пород.

Выветривание условно подразделяется на физическое и химическое.

Основными причинамифизического выветривания являются колебания температуры, связанные с суточными и сезонными изменениями. В результате перепалов температур образуются трещины. Вода, попадающая в них, замерзая и оттаивая, расширяет трещины. Так происходит выравнивание выступов горных пород, появляются осыпи.

Важнейшим факторомхимического выветривания также является вода и растворенные в ней химические соединения. При этом значительную роль играют климатические условия и живые организмы, продукты жизнедеятельности которых влияют на состав и растворяющие свойства воды. Большой разрушительной силой обладает и корневая система растений.

Процесс выветривания приводит к образованию рыхлых продуктов разрушения горных пород, которые называютсякорой выветривания. Именно на ней постепенно образуется почва.

Из-за выветривания поверхность Земли все время обновляется, стираются следы прошлого. В то же время внешние процессы создают формы рельефа, обусловленные деятельностью рек, ледников, ветра. Все они образуют специфические формы рельефа - речные долины, овраги, ледниковые формы и т. д.

Земная кора в научном понимании представляет собой самую верхнюю и твердую геологическую часть оболочки нашей планеты.

Научные исследования позволяют изучить ее досконально. Этому способствуют многократные бурения скважин как на континентах, так и на океанском дне. Строение земли и земной коры на различных участках планеты отличаются и и по составу, и по характеристикам. Верхней границей земной коры является видимый рельеф, а нижней - зона разделения двух сред, которая также известна как поверхность Мохоровичича. Часто ее называют просто "граница М". Это наименование она получила благодаря хорватскому сейсмологу Мохоровичичу А. Он долгие годы наблюдал за скоростью сейсмических движений в зависимости от уровня глубины. В 1909 году он установил наличие разницы между земной корой и раскаленной мантией Земли. Граница М пролегает на том уровне, где скорость сейсмических волн повышается с 7.4 до 8.0 км/с.

Химический состав Земли

Изучая оболочки нашей планеты, ученые делали интересные и даже потрясающие выводы. Особенности строения земной коры делают ее схожей с такими же участками на Марсе и Венере. Более чем 90 % составляющих элементов ее представлены кислородом, кремнием, железом, алюминием, кальцием, калием, магнием, натрием. Сочетаясь между собой в различных комбинациях, они образуют однородные физические тела - минералы. Они могут войти в состав горных пород в разных концентрациях. Строение земной коры весьма неоднородно. Так, горные породы в обобщенном виде представляют собой агрегаты более-менее постоянного химического состава. Это самостоятельные геологические тела. Под ними понимается четко очерченная область земной коры, имеющая в своих границах одинаковое происхождение, возраст.

Горные породы по группам

1. Магматические. Название говорит само за себя. Они возникают из остывшей магмы, вытекающей из жерла древних вулканов. Строение этих пород напрямую зависит от скорости застывания лавы. Чем она больше, тем меньше кристаллы вещества. Гранит, например, сформировался в толще земной коры, а базальт появился в результате постепенного излияния магмы на ее поверхность. Многообразие таких пород довольно велико. Рассматривая строение земной коры, мы видим, что она состоит из магматических минералов на 60 %.

2. Осадочные. Это породы, которые стали результатом постепенного отложения на суше и дне океана обломков тех или иных минералов. Это могут быть как рыхлые компоненты (песок, галька), сцементированные (песчаник), остатки микроорганизмов (каменный уголь, известняк), продукты химических реакций (калийная соль). Они составляют до 75 % всей земной коры на материках.
По физиологическому способу образования осадочные породы делятся на:

  • Обломочные. Это остатки различных горных пород. Они разрушались под воздействием природных факторов (землетрясение, тайфун, цунами). К ним можно отнести песок, гальку, гравий, щебень, глину.
  • Химические. Они постепенно образуются из водных растворов тех или иных минеральных веществ (соли).
  • Органические или биогенные. Состоят из останков животных или растений. Это горючие сланцы, газ, нефть, уголь, известняк, фосфориты, мел.

3. Метаморфические породы. В них могут превращаться другие компоненты. Это происходит под воздействием изменяющейся температуры, большого давления, растворов или газов. Например, из известняка можно получить мрамор, из гранита - гнейс, из песка - кварцит.

Минералы и горные породы, которые человечество активно использует в своей жизнедеятельности, называются полезными ископаемыми. Что они собой представляют?

Это природные минеральные образования, которые влияют на строение земли и земной коры. Они могут использоваться в сельском хозяйстве и промышленности как в естественном виде, так и подвергаясь переработке.

Виды полезных минералов. Их классификация

В зависимости от физического состояния и агрегации, полезные ископаемые можно разделить на категории:

  1. Твердые (руда, мрамор, уголь).
  2. Жидкие (минеральная вода, нефть).
  3. Газообразные (метан).

Характеристики отдельных видов полезных ископаемых

По составу и особенностям применения различают:

  1. Горючие (уголь, нефть, газ).
  2. Рудные. Они включают радиоактивные (радий, уран) и благородные металлы (серебро, золото, платина). Есть руды черных (железо, марганец, хром) и цветных металлов (медь, олово, цинк, алюминий).
  3. Нерудные полезные ископаемые играют существенную роль в таком понятии, как строение земной коры. География их обширна. Это неметаллические и негорючие горные породы. Это строительные материалы (песок, гравий, глина) и химические вещества (сера, фосфаты, калийные соли). Отдельный раздел посвящен драгоценным и поделочным камням.

Распределение полезных ископаемых по нашей планете напрямую зависит от внешних факторов и геологических закономерностей.

Так, топливные полезные ископаемые в первую очередь добываются в нефтегазоносных и угольных бассейнах. Они имеют осадочное происхождение и формируются на осадочных чехлах платформ. Нефть и уголь крайне редко залегают вместе.

Рудные полезные ископаемые чаще всего соответствуют фундаменту, выступам и складчатым областям платформенных плит. В таких местах они могут создавать огромные по протяженности пояса.

Ядро


Земная оболочка, как известно, многослойна. Ядро располагается в самом центре, а его радиус приблизительно равен 3 500 км. Его температура гораздо выше, чем у Солнца и составляет около 10000 К. Точных данных о химическом составе ядра не получено, но предположительно оно состоит из никеля и железа.

Внешнее ядро находится в расплавленном состоянии и имеет еще большую мощность, чем внутреннее. Последнее подвергается колоссальному давлению. Вещества, из которых оно состоит, находятся в постоянном твердом состоянии.

Мантия

Геосфера Земли окружает ядро и составляет около 83 процентов от всей оболочки нашей планеты. Нижняя граница мантии находится на огромной глубине почти 3000 км. Данную оболочку принято условно разделять на менее пластичную и плотную верхнюю часть (именно из нее образуется магма) и на нижнюю кристаллическую, ширина которой составляет 2000 километров.

Состав и строение земной коры

Для того чтобы говорить о том, какие элементы входят в состав литосферы, нужно дать некоторые понятия.

Земная кора - это самая внешняя оболочка литосферы. Ее плотность меньше в два раза по сравнению со средней плотностью планеты.

От мантии земная кора отделена границей М, о которой уже говорилось выше. Так как процессы, происходящие на обоих участках, взаимно влияют друг на друга, их симбиоз принято называть литосферой. Это означает "каменная оболочка". Ее мощность колеблется в пределах 50-200 километров.

Ниже литосферы расположена астеносфера, которая обладает менее плотной и вязкой консистенцией. Ее температура составляет около 1200 градусов. Уникальной особенностью астеносферы является возможность нарушать свои границы и проникать в литосферу. Она является источником вулканизма. Здесь находятся расплавленные очаги магмы, которая внедряется в земную кору и изливается на поверхность. Изучая эти процессы, ученые смогли сделать много удивительных открытий. Именно так изучалось строение земной коры. Литосфера была сформирована много тысяч лет назад, но и сейчас в ней происходят активные процессы.

Структурные элементы земной коры

По сравнению с мантией и ядром, литосфера - это жесткий, тонкий и очень хрупкий слой. Она сложена из комбинации веществ, в составе которых на сегодняшний день обнаружено более 90 химических элементов. Они распределены неоднородно. 98 процентов массы земной коры приходится на семь составляющих. Это кислород, железо, кальций, алюминий, калий, натрий и магний. Возраст самых древних пород и минералов составляет более 4.5 миллиардов лет.

Изучая внутреннее строение земной коры, можно выделить различные минералы.
Минерал - сравнительно однородное вещество, которое может находиться как внутри, так и на поверхности литосферы. Это кварц, гипс, тальк и т.д. Горные породы слагаются из одного или нескольких минералов.

Процессы, формирующие земную кору

Строение океанической земной коры

Данная часть литосферы преимущественно состоит из базальтовых пород. Строение океанической земной коры изучено не так досконально, как континентальное. Теория тектонических плит объясняет, что океаническая земная кора является относительно молодой, а самые ее последние участки можно датировать поздней юрой.
Ее толщина практически не изменяется со временем, так как она определяется количеством расплавов, выделяющихся из мантии в зоне срединно-океанических хребтов. На нее существенно влияет глубина осадочных слоев на дне океана. В наиболее объемных участках она составляет от 5 до 10 километров. Данный вид земной оболочки относится к океанической литосфере.

Континентальная кора

Литосфера взаимодействует с атмосферой, гидросферой и биосферой. В процессе синтеза они образуют самую сложную и реакционно активную оболочку Земли. Именно в тектоносфере происходят процессы, изменяющие состав и строение этих оболочек.
Литосфера на земной поверхности не однородна. Она имеет несколько слоев.

  1. Осадочный. Он в основном образуется горными породами. Здесь преобладают глины и сланцы, а также широко распространены карбонатные, вулканогенные и песчаные породы. В осадочных слоях можно встретить такие полезные ископаемые, как газ, нефть и каменный уголь. Все они имеют органическое происхождение.
  2. Гранитный слой. Он состоит из магматических и метаморфических пород, которые наиболее близки по своей природе к граниту. Этот слой встречается далеко не везде, наиболее ярко он выражен на континентах. Здесь его глубина может составлять десятки километров.
  3. Базальтовый слой образуют породы, близкие к одноименному минералу. Он более плотный, чем гранит.

Глубина и изменение температуры земной коры

Поверхностный слой прогревается солнечным теплом. Это гелиометрическая оболочка. Она испытывает сезонные колебания температуры. Средняя мощность слоя составляет около 30 м.

Ниже находится слой, еще более тонкий и хрупкий. Его температура постоянна и приблизительно равна среднегодовой, характерной для этой области планеты. В зависимости от континентального климата глубина этого слоя увеличивается.
Еще глубже в земной коре находится еще один уровень. Это геотермический слой. Строение земной коры предусматривает его наличие, а его температура определяется внутренним теплом Земли и возрастает с глубиной.

Повышение температуры происходит за счет распада радиоактивных веществ, которые входят в состав горных пород. В первую очередь это радий и уран.

Геометрический градиент - величина нарастания температуры в зависимости от степени увеличения глубины слоев. Этот параметр зависит от разных факторов. Строение и типы земной коры влияют на него, так же как и состав горных пород, уровень и условия их залегания.

Тепло земной коры является важным энергетическим источником. Его изучение очень актуально на сегодняшний день.

Прежде всего необходимо уяснить само понятие "тектоническая структура". Под тектоническими структурами понимают участки земной коры, отличные по строению, составу и условиям образования, главным определяющим фактором развития которых являются тектонические движения наряду с магматизмом и метаморфизмом.

Главной тектонической структурой, безусловно, можно назвать саму земную кору с ее особенностями строения и состава. Как уже говорилось выше, земная кора неоднородна на земном шаре, ее подразделяют на 4 типа, два из которых основные - континентальная и океаническая. Соответственно, следующими по рангу тектоническими структурами будут являться континенты и океаны, характерная разница между которыми заключена в особенностях строения слагающей их коры. Более низкими по рангу будут структуры, слагающие континенты и океаны. Важнейшими из них являются платформы, подвижные геосинклинальные пояса и пограничные участки древних платформ и складчатых поясов.

Земная кора (и литосфера) обнаруживает регионы сейсмичные (тектонически активные) и асейсмичные (спокойные). Спокойными являются внутренние области континентов и ложа океанов - континентальные и океанические платформы. Между платформами располагаются узкие сейсмичные зоны, которые маркируются вулканизмом, землетрясениями, тектоническими подвижками. Эти зоны соответствуют срединно-океаническим хребтам и сочленениям островных дуг или окраинных горных хребтов и глубоководных желобов на периферии океана.

В океанах различают следующие структурные элементы:

Срединно-океанические хребты - подвижные пояса с осевыми рифтами типа грабенов;

Океанические платформы - спокойные области абиссальных котловин с осложняющими их поднятиями.

На континентах основными структурными элементами являются:

Геосинклинальные пояса

Горные сооружения (орогены), которые, подобно срединно-океаническим хребтам, могут обнаруживать тектоническую активность;

Платформы - в основном спокойные в тектоническом отношении обширные территории с мощным чехлом осадочных горных пород.

Характерной особенностью строения узких грабенообразных

континентальных прогибов (рифтов) является сравнительно малая скорость распространения упругих колебаний в верхах мантии: 7,6 ? 7,8 км/с. Это связывают с частичным плавлением вещества мантии под рифтами, что в свою очередь указывает на подъём к подошве коры горячих масс из верхней мантии (астеносферный апвеллинг). Обращает на себя внимание утончение земной коры в зонах рифтов до 30 ? 35 км, причём уменьшение мощности происходит преимущественно за счёт "гранитного" слоя. Так, по данным В.Б.Соллогуба и А.В.Чекунова, мощность коры Украинского щита достигает 60 км, на долю "гранитного" слоя приходится 25 ? 30 км. Расположенный рядом Днепровско-Донецкий грабенообразный прогиб, который отождествляют с рифтом, имеет земную кору мощностью не более 35 км, из которых 10 ? 15 км составляет "гранитный" слой. Такое строение коры существует несмотря на то, что Украинский щит испытывал длительное поднятие и интенсивный размыв, а Днепровско-Донецкий рифт - устойчивое прогибание, начиная с рифея.

Геосинклинальные пояса - линейно вытянутые участки земной коры с активно проявляющимися в их пределах тектоническими процессами. Как правило, первые этапы рождения пояса сопровождаются опусканием коры и накоплением осадочных пород. Конечный, собственно орогенный этап, представляет собой поднятие коры, сопровождающееся вулканизмом и магматизмом. В пределах геосинклинальных поясов выделяют антиклинории, синклинории, срединные массивы, межгорные впадины, заполненные обломочным материалом, поступающим с гор - молассой. Для моласс характерно богатство полезными ископаемыми, в том числе и каустобиллитами. Геосинклинальные пояса обрамляют древние платформы и разделяют их. Крупнейшими поясами являются: Тихоокеанский, Урало-Охотский, Средиземноморский, Северо-Атлантический, Арктический. В настоящее время активность сохранилась в Тихоокеанском и Средиземноморском поясах.

Горноскладчатые области континентов (орогены) характеризуются

"раздутием" мощности коры. В их пределах наблюдается, с одной стороны, воздымание рельефа, с другой, - углубление поверхности М, т.е. существование корней гор. Впоследствии было доказано, что это понятие справедливо для горноскладчатых областей в целом, внутри же их наблюдаются как корни, так и антикорни.

Особенностью орогенов является также присутствие в низах коры -

верхах мантии областей понижения скоростей упругих колебаний (менее 8 км/с). По своим параметрам эти области схожи с телами разогретой мантии в осевых частях рифтов. Нормальные мантийные скорости в орогенах наблюдаются на глубинах 50 ? 60 км и более. Следующей особенностью строения коры орогенов является увеличение мощности верхнего слоя со скоростями 5,8 ? 6,3 км/с. Сложен он метаморфическим комплексом, претерпевшим инверсию. В ряде случаев в его составе обнаруживаются слои пониженных скоростей. Так, в Альпах выявлено два слоя пониженных скоростей, залегающих на глубинах 10 ? 20 км и 25 ? 50 км. Скорости продольных волн в их пределах равны соответственно: 5,5 ? 5,8 км/с и 6 км/с.

Такие низкие скорости (в особенности у верхнего слоя) позволяют предположить существование жидкой фазы в твёрдом остове земной коры Альп. Таким образом, комплекс геофизических данных свидетельствует о

повсеместном утолщении коры под континентальными горноскладчатыми сооружениями, существовании латеральной неоднородности внутри них, наличии в коре орогенов - особых тел с промежуточными между корой и мантией скоростями сейсмических волн.

Платформа - крупная геологическая структура, обладающая тектонической устойчивостью и стабильностью. По возрасту их разделяют на древние (архейского и протерозойского происхождения) и молодые, заложенные в фанерозое. Древние платформы делятся на две группы: северную (лавразийскую) и южную (гондванскую). К северной группе относятся: Северо-Американская, Русская (или Восточно-Европейская), Сибирская, Китайско-Корейская. Южная группа включает Африкано-Аравийскую, Южно-Американскую, Австралийскую, Индостанскую, Антарктическую платформы. Древние платформы занимают крупные участки суши (около 40%). Молодые составляют значительно меньшую площадь материков (5%), они располагаются либо между древними (Западно-Сибирская), либо по их периферии (Восточно-Австралийская, Средне-Европейская).

Как древние, так и молодые платформы имеют двухслойное строение: кристаллический фундамент, сложенный глубоко метаморфизированными породами (гнейсы, кристаллические сланцы) с большим количеством гранитных структур, и осадочный чехол, сложенный океаническими и терригенными осадками, а также органо-вулканогенными породами. Часть древних платформ, которая покрыта чехлом, называется плитой. Эти участки, как правило, характеризуются общей тенденцией к опусканию и прогибанию фундамента. Участки платформ, не покрытые чехлом осадков, носят название щиты и характеризуются направленностью к поднятию. Менее крупные выступы фундамента платформ, часто покрывающиеся морем называют массивами. Молодые платформы отличаются от древних не только возрастом. Их фундамент менее метаморфизирован, в нем содержится меньше гранитных интрузий, поэтому вернее его называть складчатым. В силу возраста фундамент и чехол не достаточно дифференцированы в молодых платформах, поэтому определить четкую границу между ними достаточно сложно в отличие от древних платформ. Кроме того молодые платформы полностью покрыты осадочным чехлом, щиты в их структуре крайне редки, поэтому их принято называть просто плитами. Отмечено, что на платформах северного ряда более распространены плиты, в то время как на платформах южного ряда чаще встречаются щиты.

В пределах плит различают: синеклизы, антеклизы, авлакогены. Синеклизы - крупные пологие впадины фундамента, антеклизы в свою очередь крупные и пологие поднятия фундамента. В районах синеклиз повышена мощность осадочного чехла, в то время как вершины антеклиз могут выступать на поверхность в форме массивов. Авлакогены - линейные прогибы длиной в сотни и шириной в десятки километров, ограниченные сбросами. На склонах антеклиз и синеклиз располагаются тектонические структуры более низкого ранга: плакантиклинали (складки с очень малым наклоном), флексуры и купола.

В пограничных участках выделяют краевые швы, краевые прогибы, окраинные вулканические пояса. Краевые швы - линии разломов, по которым соединяются щиты и складчатые пояса. Краевые прогибы приурочены к границам подвижных поясов и платформ. Окраинные вулканические пояса располагаются по окраинам платформ в местах проявления вулканизма. Слагаются они в основном гранитогнейсовыми и вулканическими породами.

Кроме них в последнее время были выявлены дополнительные тектонические структуры: сквозные пояса, которые разделяют складчатые напластования пород, рифтовые пояса, сходные с авлакогенами, но обладающие большей протяженностью и не содержащие смятых в складки пород в своем составе, глубинные разломы.

Т.о. существует большое разнообразие тектонических структур, в связи со своими масштабами разделенных на разные ранги: от общепланетных (земная кора) до локальных (щиты, массивы). Помимо масштаба тектонические структуры также различаются по форме (поднятые, прогнутые) и по комплексу тектонических процессов, преобладающих в них (поднятия, опускания, вулканизм).

земной кора горный порода

Наиболее крупными структурными элементами земной коры являются континенты и океаны. Различия между этими двумя крупнейшими структурными элементами не ограничиваются только типом земной коры, а прослеживаются и глубже, в верхнюю мантию, которая под континентами построена иначе, чем под океанами, и эти различия охватывают всю литосферу, а местами и тектоносферу. В пределах континентов и океанов выделяют менее крупные структурные элементы.

Структурные элементы континентальной земной коры. К числу основных структурных элементов континентов относятся континентальные платформы и подвижные пояса, а также глубинные разломы.

Континентальные платформы (кратоны) представляют собой своеобразные ядра материков и занимают большие части их площадей – порядка миллиона квадратных километров. Они слагаются типичной континентальной корой мощностью 35 – 45 км. Литосфера в их пределах достигает мощности 150 – 200 км, а по некоторым данным – 400 км.

В строении платформ различают два структурных этажа: фундамент и чехол. Мощность осадочного чехла составляет в среднем 3 – 5 км, а в наиболее глубоких прогибах и впадинах достигает 10-12 км. В исключительных случаях (Прикаспийская низменность) – 20 – 25 км. Кристаллический фундамент составляет нижний структурный этаж платформ и сложен преимущественно в различной степени метаморфизированными, а также интрузивно-магматическими породами, среди которых ведущая роль принадлежит граниту. Платформы обычно характеризуются равнинным рельефом, то низменным, то плоскогорным. Некоторые их части могут быть покрыты мелкими, эпиконтинентальными морями, типа современных Азовского, Балтийского, белого. Их характеризует также низкая скорость современных вертикальных движений, слаба сейсмичность, отсутствие или редкое проявление вулканической деятельности, пониженный по сравнению со среднеземным тепловой поток. В общем, платформы – это наиболее устойчивые и спокойные участки континентов.

Наиболее типичными являются древние платформы, т.е. платформы, кристаллический фундамент которых формировался в течение архея – протерозоя. Докембрийские платформы составляют древнейшие и центральные части материков и занимают около 40% их площади; термин «кратон» обычно применяется именно к ним. К числу древних платформ относятся Северо - Американская, Южно-Американская, Восточно-Европейская, Сибирская, Китайско-Корейская, Африканская, Индостанская, Австралийская, Антарктическая, Южно-Китайская. В фундаменте древних платформ преобладают архейские и раннепротерозойские образования. Эти образования, как правило, глубоко метаморфизированны; главную роль среди них играют гнейсы и кристаллические сланцы, широко распространены граниты. Поэтому такой фундамент называют гранито-гнейсовый или просто кристаллический.

Значительно меньшую площадь в структуре материков (5%) занимают молодые платформы, которые располагаются либо по периферии материков, как Средне- и Западно-Европейские, Восточно-Австралийская, Патагонская, либо между древними платформами, например, Западно-Сибирская платформа между древними Восточно-Европейской и Сибирской. Фундамент молодых платформ слагается в основном фанерозойскими осадочно-вулканическими породами, испытавшими слабый или даже начальный метаморфизм. Граниты и другие интрузивные образования, среди которых следует отметить офиолитовые пояса, играют подчиненную роль в составе этого фундамента, который в отличие от фундамента древних платформ именуется не кристаллическим, а складчатым. В зависимости от возраста завершающей складчатости этого фундамента молодые платформы или их части подразделяются на эпикаледонские, эпигерцинские, эпикиммерийские. Молодые платформы в значительно большей степени покрыты осадочным чехлом, чем древние, и по этой причине их часто именуют просто плитами. Выступы фундамента, не затронутые новейшей тектонической активизацией и поэтому не превращенные во внутриконтинентальные орогены, встречаются скорее в виде исключения, одно из них – Казахский щит. Соответственно молодые платформы обладают за пределами таких щитов или массивов равнинным, часто низменным характером.

Поверхность платформ неоднородна. Здесь можно выделить несколько более мелких тектонических единиц:

Кристаллические щиты характерны преимущественно для древних платформ и представляют собой крупные площади выхода на дневную поверхность кристаллического фундамента. На протяжении практически всей геологической истории эти участки континентальной земно коры обнаруживают устойчивую тенденцию к поднятию и денудации, вследствие чего осадочный чехол здесь имеет небольшие мощности. Кристаллические щиты легко выделяются в пределах платформ северного ряда, где они со всех сторон окружены осадочным чехлом (Канадский, Украинский, Алданский, Анабарский, Балтийский щиты), но значительно труднее в пределах платформ южного ряда, особенно Африканской и Индостанской, на большей части площади которых кристаллический фундамент обнажается на поверхности, а осадочный чехол, напротив, распространен более ограниченно, в пределах замкнутых впадин. В пределах молодых платформ кристаллические щиты или кристаллические массивы практически не встречаются.



Антеклизы представляют собой крупные и пологие погребенные поднятия фундамента, в сотни километров в поперечнике. Глубина залегания фундамента и соответственно мощность осадочного чехла в их сводовых частях не превышает 1 – 2 км. Иногда в центре антеклизы имеются относительно небольшие выходы фундамента (Воронежская антеклиза Русской плиты, Оленекская антеклиза в Сибири и т.д.). В некоторых случаях антеклизы являются как бы многовершинными; эти вершины именуются сводами, например Татарский и Токмаковский своды Вогло-Уральской антеклизы.

Синеклизы – крупные, пологие, почти плоские впадины фундамента до 3 – 5 км и относительно более мощным осадочным чехлом. Следует иметь ввиду, что антеклизы и синеклизы – очень пологие структурные формы: угол наклона слоев составляет менее 1 0 . На гондванских платформах синеклизы представляют собой изолированы впадины, окруженные выходами фундамента (синеклизы Конго, Амазонская и т.д.). На платформах северного ряда синеклизы обычно граничат с антеклизами, либо с щитами. Типичными являются Московская синеклиза Русской плиты, Амударьинская синеклиза Туранской плиты и т.д.

Авлакогены – четкие линейные грабен – прогибы, протягивающиеся на многие сотни километров при ширине в десятки, а иногда и сотни километров, ограниченные разломами (сбросами) и выполненные мощными толщами осадков. Глубина залегания фундамента нередко достигает 10 – 12 км, а консолидированные кора и литосфера в целом часто утончены. Геологическая эволюция авлакогенов имеет двоякую природу. В одних случаях, происходит перерождение авлакогенов через равновеликие прогибы в синеклизы и представляет собой обычное явление. Многие ученые, в частности Н.С. Шатский, считают, что в основании большей части, если не всех синеклиз, должны находиться палеорифты – авлакогены. В других случаях в результате процессов сжатия литосферы, авлакогены эволюционируют в складчатые зоны различной степени сложности – валы.

Подвижные пояса. Среди подвижных поясов континентов различают складчатые пояса, эпиплатформенные орогены и рифты.

Складчатые пояса . Представляют собой линейные планетарные структуры, протяженностью во многие тысячи километров и шириной более 1000 км. Занимают окраинно-континентальное или межконтинентальное положения, разделяя и обрамляя континентальные платформы (Тихоокеанский, Урало-Охотский, Средиземноморский, Северо-Атлантический, Арктический). Это очень сложные и разнообразные по строению структуры, которые начали формироваться в протерозое и представляют собой орогенные покрово-складчатые сооружения с повышенной мощностью континентальной коры и сильно расчлененным рельефом. Они сложены мощными слоями осадочных и вулканогенных пород, смятыми в складки и перемещенными относительно друг друга по зонам разломов. Это тектонически активные области континентов, которые отличаются высокой сейсмичностью, интенсивным проявлением процессов магматизма и метаморфизма. Для них характерны значительные скорости и амплитуды тектонических движений. От соседних континентальных платформ складчатые пояса отделяются прогибами, либо краевыми швами, которые представлены глубинными разломами. Основными структурными элементами подвижных поясов являются складчатые области (крупные отрезки поясов, различающиеся историей развития, строением и отделенные друг от друга крупными поперечными разломами; Восточно-Казахстанская, Алтае-Саянская и Монголо-Охотская области Урало-Охотского пояса); складчатые системы (отчетливые линейные структуры, выделяемые в пределах складчатых областей, имеющие протяженность более тысячи километров и разделенные жесткими блоками земной коры – срединными массивами; Уральская, Кавказская, Северо-Тяньшанская системы). Складчатые системы состоят из отдельных синклинориев и антиклинориев. Синклинории - отрицательные структуры, испытавшие длительное погружение и интенсивную складчатость на завершающих этапах развития; характеризуются большими мощностями вулканогенных и осадочных пород, преобладанием тонкообломочных пород; зеркало складчатости имеет вогнутую форму. Антиклинории – положительные складчатые структуры, разделяющие синклинории и граничащие с ними по крупным разломам; свойственно преобладание положительных движений; меньшие мощности толщ, преимущественное распространение грубообломочного материала, складки имеют выпуклое зеркало складчатости. В свою очередь антиклинории и синклинории состоят из большого числа антиклиналей и синклиналей.

Судьба складчатых поясов после окончания их активного развития обычно заключалась в постепенном срезании их горного рельефа и складчато-надвиговых структур денудацией и смене орогенного режима более спокойным платформенным. В дальнейшем отдельные части поясов перекрываются осадочным чехлом и превращаются в плиты молодых платформ, как это произошло с северной, западносибирской, частью Урало-Охотского пояса и с северной периферией Средиземноморского пояса, ныне занятой Западно-Европейской, Скифской и Туранской плитами. Другие части пояса в новейшую тектоническую эпоху испытали повторное горообразование уже во внутриконтинентальных условиях; примеры – Урал, Тянь-Шань, Алтай и ряд других горных сооружений в Урало-Охотском и Средиземноморском поясах.

Эпиплатформенные орогены (внутриконтинентальные орогенные пояса) образуются на месте территорий, длительное время представлявших собой платформу, т.е. их формированию предшествовал платформенный этап развития, вследствие чего они получили название вторичных орогенов, процессы в результате которых возникли эти структуры называют тектонической активизацией платформ. Эпиплатформенные орогенные пояса обладают горным рельефом, высокой сейсмичностью, но низкой магматической активностью.

Различают три основных типа эпиплатформенных орогенов:

1. Структуры непоредственно примыкающие к складчатым поясам. Их образование связано с орогенезом в смежных складчатых поясах. Наиболее крупными представителями этих структур являются горные системы Алтая, Тянь-Шаня, Гиндукуша, Памира, Прибайкалья, Забайкалья, Тибетское нагорье, плато Колорадо, горный Крым;

2. Эпиплатформенные орогены, располагающиеся в пределах пассивных окраин континентов, такие как Аппалачи, Скандинавские горы и т.д. Предполагается, что они образовались в результате сжатия, источником которых были рифтовые зоны срединно-океанических хребтов;

3. Линейные поднятия в глубине платформ, вдали от складчатых поясов и океанов (внутриплатформенные вторичные орогены). Урал, Тиманский кряж, плато Путорана в Сибири, плато Декан на Индостане. Возникновение линейных орогенов связано со сжимающимися напряжениями вдоль древних швов внутри платформ, а изометричных – с выступами астеносферы и восходящими конвективными потоками мантии.

Континентальные рифты это системы сейсмически активных прогибов, возникших в результате растяжения и уплотнения литосферы, сопровождаемого на глубине выступами астеносферного слоя, что обусловило подъем повышенного теплового потока и активную магматическую деятельность. В своем большинстве континентальные рифты сформировались в неоген-четвертичное время на месте крупных сводовых поднятий континентальной земной коры. Образование рифтов можно отнести к процессам тектонической активности платформ. Активным рифтовым зонам континентов присущи ресчлененный рельеф, сейсмичность, вулканизм. Центральное положение в рифтовой зоне обычно занимает долина, шириной 40-50 км, ограниченная сбросами, нередко образующими ступенчатые системы. Тектонические блоки по краям рифта бывают приподняты до отметок 3.000 – 3.500 м и более. Протяженность континентальных рифтов составляет сотни и даже тысячи километров при ширине от нескольких километров до десятков и сотен километров. Наиболее известными представителями этих структур являются Восточно-Африканский пояс, Байкальский и Рейнский рифты. Древними аналогами рифтов являются авлакогены.

В пределах континентов платформы и складчатые пояса часто пересекаются глубинными разломами. Глубинный разлом – это региональная или планетарная структура разрыва земной коры, обладающая большой протяженностью и значительной глубиной залегания, с которой в течение длительного периода времени связаны интенсивные тектонические, магматические и метаморфические процессы. Глубинные разломы разделяют крупные блоки земной коры, различающиеся тектоническим режимом, структурой и историей развития.

Структурные элементы океанической земной коры. Самыми крупными и значимыми элементами океанского дна являются срединно-океанические хребты, океанские платформы и трансформные разломы.

Срединно-океанические хребты. Образуют планетарную систему общей протяженностью около 60 тыс. км., пересекающую все океаны и занимающую около 1/3 поверхности их дна. Океанская кора в пределах срединно-океанических хребтов имеет минимальную мощность, а местами и вовсе отсутствует; мощность литосферы обычно не превышает 30 км.

Срединно-океанические хребты на всем своем протяжении тектонически и вулканически активны, являются современными зонами спрединга, т.е. зонами расширения океанского дна и наращивания новообразованной океанической коры.

Следует отметить, что срединное положение эти структуры занимают в Атлантческом и Индийском океанах, в то время как в Тихом и Северном Ледовитом – сдвинуты к одной из границ этих океанов. Хребты воздымаются над ложем океана на 1-3 км, их ширина составляет от сотен до 2-3 тыс. км. Некоторые хребты или их отрезки, которые отличаются большей шириной (до 4 тыс. км) и пологими, относительно слабо расчлененными склонами, получили название срединно-океанических поднятий.

В строении СОХ выделяют осевые, гребневые и фланговые зоны.

Осевые зоны хребтов часто выражены узкими (ширина 20-30 км, глубина 1-2 км) центральными рифтовыми долинами, которые отличаются сейсмичностью и высоким тепловым потоком, представляя собой оси активного раздвига с трещинами растяжения, многочисленными центрами вулканических извержений и застывшими лавовыми озерами. Осевые части хребтов служат осевыми зонами выделения внутреннего тепла Земли, являются современными поясами сейсмичности и отвечают непосредственным границам литосферных плит, где происходит новообразование океанской коры.

Гребневые зоны хребтов располагаются по обе стороны рифтовых долин, имеют ширину 50-100 км и отличаются сильно расчлененным рельефом и блоковой тектоникой. Они разбиты продольными разломами на узкие блоки, приподнятые или опущенные относительно друг друга.

Фланговые зоны хребтов имеют наибольшую ширину и плавно понижаются в сторону океанического ложа. Практически асейсмичны.

Океанские платформы/плиты представляют собой крупные площадные структуры, занимающие обширные пространства между срединно-океаническими хребтами и подводными окраинами континентов. Отличаются относительно спокойной тектонической обстановкой, нормальным тепловым потоком и ограниченным проявлением вулканизма. Практически асейсмичны.

Рельеф океанических платформ представляет собой абиссальные равнины (абиссаль -) с осложняющими их поднятиями и хребтами. Некоторые абиссальные равнины, особенно в Атлантическом и Индийском океанах обладают почти идеально плоским рельефом, когда все неровности сглажены достаточно мощным слоем осадков, другие, преимущественно в Тихом океане, характеризуются холмистым рельефом, который отражает все неровности подстилающего базальтового слоя. Среди равнин возвышаются подводные вулканические горы, иногда выступающие над поверхностью океана в виде островов (например остров Реюньон в Индийском океане, Гавайские острова).

В качестве основных структурных элементов океанских платформ выступают котловины и разделяющие их внутренние поднятия.

Котловины обычно занимают пониженные участки абиссальных равнин. Глубина океана над ними составляет 4000 – 6000 м. Эти структуры обладают типичной океанской корой мощность 5-6 км. Примерами котловин могут служить Гвианская, Бразильская, Иберийская в Атлантическом океане; Северо-Западная, Наска, Кокосовая в Тихом океане.

Внутриплитные океанские поднятия которые разделяют котловины представленя крупными подводными возвышенностями и хребтами. Возвышенности имеют как правило овально-округлые очертания (бермудское поднятие в Атлантическом океане). Некоторые из них за плоский рельеф получили название плато. Внутриплитовые хребты являются отчетливыми линейными структурами, протягивающимися на тысячи километров. В отличие от СОХ они асейсмичны. Океанские поднятия воздымаются над смежными котловинами на 2-3 км и более, а их наиболее возвышенные участки образуют острова и целые архипелаги (Бермудские острова, острова Зеленого мыса). Подняти имеют утолщенную океаническую земную кору

Еще одним типом внутриплитных поднятий являются микроконтиненты с утоненной континентальной корой (до 25-30 км). Они характеризуются плоской, выровненной поверхностью рельефа, лежащей на глубине 2-3 км, и морфологически выражены подводными плато с островами в наиболее поднятых частях (Сейшельский архипелаг в Индийском океане).

Трансформные разломы – это разломы, расчленяющие СОХ на отдельные сегменты, смещенные относительно друг друга на сотни километров. В рельефе дна трансформные разломы выражены уступами, высотой более 1 км и вытянутыми вдоль них узкими ущельями глубиной до 1,5 км. Вдоль разломов наблюдается проявление вулканической деятельности. Наиболее крупные из трансформных разломов пересекают не только СОХ и абиссальные равнины, но могут продолжаться и в пределах смежных континентов (разлом Мендосино в Тихом океане). На пересечении СОХ трансформными разломами нередко возникают крупные вулканические постройки, нередко выступающие над поверхностью воды в виде островов (Азорские острова; о. Пасхи)

Контрольные вопросы и задания

  • 1. Что такое относительное и абсолютное летоисчисление?
  • 2. На чем базируется стратиграфический метод?
  • 3. На чем основан литолого-петрографический метод?
  • 4. В чем заключается палеонтологический метод?
  • 5. Расскажите о стратиграфической шкале.
  • 6. Какие методы определения абсолютного возраста существуют? Расскажите о них.
  • 7. Расскажите о геохронологической шкале.

ТЕКТОНИЧЕСКИЕ ДВИЖЕНИЯ И ТЕКТОНИЧЕСКИЕ СТРУКТУРЫ ЗЕМНОЙ КОРЫ

Тектонические движения многообразны. Одни приводят к формированию крупных поднятий и прогибов, другие выражаются в смятии слоев в складки, третьи являются причиной образования разломов и разрывов. Выделяются два основных вида тектонических движений: вертикальные и горизонтальные .

Вертикальные движения земной коры приводят к ее выгибанию (относительному поднятию) и прогибанию на больших территориях. Особенностью вертикальных колебательных движений земной коры является их непрерывное и повсеместное проявление на протяжении всей геологической истории.

В современном распределении континентов и океанов, в процессах горообразования, вулканизма главное значение имеют горизонтальные движения, которые приводят к смятию слоев в складки. Участок коры, смятый в складки, не может вернуться к первоначальному состоянию. Дальнейшее преобразование структурной формы может происходить только в направлении большего усложнения складчатой структуры.

Тектонические движения вызываются накоплением тепла в недрах Земли в результате радиоактивного распада неустойчивых элементов, что приводит к нарушению равновесия масс горных пород.

Земля - третья от Солнца планета Солнечной системы. Благодаря своим уникальным, быть может, единственным во Вселенной природным условиям она стала местом, где возникла и получила развитие органическая жизнь.

Площадь поверхности Земли 510,2 млн км 2 , из которых примерно 70,8% приходится на Мировой океан. Его средняя глубина около 3,8 км, максимальная (Мариинская впадина в Тихом океане) равна 11 022 км, объем воды 1370 млн км 2 , средняя соленость 35 г/л. Суша составляет соответственно 29,2% и образует шесть материков и острова. Она поднимается над уровнем моря в среднем на 875 м. Горы занимают свыше 1/3 поверхности суши .

Тектонические структуры земной коры - это обособленные участки, отличающиеся от смежных участков определенными особенностями строения, истории геологического развития и состава слагающих их пород. Движения земной коры и более глубоких оболочек, приводящие к образованию и изменению различных тектонических структур, называют тектоническими.

Самыми крупными тектоническими структурами земной коры являются материки и океаны (рис. 1.1) . Коренные различия между ними заключаются в отсутствии под океанами гранитного слоя, в уменьшении толщины базальтового слоя и неглубоком залегании поверхности Мохоровичича под океанами по сравнению с континентами. Выделяют материковую (континентальную), океаническую и переходную кору.

К числу основных структурных элементов континентов относятся континентальные платформы и подвижные пояса.

Океан Материк Океан

Рис. 1.1. Строение земной коры под материками и океанами : 7 - осадочный слой; 2 - гранитный слой; 3 - базальтовый слой

Континенты характеризуются определенными чертами:

  • 1) увеличенная мощность земной коры, в составе которой присутствует гранитно-метаморфический слой;
  • 2) верхняя мантия имеет неоднородную астеносферу, она обеднена базальтами и более холодная;
  • 3) присутствует как основной, так и кислый магматизм;
  • 4) континентальная литосфера сформировалась за счет геосин-клинальных процессов, которые и привели к образованию мощного гранитно-метаморфического слоя.

Материки не заканчиваются у кромки океана, а продолжаются под океаническими водами.

Понятие о платформах зародилось в конце XIX в. в противопоставление подвижным поясам земной коры, к тому времени получившим название «геосинклинали». Термин «платформа» появился впервые в 1904 г. во француском переводе капитального труда австрийского геолога Э. Зюсса «Лик Земли». В 1921 г. для стабильных частей континентов австралийский тектонист Л. Кобер предложил термин «кратоген» (от греч. кратос - крепкий, устойчий), который немецкий ученый Г. Штилле сократил до названия «кратон».

Платформы представляют крупные и относительно устойчивые в тектоническом отношении участки земной коры, имеющие в поперечнике тысячи километров. Их характеризуют определенные черты: возраст формирования, место расположения и наличие двух структурных этажей.

Выделяют платформы двух видов: континентальные и океанические.

Континентальные платформы занимают огромные площади в миллионы квадратных километров и сложены континентальной корой мощностью до 30-45 км. Литосфера в их пределах достигает мощности 150-200 км, а по некоторым данным - до 400 км.

Платформы характеризуются выравненным низменным или плоскогорным рельефом, небольшой скоростью тектонических движений, слабой сейсмичностью, отсутствием или редкими проявлениями вулканической деятельности, пониженным тепловым потоком. Это наиболее устойчивые и спокойные области континентов. Часть территории платформ покрыта водами морей (таких, как Балтийское, Белое, Азовское). Они отличаются возрастом формирования, местом расположения и наличием двух структурных этажей.

Океанические платформы на дне океанов (океанические котловины) имеют стандартную океаническую земную кору и слабый осадочный чехол. В строении платформы различают два структурных этажа: первый (нижний) - консолидированный складчатый фундамент и второй (верхний) - осадочный чехол.

Фундамент представлен образованиями геосинклинального пояса, области или системы, сильнодислоцированными, метамор-физованными, пронизанными многочисленными интрузивными телами. Принято выделять фундамент кристаллический и складчатый. Кристаллический фундамент сложен гранитами, гнейсами, слюдяными сланцами, т.е. преимущественно интрузивными магматическими и глубокометаморфизованными породами. Складчатый фундамент сложен в основном эффузивными магматическими образованиями и сильнометаморфизованными породами: глинистыми сланцами, филлитами, роговиками и др., в значительной степени дислоцированными.

По времени формирования складчатого фундамента различают два основных типа платформ: древние и молодые.

Древние платформы занимают около 40% площади континентов. К их числу относятся Северо-Американская, Восточно-Европейская, Сибирская, Южно-Американская (Бразильская), Африканская (Африкано-Аравийская), Австралийская, Антарктическая и др. Они, как правило, ограничены краевыми швами - крупными глубинными разломами и окаймлены складчатыми поясами.

Фундамент древних платформ сформировался в условиях геосинклинального тектонического режима. В нем преобладают мета-морфизованные (от зеленосланцевой до гранулитовой фации метаморфизма), интенсивно дислоцированные архейские и раннепротерозойские образования; значительно меньше распространены позднепротерозойские. Главную роль среди них играют гнейсы и кристаллические сланцы, широко распространены гранитоиды. В связи с этим такой вид фундамента называют гранитогнейсовым или просто кристаллическим.

Значительные площади фундамента древних платформ перекрыты неметаморфизованными отложениями платформенного чехла мощностью 3-5 км, а в некоторых случаях - 15-18 км и более. Состав отложений разнообразен, но чаще всего преобладают осадочные породы морского и континентального происхождения, образующие выдержанные на большой площади пласты и толщи. Весьма характерны карбонатные породы - известняки, писчий мел, доломиты, мергели, широко распространены пески, глины, песчаники, аргиллиты, реже встречаются конгломераты, эвапо-риты, угленосные отложения, фосфориты. Кроме того, в состав чехла могут входить покровы континентальных базальтов (плато-базальты) и изредка - кислые вулканиты. Для многих платформ типичны покровно-ледниковые отложения.

Осадочный чехол древних платформ возник в условиях платформенного тектонического режима и представлен породами, отложившимися в верхнем протерозое, палеозое, мезозое и кайнозое. На долю древних платформ приходится около 40% площади современных материков Земли.

Молодые платформы занимают значительно меньшую площадь континентов (около 5%) и располагаются либо по периферии древних платформ, как Восточно- и Западно-Европейские, Восточно-Австралийская и Патагонская, либо между ними, например Западно-Сибирская платформа между древними Восточно-Европейской и Сибирской. Рельеф молодых платформ - равнины и низменности - аналогичен таковому древних платформ. Они отличаются большой дислопированностью чехла, меньшей степенью метаморфизма пород фундамента и значительной унаследованно-стью структур чехла от структур фундамента.

Фундамент молодых платформ составляют испытавшие денудацию складчатые пояса, закончившие свое развитие в позднем силуре - среднем девоне (каледонские), в поздней перми - среднем триасе (герцинские) или в ранней - средней юре (киммерийские). Они сложены в основном фанерозойскими осадочно-вулканогенными породами, испытавшими складчатые деформации и слабый (зеленосланцевая фация) или даже только начальный метаморфизм.

Платформенный чехол молодых платформ представлен осадочными породами палеогенового, неогенового и четвертичного периодов практически без следов метаморфизма. Осадочные породы имеют малую толщину (2-3 км, реже - более), покрывают поверхность складчатого фундамента, зачастую с резким угловым несогласием. Несогласие отражает геологическую историю платформы: складчато-глыбовый фундамент сформировался в орогенный этап развития геосинклинальной системы, затем происходило опускание территории и на поверхности «орогена» накапливались породы чехла. Осадочные и вулканогенные образования чехла залегают с углами 1-3° и очень редко - больше. Местами строение чехла осложнено грабенами и грабенообразными прогибами - авлакогенами (от греч. - бороздой рожденные).

Платформы в большей части граничат со складчатыми системами через передовые прогибы. В некоторых территориях наблюдается надвиг складчатых структур орогенов на передовые прогибы. Наиболее крупными структурами континентальных платформ, ко-

торые выделяются по положению фундамента, являются щиты и плиты (рис. 1.2).

Синеклиза

Антеклиза


Складчатое основание

Рис. 1.2. Схема строения платформы

Щиты характерны для древних платформ. Это крупные в тысячу и более километров в поперечнике площади выхода на поверхность платформенного фундамента. В течение большей части истории геологического развития они испытывают устойчивое воз-дымание (и, следовательно, денудацию), лишь изредка и ненадолго покрываясь мелким морем.

Примерами таких структур служат Алданский, Анабарский, Балтийский, Канадский, Украинский щиты. Менее крупные выходы на поверхность фундамента, длительное время перекрывавшиеся осадками, называют кристаллическими массивами (например, Воронежский массив); они обычно образуют ядра анте-клиз.

Плиты - части платформ с развитым осадочным или вулканогенно-осадочным чехлом, обладающие тенденцией к опусканию. По площади они не уступают щитам или даже превосходят их. Фундамент молодых платформ целиком или почти целиком перекрыт чехлом, и по этой причине их часто называют просто плитами. Помимо щитов и плит в структуре платформ нередко выделяются зоны перикратонных опускании - окраинные перикратонные прогибы. Такие зоны наиболее отчетливо выражены между щитами и подвижными поясами (Ангаро-Ленская зона Сибирской платформы, зона Великих равнин между Канадским щитом и Скалистыми горами).

Зоны перикратонных опусканий характеризуются пологим моноклинальным или ступенчато-моноклинальным погружением фундамента в сторону подвижных поясов. Эти зоны представляют внутренние части пассивных континентальных окраин (отвечают внутреннему шельфу) и отличаются повышенной мощностью (до 10-12 км) морских осадков по сравнению с плитами.

В пределах древних и молодых платформ выделяют более мелкие структурные элементы - антеклизы, синеклизы и авлакогены. Эти структуры сложены породами платформенного чехла, но их морфология во многом определяется строением поверхности фундамента.

Антеклизы представляют собой пологие поднятия в сотни километров в поперечнике, имеющие форму сводов с утоненным (мощностью не более 1-2 км) чехлом и приподнятым фундаментом. Разрез чехла обычно изобилует перерывами в осадконакоплении и сложен мелководными или континентальными отложениями. Иногда в центре антеклиз имеются относительно небольшие выходы фундамента (Воронежская антеклиза Русской плиты, Оленек-ская антеклиза в Сибири и др.). В некоторых случаях антеклизы являются как бы многовершинными; эти вершины именуются сводами (Татарский и Токмовский своды Волго-Уральской антеклизы).

Синеклизы - это обширные, пологие, почти плоские прогибы, под которыми фундамент опущен, а мощность чехла достигает 3-5 км и более (Московская, Тунгусская и другие синеклизы). Они отличаются более полным и глубоководным разрезом осадочного чехла. Подобно тому как антеклизы могут распадаться на несколько сводов, синеклизы могут состоять из нескольких впадин, разделенных сводами или седлами. Несколько таких впадин различают в пределах Тунгусской синеклизы. Обычно синеклизы граничат с антеклизами или со щитами. Встречаются они в пределах самих щитов. Углы наклона слоев в пределах синеклиз и антеклиз, как правило, не превышают Г.

Одна из главных причин, вызывающих осложнения в осадочном чехле платформ, - это глубинные разломы. Крылья разломов испытывают разнонаправленные перемещения, которые сказываются на перекрывающих их осадочных образованиях - возникают условия для формирования плит, антеклиз, синеклиз и других структур.

Хребты представляют собой вытянутые аналоги щитов, на поверхность выходят как кристаллические, так и дислоцированные породы складчатого фундамента.

Хребты небольших размеров выделяются в виде кряжей (Тиман-ский и др.). Массивы (выступы) - крутые платформенные структуры, перекрытые маломощным осадочным чехлом. К положительным структурам чехла относят гряды, своды, валы и зоны поднятий. Гряды - линейные структуры значительных размеров горстового типа, перекрытые маломощным чехлом; своды - крупные округлые структуры чехла мощностью около 2 км; валы - значительные по размерам, вытянутые структуры осадочного чехла, объединяющие несколько блоковых структур, меньших по протяженности - Окско-Цнинский вал и др.; зона поднятий объединяет несколько линейных горстовидных поднятий в чехле платформы.

Авлакогены - линейные грабен-прогибы, протягивающиеся на многие сотни километров при ширине в десятки, иногда более сотни, километров и выполненные мощными толщами осадков, а нередко и вулканитов, среди которых особенно характерны базальты повышенной щелочности. Среди осадков типичны соленосные и угленосные формации. Развитие авлакогенов сопровождается опусканием фундамента и одновременным формированием платформенного чехла. Глубина залегания фундамента нередко достигает 10-12 км, а кора и литосфера в целом утонены, что объясняется подъемом разуплотненной мантии.

Такое глубинное строение характерно для континентальных рифтов. Их древней и погребенной разновидностью - палеорифтами - авлакогены и являются. Примерами авлакогенов могут служить Тиманская, Пачелмская и Днепрово-Донецкая структуры. Авлакогены чаще всего формировались в рифте и слагали нижний структурный подъярус платформенного чехла. В верхней части чехла авлакогены могут быть выражены развитием над ними сине-клизов или зонами складчатости с образованием валов. Валы представляют собой пологие линейные поднятия протяженностью в несколько десятков километров; как правило, они состоят из более мелких антиклинальных структур.

В осевой части широких авлакогенов нередко наблюдаются гор-стовые поднятия, как, например, Сунтарский горст в Вилюйском авлакогене. В пределах авлакогенов и глубоких синеклиз с мощными соленосными толщами широко распространены соляные ди-апиры - купола и валы (например, в Днепрово-Донецком авлакогене и Прикаспийской синеклизе).

К отрицательным структурам осадочного чехла платформ, помимо отмеченных синеклиз и авлакогенов, относят перикратонные опускания, впадины, прогибы и др. Перикратонные опускания - широкие зоны длиной до 1000 км, имеющие глубокопогруженный фундамент, с большими мощностями осадочного чехла. Перикратонные опускания располагаются по краям платформы.

Впадины представляют собой крупные изометрические платформенные структуры. Вытянутые аналоги впадин - прогибы.

Среди структур меньших размеров различают моноклинали, флексурно-разрывные зоны, уступы и др.

Краткий разбор современных структур земной коры показывает, что каждая глобальная структура носит сугубо индивидуальные черты развития и становления. Механизм перехода от геосинкли-нального пояса области к горноскладчатым областям и платформам до конца не раскрыт. Традиционно развитие материков рассматривалось с позиции континентальной геологии. Новые данные исследований океанов показали, что ключ к разгадке появления материков и океанов лежит на дне океана. Но было бы очень просто объяснить появление орогенов и возникновение океанов только одним перемещением литосферных плит.

Подвижные пояса. Среди подвижных поясов континентов различают складчатые пояса и континентальные орогены.

Складчатые пояса - линейные планетарные структуры протяженностью в тысячи километров и шириной, как правило, более 1000 км, занимают окраинно-континентальное или межконтинентальное положение, разделяя континентальные платформы (Тихоокеанский, Урало-Охотский, Средиземноморский, Северо-Атлантический, Арктический пояса). Прежде их называли геосинкли-нальными или геосинклинально-орогенными, складчатыми геосинклинальными поясами, а в современной литературе - просто складчатыми или орогенными, имея в виду первичный (эпигеосин-клинальный) орогенез, непосредственно сменяющий режим преобладающих погружений и накопления морских осадков.

Континентальные орогены получили название горно-складчатых или складчатых областей, которые, в свою очередь, подразделяются на эпиконтинентальные и эпиплатформенные. Эпиконтинен-талъные орогены проявились на завершающем этапе развития гео-синклинальной системы при значительном внедрении кислых батолитов и повышенной сейсмичности. Примером являются горноскладчатые области альпийского тектономагматического цикла: Альпы, Кавказ, Карпаты, Гималаи, Памир, Южно-Американские Анды и др. Эпиплатформенные орогены отличаются наличием высокой сейсмической активности, восходящими движениями, сильной расчлененностью рельефа и глыбовым строением самого орогена. Примером таких орогенов могут быть Тибет, Тянь-Шань, Монголо-Охотский пояс.

Основными структурами континентальных орогенов являются антиклинории и синклинории.

Антиклинории - крупные (протяженностью сотни километров) и сложные складчатые структуры в целом антиклинального строения. В ядре антиклинориев располагаются более древние по-

роды, чем на крыльях структуры. Несколько антиклинориев образуют мегантиклинорий, например Большого Кавказа.

Синклинории - крупные и сложные складчатые структуры в целом синклинального строения. Ядро синклинориев сложено более молодыми образованиями, чем крылья. Совокупность синклинориев составляет мегасинклинорий, например Афгано-Таджикская депрессия. В пределах горно-складчатой области выделяют структуры, меньшие по размеру, чем вышеописанные - древние глыбы, краевые прогибы, краевые массивы и наложенные впадины.

Переходные области - это переходные зоны между континентами и океанами, которые имеют особое значение в «тектонической жизни» земной коры и литосферы. Здесь накапливается основная масса осадков и вулканитов, они подвергаются, сразу или через некоторое время, наиболее интенсивным деформациям, континентальная кора замещается субокеанической или океанской, а океанская преобразуется в континентальную.

С практической точки зрения - это области основных зон неф-тегазонакопления. Переходные области обычно именуют континентальными окраинами , хотя они в такой же мере являются окраинами океанов, занимая 20% их площади. Их подразделяют на два типа: пассивные и активные . Главная особенность пассивных окраин - их внутриплитное положение и низкая сейсмическая и вулканическая активность. Они характерны для молодых океанов - Северного Ледовитого, Индийского и Атлантического. Образовались они в позднемезозойско-кайнозойское время и продолжают развиваться.

Активные окраины прослеживаются от окраинных морей к ложу океана и включают в себя островные дуги, глубоководные котловины и глубоководные желоба. Эти структуры представляют геосинкли-нальные пояса и области, которые являются зонами современной тектонической активности. В переходной зоне располагаются также крупнейшие сверхглубинные разломы , уходящие корнями в недра Земли на глубины 400-700 км.

Типичный пример современной активной окраины - тихоокеанская окраина Южной Америки.

Дно океана (ложе) характеризуется рядом геофизических признаков: относительно повышенным тепловым потоком; специфическим зебровидным магнитным полем; повышенным значением гравитационного поля.

В океане выделяют следующие геоморфоструктуры: подводные материковые окраины (окраины моря), ложе океана (котловины, хребты и возвышенности), срединно-океанические хребты и переходные зоны (рис. 1.3).


Рис. 1.3.

ООО

  • 7 - шельф; 2 - материковый склон; 3 - материковое подножие; 4 - морские котловины; 5 - островные дуги; 6 - глубоководные желоба; 7 - абиссальные равнины; 8 - океанические валы и возвышенности; 9 - срединно-океанические хребты; 70 - крупні нейшие разломы

Обычно материки окружены окраинными морями, дно которых является продолжением материков и представлено материковым шельфом, материковым склоном и материковым подножием, развивающимися в едином (пассивном) тектоническом режиме. В шельфе различают также ее осушенную часть (прибрежные равнины). Состав океанической коры имеет трехслойное строение:

  • 1) осадочный слой;
  • 2) базальтовый слой (с включениями остатков планктонных организмов, состоящих из карбонатной и кремнистой основы);
  • 3) так называемый дайковый пояс, выраженный серией небольших магматических интрузий основного состава, плотно пригнанных друг к другу.

Граница между континентом и океаном проводится по линии выклинивания гранитно-метаморфического слоя, что почти соответствует изобате 2-2,5 км. В качестве микроконтинентальных структур исследователи рассматривают и некоторые участки океана, имеющие кору континентального типа, например, о. Мадагаскар и Новозеландское плато.

Контрольные вопросы и задания

  • 1. Назовите основные виды тектонических движений
  • 2. Какие главные структурные элементы выделяют на Земле?
  • 3. Как устроены платформы и как они различаются по возрасту?
  • 4. Какие структуры выделяют в чехле платформы?
  • 5. Дайте определение понятию «плита».
  • 6. Дайте определение понятию «щит».
  • 7. Дайте определение понятию «свод».
  • 8. Охарактеризуйте переходные области.
  • 9. Какие структуры выделяют в океане?


Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта