Главная » Заготовка и хранение » Применение ингибиторов солеотложений и коррозии в системах отопления. Технологии предупреждения образования солеотложений при эксплуатации скважин

Применение ингибиторов солеотложений и коррозии в системах отопления. Технологии предупреждения образования солеотложений при эксплуатации скважин

В настоящее время, осложняющим фактором в процессах нефтедобычи и бурения скважин является формирование сложных солевых осадков в призабойной зоне пласта (ПЗП), в оборудовании скважин, а также в системах сбора, транспорта и подготовки нефти. Это приводит к порче дорогостоящего оборудования, трудоемким ремонтным работам, а устранение образования солеотложений ежегодно обходится производству в виде потерянной продукции.

Для предотвращения солеотложений традиционно используют механические и химические методы. На сегодняшний день наиболее распространенным в нефтедобыче является химический способ, с применением ингибиторов солеотложений . Выбор наиболее эффективного ингибитора в каждом конкретном случае должен основываться на анализе рисков и лабораторном подборе реагента. Далее следуют независимое тестирование и опытно-промысловые испытания (ОПИ).

Целью настоящей работы является проведение сравнительного исследования эффективности ингибиторов солеотложений различных производителей в условиях месторождения Узень.

Отложение солей – одна из многих проблем, возникающих при добычи нефти. Отложения солей на стенках трубопроводов уменьшают эффективный диаметр, а значит и пропускную способность, нередко приводя к полному закупориванию. Солеотложения различных кислот приводят к засорению скважины, выходу из строя насоса, снижению притока жидкости и т.д. Эта проблема становится особенно актуальной в случае совместной добычи нефти и воды . Источником выделения солей являются пластовые воды, добываемые совместно с нефтью, в которых, в результате изменения температуры и давления, содержание неорганических веществ оказывается выше предела насыщения промысловых вод малорастворимыми солями щёлочноземельных металлов, в частности, карбонатом и сульфатом кальция, солями магния, бария и стронция . В виде примесей в отложениях встречаются сульфид железа, твердые углеводородные соединения нефти, кварцевые и глинистые частицы породы .

Все технологии борьбы с солеотложениями (рисунок 1) делятся на предупреждение и удаление солеотложения.

Как показывает практика, первая группа методов гораздо более эффективна.

В лабораторных условиях проведены исследования по оценке эффективности ингибиторов солеотложений.

Были протестированы 4 ингибиторы различных производителей: все водорастворимы и имеют плотность 1048 – 1025 г/см 3 .

Тестирование ингибиторов минеральных отложений проводились на имитате (модели) пластовой воды Узеньского месторождения следующего состава:

Лабораторное исследование ингибиторов проводились трилонометрическим методом по разности содержания ионов кальция в образцах с добавлением и без добавления ингибитора солей при 60°С.

По данным лабораторных исследований построен график зависимости эффективности реагента от концентрации:

Эффективность ингибирования солеотложений исследуемых реагентов различается, но всегда прямо пропорционально зависит от дозировки. Так, согласно результатам исследования эффективности ингибирования солеотложений на имитате (модели) воды максимальную эффективность (100%) ингибирования в «жёстких» условиях показали ИСО марки «D» и «A». Все ингибиторы начинают проявлять эффективность и при малых дозировках (5 – 10 мг/дм 3 ). При средних дозировках (20 мг/дм 3 ) эффективность ингибиторов примерно одинаковы (71,43 – 87,5%). При 30 мг/дм 3 100%-ную эффективность показал «D», тогда как «B» – 85,71%, «A» – 87,5%. При более высоких дозировках (60 мг/дм 3 ) наиболее эффективны «A», «D», эффективность реагента «B» – 85,71%.

Как следует из представленных данных, максимальная ингибирующая способность реагента «C» – 81,13 и 73,58% достигается при дозировках 20 и 30 мг/дм 3 .

В целом по результатам тестирования наибольшую эффективность в условиях месторождения Узень показали «A» и «D».

Применение ингибиторов при добыче нефти остается приоритетным направлением для предотвращения солеотложений.

В зависимости от механизма действия ингибиторы солеотложений условно можно разделить на следующие три типа:

хелаты - вещества, способные связывать солеобразующие катионы и препятствовать их взаимодействию с солеобразующими анионами;

ингибиторы «порогового» действия, добавление которых в раствор препятствует зарождению и росту кристаллов солей;

кристаллоразрушающие ингибиторы, не препятствующие кристаллизации солей, а лишь видоизменяющие форму кристаллов.

В основе механизма действия ингибиторов солеотложения лежат адсорбционные процессы. Адсорбируясь на зародышевых центрах солевого соединения, ингибиторы подавляют рост кристалла, видоизменяют его форму и размеры, препятствуют прилипанию друг к другу, а также ухудшают адгезию кристалла к металлическим поверхностям. В качестве химических реагентов, препятствующих кристаллизации малорастворимых неорганических солей эффективно используются комплексоны.

Ниже приводятся характеристики и условия применения наиболее используемых в отечественной нефтепромысловой практике ингибиторов предотвращения моносолей и солевых осадков сложного состава.

Отечественные ингибиторы предотвращения отложения неорганических солей

Однокомпонентные ингибиторы

ГМФН - гексаметафосфат натрия представляет неорганический полифосфат анионного типа и является бесцветным порошкообразным веществом с хорошей растворимостью в воде.

Используется для предотвращения отложений кальцита и гипса в скважинах и наземных коммуникациях при содержании ионов кальция и магния в воде до 1000 мг-экв/л.

ГМФН является замедлителем процесса солеобразования, адсорбируясь на поверхности микрокристаллов и прекращая их рост.

ТПФН - триполифосфат натрия представляет неорганический полифосфат. В товарном виде - это белый порошок с формой применения 1-5% ного водного раствора.

Область применения при ингибировании кальцита и гипса с содержанием ионов кальция и магния в воде до 1000 мг-экв/л. Дозировка ТПФН составляет в пределах 10-20 г./м 3 .

Недостатком полифосфатов является малая термостабильность. При температуре выше 50 0 С они гидролизуются и переходят в ортофосфаты, которые образуют с ионами кальция осадки. Кроме того, при попадании в открытые водоемы полифосфаты стимулируют развитие синезеленых водорослей.

ИСБ-1 (НТФ) - комплексон в виде нитрилотриметилфосфоновой кислоты.

Предназначен для предупреждения сульфатно- и карбонатно-кальциевых отложений. Ингибитор получил широкое распространение в отечественной практике нефтедобычи.

Продукт представляет кристаллический порошок, хорошо растворимый в воде, кислотах, щелочах. Ингибитор совместим с минерализованными водами (0,1-5% раствор в пресной воде совместим с водой, содержащей до 16 г./л ионов кальция) и обладает различными адсорбционно-десорбционными свойствами в зависимости от адсорбента.

ОЭДФ (оксиэтилидендифосфоновая кислота) - образует прочные комплексы с большим числом катионов, в том числе со щелочноземельными и предназначены для предупреждения отложений неорганических солей. Представляет собой белый кристаллический порошок, хорошо растворимый в воде, кислотах, спиртах.

Реагент используются для предупреждения отложений неорганических солей в ПЗС, оборудовании, в системе подготовки нефти и воды.

В нефтепромысловой практике для предупреждения отложений солей на основе ОЭДФ (1,1 - оксиэтилидендифосфоновой кислоты) используется раствор с 15-18% концентрацией активного вещества. Ингибитор хорошо растворим в пресной и минерализованной воде, имеет температуру схватывания минус 50 0 С и вязкость при минус 40 0 С - 800 мПа*с. Ингибитор не оказывает отрицательного влияния на процесс обезвоживания и обессоливания нефти и ее товарные качества, а также при наличии в попутнодобываемой воде в количестве 1-200 г./т на 30-70% снижается коррозия оборудования.

ПАФ-1 - хелатообразующий агент предназначен для предупреждения отложений карбоната и сульфата кальция в нефтяных скважинах и системы подготовки нефти и воды и представляет водный раствор темно-коричневого цвета с содержанием 22% основного вещества. Реагент хорошо растворим в воде и нерастворим в нефти и органических растворителях.

Реагент вводится путем разовой закачки в призабойную зону скважины, периодическим дозированием в затрубное пространство скважины и комбинированным способом. В зависимости от интенсивности отложения солей водные растворы ПАФ-1 при концентрации 0,1-1% применяются при дозировании 10-15 г./м 3 обрабатываемой воды. При первичной задавке ингибитора в ПЗС минимально допустимый расход реагента рекомендуется 60 кг. В практике используются 22-26% водные растворы солей данной кислоты, нейтрализованные щелочью до рН = 5-6.

ПАФ-13 - однозамещенная натриевая соль на основе полиэтилен-полиамин-метилфосфоновой кислоты представляет расслаивающуюся жидкость, с нерезким запахом. Реагент обладает высокой эффективность при обработке газлифтных скважин. Дозировка для предотвращения отложений сульфата кальция составляет 10 г./м 3 , карбоната кальция - 15 г./м 3 обрабатываемой воды.

Гипан - гидролизованный полиакрилонитрл используется в гелеобразном виде для предупреждения отложений кальцита.

Оптимальная дозировка 5-10 г./м 3 . Рабочие растворы готовятся в концентрации 0,05-0,1% в количестве для дозирования в течение 7-10 суток. Растворы готовятся с помощью оборудования реагентных блоков установки подготовки нефти. Перед нагнетанием реагента в емкость смешивания (наполовину заполненную пресной водой) его перемешивают с подогревом не ниже 90 0 С. При этом на прием насоса одновременно подается пресная вода. В емкости смешивания раствор перемешивается насосом с подачей сжатого воздуха. Реагент рекомендуется применять в системе подготовки нефти и воды и при промывке скважин.

Хлористый аммоний - используется для предупреждения карбонатных солей в системе подготовки нефти. Химический реагент способствует разложению бикарбоната кальция при температуре ниже (36 0 С), чем температура превращения его в трудно растворимый кальцит (45-50 0 С). Реагент может использоваться также для растворения уже образовавшегося карбоната кальция. Реагент вводится порциями по 10 кг на прием циркуляционного насоса через каждые 15 минут.

Окисленный лигнин применяется для предотвращения отложений кальцита и гипса в растворах, содержащих до 1000 мг-экв/л ионов кальция и магния. Ингибитор применяется в виде водных растворов в пресной воде.

Подготовка реагента осуществляется в следующей последовательности:

заполняется мешалка пропеллерного или турбинного типа на 2/3 объема нагретой до 80-90 0 С пресной водой;

при включенной мешалке засыпается окисленный лигнин из расчета 50-100 кг на 1 кубический метр воды;

после 30 минутного перемешивания смесь с помощью насоса перекачивается в емкость объемом 30-100 м 3 , которая обогревается паровым подогревателем и оснащается приспособлением для подачи и равномерного распределения сжатого воздуха, а также устройством для отбора раствора;

смесь перемешивается в емкости барботированием воздуха в течение 5-10 мин;

циклы повторяются до получения раствора требуемой концентрации (1-3%) в необходимом количестве.

При отсутствии мешалки рабочий раствор может приготавливаться путем растворения окисленного лигнина непосредственно в емкости при длительном (3-4 часа) барботированием воздухом и подогреве смеси до 80 0 С.

Накопленный на дне емкости нерастворимый осадок реагента удаляется путем заполнения емкости подогретой водой с добавлением 1,5% соды. Объем промывочной воды (V) рассчитывается по формуле:

где: А - количество соды, необходимой для растворения одной тонны окисленного лигнина (0,21 т);

Р - количество окисленного лигнина, израсходованного для приготовления рабочего раствора в емкости.

Содовый раствор перемешивается в течении 5-6 часов, затем емкость доливается водой и раствор вновь перемешивается в течение 30 мин. Полученный подобным образом раствор может использоваться в качестве ингибирующего с дозировкой, меньшей в 2-3 раза по сравнению с раствором реагента без соды.

Полиакриламид (ПАА) - для предотвращения отложения солей рекомендуется применять гидролизованный ПАА с содержанием в водном растворе 10-60 г./м 3 . Применение ПАА основано на способности образовывать на поверхности мономолекулярную пленку. Применение ПАА ограничивается содержанием в пластовой воде ионов кальция и магния до 200 мг-экв/л.

Композиционные ингибиторы

Большое распространение для предотвращения отложений солей при добычи нефти получили композиционные составы с повышенной адсорбционно-десорбционной способностью на поверхности пород призабойной зоны, главным образом, на основе комплексона НТФ.

Ингибирующая композиция с массовым содержанием компонентов:

Ингибитор (НТФ), % ………………………………………….55-60

Латекс (сухой остаток), % …………………………………….3-5,5

Нефть, % ……………………………………………………13,32-27,12

ПАВ, %………………………………………………………….. 0,4-1,35

Вода ……………………………………………………………остальное.

Композиция предназначена для предотвращения солевых отложений, главным образом, сульфатно-кальциевых, в скважинах с низкой проницаемостью пласта-коллектора и невысоким пластовым давлением.

Композиция вводится в интервал перфорации эксплуатационной колонны скважины при ее ремонте с помощью трубчатого контейнера по схеме на рис. 8

Рис. 8. Схема применения ингибирующей композиции в скважине контейнерным способом: 1 - контейнер с композицией; 2 - зона выпадения солей

Приготовление композиции осуществляется путем эмульгирования 1,5-15% латекса, 33-62% нефти и 1-3% ПАВ. Остальное количество составляет вода с учетом входящей в состав латекса. В полученную эмульсию при перемешивании постепенно вводится ингибитор (нитрило-триметилфосфоновая кислота).

Особенностью композиции является стабильность ингибирующих свойств в течение продолжительного времени в процессе эксплуатации скважины.

Композиция основана на увеличении поверхности адсорбента за счет гидрофилизации пор пласта коллектора, смоченных нефтью. Входящий состав композиции оксидат, растворяясь в нефти, снижает поверхностное натяжение и увеличивает адсорбцию на поверхности породы.

Целесообразная концентрация оксидата (30-40%) в составе композиции определена, исходя из наименьшего поверхностного натяжения на границе «нефть - ингибирующий раствор» при максимальном содержании в нем НТФ до 5%, что рекомендуется при задавке ингибитора в пласт. При концентрации НТФ в составе композиции свыше 18% защитный эффект от солеобразования снижается. Особенность ингибирующего состава с оксидатом в том, что наряду со снижением коррозионной активности усиливается адсорбционно-десорбционная способность ингибитора, а следовательно, продолжительность его действия (рис. 9).

Способ применения ингибирующей композиции путем продавки в призабойную зону скважины по обычной технологии.


Рис.

Подбор ингибиторной защиты скважин и оборудования

Различные геолого-физические условия залегания нефти и особенности разработки залежей требуют подбора ингибиторов предупреждения отложения солей применительно к данному технологическому процессу. Ингибиторы должны отвечать определенным требованиям: совместимостью с попутно добываемыми водами, термостойкостью, низкой коррозионной активностью, быть экологически безопасными и т.д. С целью упорядоченного подбора оптимального ингибитора для защиты оборудования от солеобразований в процессе подготовки нефти разработана методика, предусматривающая следующие требования:

по агрегатному состоянию в качестве ингибиторов допускаются только порошкообразные вещества и нерасслаивающиеся жидкости. Не допускается содержание в жидкостях крупновзвешенных и оседающих примесей. Содержание нерастворимых примесей допускается не более 1%;

величина индукционного периода (время появления твердой фазы в перенасыщенном растворе осадкообразующей соли) не должна быть менее 10 минут;

ингибиторная система должна иметь полную совместимость с пластовой водой месторождения без расслаивания и образования осадка;

при обработке нефти месторождения смесью ингибитора и деэмульгатора не должно увеличиваться содержание солей и воды. Ингибитор должен быть совместим с деэмульгатором;

ингибитор считается эффективным, если уменьшение скорости образования осадка на поверхности нагрева превышает 80% при расходе ингибитора не более 10 мг/л;

ингибитор должен быть термостабильным, то есть при нагреве рабочего раствора до 130 0 С эффективность действия не должна быть ниже 80%;

выдержанность ингибитора относительно коррозионной активности должна определяться скоростью коррозии стали марки Х18Н9Т и Ст. 3 в рабочем растворе не более 0,05 мм/год.

Подбор ингибиторов в соответствии с вышеперечисленными требованиями производится в лабораторных условиях стандартными методами, однако возможны и нестандартные подходы, требующие определенных исследований, в частности, в области совместимости вод, коррозионной активности, адсорбционно-десорбционных процессов.

При применении отечественных ингибиторов солеотложений приготовление их рекомендуют на пресной воде, а в зимних условиях с добавками антифриза.

Техника и технология применения ингибиторов

Наряду с созданием ингибирующих составов предупреждения отложения солей важное значение приобретают технологические способы их реализации. В зависимости от условий ингибиторы могут применяться по следующей технологии:

  • - путем непрерывной или периодической подачи в систему с помощью специальных дозировочных устройств;
  • - периодической закачкой раствора в скважину с последующей задавкой его в призабойную зону.

Последовательно могут использоваться комбинированные способы подачи ингибитора, например, в начале периодическая закачка, затем - через 2-6 месяцев непрерывная дозировка или периодическая подача раствора ингибитора в затрубное пространство скважины.

В соответствии с общими принципами ингибиторной защиты скважин и оборудования перед реализацией технологии предупреждения солеобразовании на объектах необходимы подготовительные работы.

Шаблонированием или спуском дистанционного измерителя диаметра труб устанавливается наличие осадков, зоны их отложений и состав. Засорение лифта скважин и призабойной зоны может устанавливаться косвенно одновременно со снижением дебита по падению устьевого и повышению рабочего давления, снижению коэффициента продуктивности скважины.

При отложениях производятся работы по восстановлению продуктивности скважин. Для удаления солевых осадков в начальной стадии обычно используется солянокислотные обработки 15-18% концентрацией раствора с добавкой ингибитора кислотной коррозии в концентрации 0,5-1% на объем кислоты.

Скважина выдерживается с соляной кислотой в течение 2 часов. В случае снижения давления на агрегате при выдержке скважины с соляной кислотой ее необходимо периодически подкачивать в НКТ скважины. При повторной обработке скважины соляной кислотой время выдержки берется от 1,5 до 2 часов.

При обработке призабойной зоны количество кислоты определяется в зависимости от толщины пласта и геолого-физических свойств. В среднем, берется от 0,2 до 0,8 м 3 раствора кислоты на 1 погонный метр обрабатываемого интервала пласта.

Результаты солянокислотных обработок скважин при всех способах их эксплуатации проверяются шаблонированием, а призабойной зоны - по восстановлению дебита и коэффициента продуктивности.

Дозированная подача ингибитора в скважину считается надежным методом, хотя требует постоянного контроля и обслуживания дозировочных насосов и устройств.

В скважины жидкий ингибитор подается в затрубное пространство по схеме на рис. 10. с обвязкой устья скважины (рис. 11). В скважинах, оборудованных штанговыми глубинными насосами при отложении солей ниже насоса спускается хвостовик из НКТ. Длина хвостовика в зависимости от прочности НКТ определяется их весом.

Реагент обычно подается в виде 5-10% раствора в пресной воде, а в зимнее время из-за низкой температуре ингибитор подается в чистом виде в байпасную линию, через которую в затрубное пространство пропускается часть продукции скважины (до 10%). Расход реагента корректируется в зависимости от изменения дебита скважины по воде и содержания ингибитора в попутнодобываемой с нефтью воде.

Метод дозирования ингибитора применим при отложении солей в подземном оборудовании и трубах подъемного лифта, но при отложении солей в призабойной зоне необходима его задавка в пласт.

В процессе разработки залежи с заводнением находит применение способ подачи ингибитора через систему поддержания пластового давления.

Рис.

1 - газораспределительная батарея; 2 - скважинная линия с газом высокого давления; 3 - дозировочный насос; 4,5 - манометры; 6 - задвижка выкидной линии; 7,8 - затрубные задвижки; 9 - НКТ; 10,11 - пусковой и рабочий газлифтные клапаны; 12 - циркуляционный клапан; 13 - пакер

Рис.

  • 1 - хвостовик; 2 - штанговый насос; 3 - дозировочный насос;
  • 4 - обводная линия; 5 - выкидная линия; 6 - емкость для ингибитора.

Средствами подачи ингибиторов в скважину являются различной конструкции дозаторы или применяется контейнерный способ для удаления твердых реагентов. При отложении солей в насосных установках, НКТ, устьевой арматуре скважин нашел применение глубинный дозатор с принудительной подачей жидкого реагента.

Периодическая задавка ингибиторов в призабойную зону скважины позволяет предотвращать отложение солей в течение всего периода выноса реагента с продукцией скважины. Периодическую задавку ингибитора в призабойную зону рекомендуется осуществлять в определенной последовательности.

Для фонтанных скважин, сначала открывают задвижку на затрубном пространстве, заменяют жидкость в НКТ на раствор ингибитора и его расчетный объем при закрытой задвижке с продавочной жидкостью задавливается в ПЗС. Давление задавки определяется приемистостью пласта, которое не должно превышать давления опрессовки эксплуатационной колонны скважины. При низкой приемистости и высоком пластовом давлении реагент следует закачивать через НКТ с предварительной установкой пакера. Однако и в данном случае давление закачки реагент не должно превышать давления гидроразрыва пласта. В случае перевода скважины на механизированный способ добычи при задавке раствора ингибитора вслед за продавочной жидкостью скважина глушится раствором необходимой плотностью.

При механизированном способе добычи нефти, когда скважины оборудованы насосами (ШГН, ЭЦН) с обратным клапаном, раствор ингибитора задавливается в затрубное пространство. Жидкость в затрубном пространстве заменяется на раствор ингибитора, закрывается задвижка на напорном трубопроводе насоса и раствор ингибитора с продавочной жидкостью задавливается в пласт. При заполнении затрубного пространства скважины раствором ингибитора необходимо обеспечивать свободный излив жидкости из напорного трубопровода насоса. Для скважин, оборудованных ЭЦН с обратным клапанам, давление на устье затрубного пространства не должно превышать допустимого давления устьевого сальника, а в скважинах с ЭЦН без обратного клапана задавка ингибитора осуществляется через НКТ.

Задавка раствора ингибитора в призабойную зону газлифтных скважин осуществляется по схеме на рис. 14. Предварительно прекращается подача газа высокого давления в скважину путем закрытия задвижки скважинной линии на ГРБ.

Рис.

  • 1 - газораспределительная батарея (ГРБ); 2 - скважинная линия с газом высокого давления; 3,4 - манометры; 5 - цементировочный агрегат;
  • 6 - задвижка выкидной линии; 7,8 - затрубные задвижки; 9 - лифт;
  • 10,11 - пусковой и рабочий газлифтные клапаны; 12 - циркуляционный клапан; 13 - пакер.

Стравливается газ из затрубного пространства скважины. Зарывается затрубная задвижка 7. Подсоединяется цементировочный агрегат 5 к выкидной линии, производится обвязка устья скважины с цементировочным агрегатом и опрессовывается нагнетательная линия. Осуществляется задавка раствора ингибитора в лифт 9 скважины.

Давление задавки при беспакерном компоновке подземного оборудования не должно превышать давлений опрессовки эксплуатационной колонны и гидроразрыва пласта. При компоновке с пакером и закрытом циркуляционном клапане 12 давление задавки не должно превышать давления опрессовки НКТ, гидроразрыва пласта, максимального перепада давления, воспринимаемого пакером и давления открытия циркуляционного клапана разового действия.

При всех способах эксплуатации скважин после задавки ингибитора в призабойную зону скважину выдерживают в течение 12-24 часов для более полной адсорбции реагента в пористой среде.

Затем скважина осваивается и пускается в эксплуатацию. Контроль содержания ингибитора в попутнодобываемой с нефтью воде должен производиться не реже 2 раз в месяц путем анализа отбираемой жидкости.

Растворы ингибиторов на пресной воде для отечественных реагентов рекомендуются с концентрацией 0,2-1%.

Ингибиторная защита: эффективная борьба с солеотложениями

При эксплуатации скважин может происходить отложение солей на поверхности скважинного оборудования. Это может приводить к порче насосных установок, закупориванию трубопроводов и внутренних поверхностей оборудования. Соли могут образовываться и в порах пород призабойной зоны, снижая их проницаемость.Чтобы эффективно защитить оборудование (и существенно продлить тем самым срок его эксплуатации), используется химический реагент - ингибитор солеотложений . Регулярное использование ингибитора не только препятствует солеотложению, но и увеличивает продуктивность скважин и ее дебит.

Чем опасны солевые отложения?

Солеотложения запускают процесс возникновения коррозии внутрискважинного и наземного оборудования. Также отложения солей снижают дебит скважин, приводят к преждевременным поломкам насосных установок. Все это влечет за собой необходимость преждевременного дорогостоящего ремонта и выводит из строя скважину. Для предотвращения вышеперечисленных неприятностей и существует ингибитор солеотложений: нефтедобыча подразумевает постоянное или периодическое дозирование реагента, добавление его в жидкости глушения и прочие варианты использования, оптимальные для каждой скважины.

Ингибиторы от REASCALE*

REASCALE*-2002 - ингибитор, поставляемый как водорастворимый химический состав, служащит для защиты нефтедобывающего оборудования от отложения сульфатных (сульфатов бария, кальция) и карбонатных солей (карбонатов магния, кальция), соединений железа. Применяется ингибитор данной марки для защиты скважинного оборудования, применяемого в нефтедобыче, а также для предотвращения накипи в теплообменниках установок по обработке нефти (ее обессоливания и термохимического обезвоживания).

REASCALE*-2003 - ингибитор, также поставляемый как растворимый в воде химический состав, служащий для защиты нефтедобывающего оборудования от отложений карбоната и сульфата кальция и магния. Используется реагент преимущественно для предотвращения отложений в наземном и скважинном оборудовании, добавляется к жидкостям глушения.

Выбрать оптимальный вариант ингибитора, а также подобрать дозировку вам помогут наши консультанты. Эффективность предлагаемых нами химических составов доказана в процессе клинических испытаний по исследованию возможностей и эффективности ингибиторов различных марок.

Применение ингибиторов солеотложений и коррозии в системах отопления Введение

Первый опыт применения ингибиторов солеотложений в теплотехнике относится к середине 1970-х гг., когда специалисты Московского энергетического института под руководством профессора Т.Х. Маргуловой успешно применили оксиэтилиденфосфоновую кислоту (ОЭДФ) для предотвращения накипеобразования и очистки систем охлаждения электростанций.

Далее последовали разработки по применению ОЭДФ для ведения безнакипного водно-химического режима различных теплотехнических систем, в том числе и систем отопления. ОЭДФ относится к широкому классу органических соединений, называемых “комплексонами”, поэтому предложенный водно-химический режим получил название “комплексонного”. Работы по применению комплексонов в системах отопления имели переменный успех. В некоторых случаях введение ОЭДФ в воду систем отопления приводило к забиванию тепловых сетей фрагментами накипи, ускоренной коррозии теплотехнического оборудования, к авариям котлов и тепловых сетей. Основными причинами неудач в применении комплексонов было отсутствие необходимого опыта работы и теоретических представлений о действии комплексонов, а в ряде случаев – халатное отношение эксплуатационников. В результате в среде профессиональных теплотехников сформировалось скептическое отношение к применению этих препаратов в системах отопления.

За прошедшее время достигнут значительный прогресс как в области химии фосфорорганических комплексонов, так и в области производства и применения в теплотехнике ингибиторов солеотложений и коррозии на их основе. Комплексоны в чистом виде для обработки воды в настоящее время практически не применяются.

Правда, ещё можно встретить предложения по применению комплексонов, в частности, ОЭДФ, для предпусковых и межсезонных очисток систем отопления. Однако при наличии значительных (свыше 10 кг/м 2) отложений накипи и продуктов коррозии для их удаления гораздо более целесообразно использовать соляную кислоту с обязательным добавлением ингибитора СНПХ. Умеренные количества карбонатных и железооксидных отложений могут быть удалены в эксплуатационном режиме благодаря применению современных ингибиторов солеотложений и коррозии на основе комплексонов.

В то время, как комплексоны, применяемые в качестве исходных веществ для получения ингибиторов, являются довольно сильными кислотами, подавляющее большинство современных ингибиторов на их основе имеют нейтральную или слабощелочную реакцию. Это предотвращает возможное усиление коррозии теплотехнического оборудования из-за снижения pH водной среды. Представление об ассортименте современных ингибиторов солеотложений и коррозии, предназначенных для использования в теплотехнике, даёт рис.1.

Можно видеть, что, хотя разнообразие фирменных торговых марок нередко вводит в заблуждение неспециалистов в области химии, в основе всех этих препаратов лежит небольшое число химических веществ. Как видно из рис. 1 , современные ингибиторы, в отличие от ранее применявшихся комплексонов, защищают теплотехническое оборудование не только от отложений минеральных солей (накипи), но и от коррозии. Наиболее эффективную защиту обеспечивают композиционные ингибиторы, которые помимо солей органических фосфоновых кислот или их комплексов содержат добавки, повышающие степень защиты от солеотложений и коррозии, а также способствующие очистке систем отопления от застарелых отложений накипи и продуктов коррозии.

Механизм действия ингибиторов

При нагреве воды в процессе работы системы отопления происходит термический распад присутствующих в ней гидрокарбонат-ионов с образованием карбонат-ионов. Карбонат-ионы, взаимодействуя с присутствующими в избытке ионами кальция, образуют зародыши кристаллов карбоната кальция. На поверхности зародышей осаждаются все новые карбонат-ионы и ионы кальция, вследствие чего образуются кристаллы карбоната кальция, в котором часто присутствует карбонат магния в виде твёрдого раствора замещения. Осаждаясь на стенках теплотехнического оборудования, эти кристаллы срастаются, образуя накипь (рис.2).




Основным компонентом, обеспечивающим противонакипную активность всех рассматриваемых ингибиторов, являются органофосфонаты – соли органических фосфоновых кислот. При введении органофосфонатов в воду, содержащую ионы кальция, магния и других металлов они образуют весьма прочные химические соединения – комплексы. (Во многие современные ингибиторы органофосфонаты входят уже в виде комплексов с переходными металлами, главным образом с цинком.) Так как в одном литре природной или технической воды содержится 10 20 –10 21 ионов кальция и магния, а органофосфонаты вводят в количестве всего лишь 10 18 –10 19 молекул на литр воды, все молекулы органофосфонатов образуют комплексы с ионами металлов, а комплексоны как таковые в воде не присутствуют. Комплексы органофосфонатов адсорбируются (осаждаются) на поверхности зародышей кристаллов карбоната кальция, препятствуя дальнейшей кристаллизации карбоната кальция. Поэтому при введении в воду 1–10 г/м 3 органофосфонатов накипь не образуется даже при нагревании очень жёсткой воды (рис. 2, б).

Комплексы органофосфонатов способны адсорбироваться не только на поверхности зародышей кристаллов, но и на металлических поверхностях. Образующаяся тонкая плёнка затрудняет доступ кислорода к поверхности металла, вследствие чего скорость коррозии металла снижается. Однако наиболее эффективную защиту металла от коррозии обеспечивают ингибиторы на основе комплексов органических фосфоновых кислот с цинком и некоторыми другими металлами, которые были разработаны и внедрены в практику профессором Ю.И. Кузнецовым. В приповерхностном слое металла эти соединения способны распадаться с образованием нерастворимых соединений гидроксида цинка, а также комплексов сложной структуры, в которых участвует много атомов цинка и железа. В результате этого образуется тонкая, плотная, прочно сцепленная с металлом плёнка, защищающая металл от коррозии. Степень защиты металла от коррозии при использовании таких ингибиторов может достигать 98%.

Современные препараты на основе органофосфонатов не только ингибируют солеотложения и коррозию, но и постепенно разрушают застарелые отложения накипи и продуктов коррозии. Это объясняется образованием в порах накипи поверхностных адсорбционных слоёв органофосфонатов, структура и свойства (например, коэффициент температурного расширения) которых отличаются от структуры кристаллов накипи. Возникающие при эксплуатации системы отопления колебания и градиенты температуры приводят к расклиниванию кристаллических сростков накипи. В результате накипь разрушается, превращаясь в тонкую взвесь, легко удаляемую из системы. Поэтому при введении препаратов, содержащих органофосфонаты, в системы отопления с большим количеством застарелых отложений накипи и продуктов коррозии, необходимо регулярно спускать отстой из фильтров и грязевиков, установленных в нижних точках системы*. Спуск отстоя следует производить, в зависимости от количества отложений, 1–2 раза в сутки, из расчёта подпитки системы чистой, обработанной ингибитором, водой в количестве 0,25–1% водного объёма системы в час. Необходимо отметить, что при повышении концентрации ингибитора свыше 10–20 г/м 3 накипь разрушается с образованием весьма грубых взвесей, способных забить узкие места системы отопления. Поэтому передозировка ингибитора в этом случае грозит засорением системы. Наиболее эффективная и безопасная очистка систем отопления от застарелых отложений накипи и продуктов коррозии достигается при использовании препаратов, содержащих поверхностно-активные вещества, например, композиции «ККФ».


Дозирование ингибиторов

Эффективное и безопасное применение ингибиторов солеотложений и коррозии в отопительных системах возможно только при правильном дозировании этих препаратов. Принципиальная схема отопительной системы с обработкой воды ингибитором показана на рис. 3,


из которого можно видеть, что устройство дозирования ингибитора (дозатор) врезают, как правило, в подпиточный трубопровод системы отопления после узла учёта, перед подпиточным насосом.

Дозатор должен обеспечивать поддержание с заданной точностью постоянной концентрации ингибитора в системе отопления. Следует иметь в виду, что излишняя точность дозирования влечёт за собой дополнительные затраты из-за более высокой стоимости дозатора и при этом не способствует успешному применению ингибитора. Это объясняется тем, что дозировки ингибиторов, необходимые для их эффективного применения, в настоящее время известны весьма приблизительно. Точность современных научно обоснованных данных по требуемым концентрациям ингибиторов составляет ±25%. Поэтому применять дозаторы с более высокой точностью просто бессмысленно.

По принципу действия дозаторы подразделяются на две основные группы:

инжекционные, в которых для подачи ингибитора используется насос, работающий от внешнего источника энергии;

и эжекционные, в которых используется энергия потока подпиточной воды. Дозаторы различных типов имеют свои преимущества и недостатки.

Инжекционный дозатор состоит из следующих частей: резервуара для ингибитора, дозирующего насоса, датчиков расхода воды и ингибитора и системы управления работой насоса. Сердцем инжекционного дозатора является дозирующий насос, вернее, электронасосный агрегат – насос с электроприводом. В настоящее время многие фирмы, поставляющие на российский рынок дозирующие насосы зарубежного производства, пользуются приёмами недобросовестной конкуренции: поставляя по демпинговым ценам насосы неизвестных производителей или азиатские подделки известных марок, такие поставщики обеспечивают свою рентабельность за счёт последующих ремонтных услуг и продажи запасных частей. Кроме того, многие поставщики продают насосы без комплектации резервуарами, системами управления и другими необходимыми частями. В лучших конструкциях инжекционных дозаторов используются отечественные дозирующие насосы типа НД, выпускаемые предприятиями «Талнах» (г. Тула) и «Технолог-Гидромаш» (г. Саратов). Полностью укомплектованные инжекционные дозаторы на основе таких насосов выпускает предприятие «Экоэнерго» (г. Ростов-на-Дону).

Сам принцип действия инжекционных дозаторов, использующих энергию внешнего источника (как правило – электросети), предопределяет их основной, и, применительно к российским условиям, очень существенный недостаток – зависимость от энергоснабжения. Другим существенным недостатком дозаторов такого типа является потребность в квалифицированной наладке и сервисном обслуживании. Для этого необходимо либо иметь своего специалиста-наладчика, либо заключать сервисный договор со специализированной организацией. Поэтому инжекционные дозаторы применяют, главным образом, на электростанциях или в крупных коммунальных котельных.

Эжекционные дозаторы обладают рядом преимуществ перед инжекционными: обеспечивая необходимую точность дозирования ингибитора, они энергонезависимы, просты, надёжны в эксплуатации и не требуют частого технического обслуживания. Полностью укомплектованные эжекционные дозаторы выпускает предприятие «Технопарк «Удмуртия»» (г. Ижевск). Для обработки ингибиторами воды, применяемой для питания паровых котлов и систем с открытым водоразбором, выпускается дозатор «Иж-25» (рис.4),

а для обработки подпиточной воды закрытых систем, в частности, систем отопления – дозатор «Импульс-2» (рис. 5).




Оба этих дозатора включают резервуар для ингибитора, эжекционное устройство и средства для врезки дозатора в подпиточный трубопровод, причём все узлы дозаторов изготовлены из отечественной нержавеющей стали. Дозаторы компактны, не требуют электропитания и квалифицированной наладки. Все техническое обслуживание дозаторов «Иж-25» и «Импульс-2» сводится к периодическому (с интервалом от нескольких дней до месяца) заполнению резервуара раствором ингибитора.

Важным условием успешного применения ингибиторов солеотложений и коррозии в системах отопления является аналитический контроль состава подпиточной и сетевой воды. Подпиточная и сетевая вода подлежит контролю по следующим показателям: жёсткость, щёлочность, pH, содержание железа. Контроль этих показателей ведут по общеизвестным методикам. Кроме того, в сетевой воде контролируют содержание ингибитора. Содержание ингибитора можно определять по методике, разработанной фирмой «Траверс» (г. Москва), используя комплект химреактивов, выпускаемый этой же фирмой. Критерием противонакипной и противокоррозионной стабильности воды является соответствие жёсткости, щёлочности и содержания железа в подпиточной и в сетевой воде с точностью ±10%.

Накопленный опыт применения ингибиторов солеотложений и коррозии показывает, что современные ингибиторы обеспечивают наиболее эффективную, по сравнению с другими способами водоподготовки, защиту систем отопления от накипеобразования и коррозии. Однако неотъемлемым условием достижения успеха является правильное ведение водно-химического режима, включая дозирование ингибиторов и аналитический контроль.

*В соответствии со СНиП 2.04.07-86 «Тепловые сети», в тепловых сетях должны быть предусмотрены грязевики (п. 7.21), индикаторы коррозии (п. 7.37), приборы учёта (п. 11.2). К сожалению, не все существующие тепловые сети соответствуют этим требованиям. Поэтому при внедрении обработки воды ингибиторами солеотложений и коррозии необходимо приводить тепловые сети в соответствие с требованиями СНиП.

Чаусов Фёдор Фёдорович – инженер, заведующий лабораторией «Технологии энергоресурсосбережения» физического факультета УдГУ.

Раевская Галина Анатольевна – химик, ведущий инженер лаборатории «Технологии энергоресурсосбережения» физического факультета УдГУ.

Плетнев Михаил Андреевич – кандидат химических наук, доцент, проректор УдГУ по инновационной деятельности.

1. Чаусов Ф.Ф., Раевская Г.А. Комплексонный водно-химический режим теплоэнергетических систем низких параметров / Под редакцией М.А. Плетнева и С.М. Решетникова. Издание 2-е. Москва-Ижевск: Регулярная и хаотическая динамика, 2003.

2. Балабан-Ирменин Ю.В., Липовских В.М., Рубашов А.М. Защита от внутренней коррозии трубопроводов водяных тепловых сетей. М.: Энергоатомиздат, 1999.

Солеобразование при разработке и эксплуатации залежей нефти - достаточно сложный и многофакторный процесс, наиболее часто встречающееся на поздних стадиях разработки, когда растет обводненность продукции скважины. Одной из причин увеличения интенсивности солеотложения является интенсификация добычи, когда стремятся увеличивать депрессию и тем самым создают благоприятные условия для их формирования.

На практике почти 60 % случаев выхода из строя центробежных насосов происходят по причине выпадения солей, либо же засорения механическими примесями, которые в большинстве случаев оказываются в итоге осадками солей, которые выпали в скважине, не закрепившись на поверхности нефтепромыслового оборудования, и потом вместе с потоком жидкости оказались внутри насоса.

Предотвращение солеотложения в скважинах, нефтепромысловом оборудовании и системах внутрипромыслового сбора и подготовки нефти является основным направлением в борьбе с данным процессом, как негативным явлением. Исходя из экономической целесообразности в зависимости от условий и особенностей разработки залежей, доступности технических средств и прочих факторов могут использоваться различные подходы в борьбе с данным явлением.

Для предотвращения солеотложения в нефтепромысловом оборудовании применяют технологические, физические и химические способы. Технологические и физические методы включают в себя обработку потока жидкости магнитными и акустическими полями, операции по отключению обводненных интервалов, применение защитных покрытий поверхности оборудования и др.

Эффективным способом предотвращения солеотложения в нефтепромысловом оборудовании, в том числе и при глушении скважин, является химический с использованием ингибиторов отложения солей.

К ингибиторам относятся такие химические вещества, добавление которых в раствор неорганической соли резко замедляет процесс осадкообразования.

Наиболее удовлетворительной теорией, объясняющей механизм ингибирования кристаллической фазы из пересыщенных растворов, является теория адсорбционного ингибирования за счет вхождения молекул комплексонов в кристаллическую решетку осаждающихся солей. Причем адсорбции ингибиторов предшествует стадия их комплексообразования с ионами металлов кристаллизующейся соли. Вследствие этого индукционный период кристаллизации солей возрастает в результате снятия пересыщения соляных растворов солей и замедления роста кристаллов.



Ингибиторы солеотложения не являются универсальными, каждый из них предотвращает отложение только определенной группы солей. Ориентировочные эффективные дозы ингибиторов проводятся в технических условиях их применения. Однако практика показывает, что эффективность рекомендованных дозировок ингибиторов солеотложения для условий конкретной скважины должна быть проверена лабораторными исследованиями с учетом минерализации пластовых вод и гидрохимической обстановки пласта. В лабораторных условиях также необходимо определить совместимость ингибитора с водой, на которой планируется готовить раствор ингибитора для обработки призабойной зоны пласта.

Ингибиторы солеотложения различаются по механизму их действия. Хелаты - вещества, способные адсорбироваться на активных центрах микрозародышей солей, предотвращая образование кристаллов в пересыщенном растворе. «Пороговый эффект» ингибиторов заключается в реализации механизма блокирования центров кристаллизации, и высокоэффективного диспергирования. Действие кристаллоразрушающих типов ингибиторов основано на искривлении поверхности кристаллов.

Большинство ингибиторов не остается активными в пласте в течение длительного времени. Поэтому эффективным и экономически целесообразным является применение ингибиторов порогового действия.

В качестве ингибиторов солеотложения могут выступать органические производные фосфоновой и фосфорной кислот, неиногенные полифосфаты, низкомолекулярные поликарбоновые кислоты, полимеры и сополимеры кислот и др.

Для ингибирования солеотложения в процессе нефтедобычи применяют в основном следующие технологии:

· непрерывная подача ингибитора солеотложения в межтрубное пространство скважин с использованием дозирующих устройств;

· периодическое дозирование ингибитора в межтрубное пространство скважины;

· закачка ингибитора солеотложения в ПЗП для его последующего пролонгированного выноса в ствол скважины;

· введение в закачиваемую для ППД воду.

Менее эффективны приемы периодического дозирования ингибитора в межтрубное пространство скважин и дозированная подача ингибиторов в пласт через систему ППД вследствие их значительных адсорбционных потерь.

Наибольшее предпочтение отдается технологии задавливания ингибитора в ПЗП при проведении КРС, так как ингибитор солеотложения выносится из ПЗП значительное время и работает как в самой ПЗП, так и во внутрискважинном оборудовании, в НКТ, а также в системе сбора, транспорта и подготовки нефти. Все зависит от качества ингибиторов солеотложения.

Одними из основных требований, которые должны предъявляться к ингибиторам солеотложения, являются его адсорбционно-десорбционные свойства. Известно, что нефтегазоносные породы обладают различной смачиваемостью и разной сорбционной способностью. Например, основная добыча нефти на Ромашкинском месторождении осуществляется из девонских залежей, связанных с терригенными коллекторами, представленными песчаниками, в состав которых входят карбонатные минералы. Исходя из этого, для улучшения адсорбционно-десорбционных характеристик ингибитора солеотложения необходимо использовать реагенты, снижающие межфазное натяжение на границе «нефть-ингибирующий раствор» и позволяющие увеличить поверхность контакта как с силикатными и алюмосиликатными минералами, так и карбонатной составляющей в составе цемента.

Таким образом, выбор эффективного реагента для обработки скважины должен быть основан не только на его ингибирующей способности, но также должна учитываться его адсорбционно-десорбционная характеристика, от которой зависит эффективность и длительность действия ингибитора солеотложения.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта