Главная » Заготовка и хранение » Ядро нейтронной звезды. Свойства нейтронных звезд

Ядро нейтронной звезды. Свойства нейтронных звезд

МОСКВА, 28 авг - РИА Новости. Ученые обнаружили рекордно тяжелую нейтронную звезду, масса которой в два раза превышает массу Солнца, что заставит их пересмотреть ряд теорий, в частности, теории, согласно которой внутри сверхплотного вещества нейтронных звезд могут присутствовать "свободные" кварки, говорится в статье, опубликованной в четверг в журнале Nature .

Нейтронная звезда представляет собой "труп" звезды, оставшийся после вспышки сверхновой. Ее размер не превышает размеров небольшого города, однако вещество по плотности в 10-15 раз выше плотности атомного ядра - "щепотка" вещества нейтронной звезды весит более 500 миллионов тонн.

Гравитация "вдавливает" электроны в протоны, превращая их в нейтроны, почему нейтронные звезды и получили такое название. До последнего времени ученые полагали, что масса нейтронной звезды не может превысить две солнечных, поскольку иначе гравитация "схлопнет" звезду в черную дыру. Состояние недр нейтронных звезд во многом является загадкой. Например, обсуждается присутствие "свободных" кварков и таких элементарных частиц, как K-мезоны и гипероны в центральных областях нейтронной звезды.

Авторы исследования, группа американских ученых во главе с Полом Деморестом (Paul Demorest) из Национальной радиообсерватории, изучали двойную звезду J1614-2230 в трех тысячах световых лет от Земли, один из компонентов которой является нейтронной звездой, а второй белым карликом.

При этом нейтронная звезда представляет собой пульсар, то есть звезду, испускающую узконаправленные потоки радиоизлучения, в результате вращения звезды поток излучения можно уловить с поверхности Земли с помощью радиотелескопов через разные промежутки времени.

Белый карлик и нейтронная звезда вращаются друг относительно друга. Однако на скорость прохождения радиосигнала от центра нейтронной звезды влияет гравитация белого карлика, она "тормозит" его. Ученые, измеряя на Земле время прихода радиосигналов, могут с высокой точностью установить массу объекта, "ответственного" за задержку сигнала.

"Нам очень повезло с этой системой. Быстровращающийся пульсар дает нам сигнал, приходящий с орбиты, которая прекрасно расположена. Более того, наш белый карлик довольно крупный для звезд подобного типа. Эта уникальная комбинация позволяет использовать эффект Шапиро (гравитационную задержку сигнала) в полной мере и упрощает измерения", - говорит один из авторов статьи Скотт Ренсом (Scott Ransom).

Двойная система J1614-2230 расположена таким образом, что наблюдать ее можно почти "с ребра", то есть в плоскости орбиты. Это облегчает точное измерение масс, входящих в нее звезд.

В результате масса пульсара оказалась равна 1,97 солнечной массы, что стало рекордом для нейтронных звезд.

"Эти измерения массы говорят нам, что если кварки вообще есть в ядре нейтронной звезды, они не могут быть "свободными", а, скорее всего, должны взаимодействовать друг с другом гораздо сильнее, чем в "обычных" атомных ядрах", - поясняет руководитель группы астрофизиков, занимающихся этим вопросом, Ферьял Озел (Feryal Ozel) из университета штата Аризона.

"Меня удивляет, что такой простой факт, как масса нейтронной звезды, может сказать так много в различных областях физики и астрономии", - говорит Ренсом.

Астрофизик Сергей Попов из Государственного астрономического института имени Штернберга отмечает, что изучение нейтронных звезд может дать важнейшую информацию о строении материи.

"В земных лабораториях нельзя изучать вещество при плотности намного больше ядерной. А это очень важно для понимания того, как устроен мир. К счастью, такое плотное вещество есть в недрах нейтронных звезд. Для определения свойств этого вещества очень важно узнать, какую предельную массу может иметь нейтронная звезда и не превратиться в черную дыру", - сказал Попов РИА Новости.

Остаток сверхновой Корма-А, в центре которой находится нейтронная звезда

Нейтронные звезды являются остатками массивных звезд, которые достигли конца своего эволюционного пути во времени и пространстве.

Эти интересные объекты, рождаются от некогда массивных гигантов, которые в четыре-восемь раз больше нашего Солнца. Происходит это во вспышке сверхновой.

После такого взрыва внешние слои выбрасываются в космос, ядро остается, но она больше не в состоянии поддерживать ядерный синтез. Без внешнего давления от вышележащих слоев, она коллапсирует и катастрофически сжимается.

Несмотря на свой малый диаметр — около 20 км, нейтронные звезды могут похвастаться в 1,5 раза большей массой нежели чем у нашего Солнца. Таким образом, они являются невероятно плотными.

Маленькая ложка вещества звезды на Земле будет весить около ста миллионов тонн. В ней протоны и электроны объединяются в нейтроны – этот процесс называется нейтронизацией.

Состав

Состав их неизвестен, предполагают, что они могут состоять из сверхтекучей нейтронной жидкости. Они обладают чрезвычайно сильным гравитационным притяжением, гораздо больше, чем у Земли и даже у Солнца. Это гравитационные силы особенно впечатляют, поскольку она имеет небольшой размер.
Все они вращаются вокруг оси. При сжатии, угловой момент вращения сохраняется, а из-за уменьшения размеров, скорость вращения возрастает.

Из-за огромной скорости вращения, внешняя поверхность, представляющая собой твердую «кору» периодически трескается и происходят «звездотрясения», которые замедляют скорость вращения и сбрасывают «излишки» энергии в космос.

Ошеломляющее давление, которое существуют в ядре, может быть похоже на то, которое существовало в момент большого взрыва, но к сожалению, его нельзя смоделировать на Земле. Поэтому эти объекты являются идеальными природными лабораториями, где мы можем наблюдать энергии недоступные на Земле.

Радиопульсары

Радиоульсары были открыты в конце 1967 г. аспирантом Jocelyn Bell Burnell как радиоисточники, которые пульсируют на постоянной частоте.
Радиация, испускаемая звездой, видна как пульсирующий источник излучения или пульсар.

Схематическое изображение вращения нейтронной звезды

Радиопульсары (или просто пульсар) — это вращающиеся нейтронные звезды, струи частиц которых, движутся почти со скоростью света, как вращающийся луч маяка.

После непрерывного вращения, в течение нескольких миллионов лет, пульсары теряют свою энергию и становятся нормальными нейтронными звездами. На сегодня известно только около 1000 пульсаров, хотя их могут быть сотни в галактике.

Радиопульсар в Крабовидной туманности

Некоторые нейтронные звезды испускают рентгеновское излучение. Знаменитая Крабовидная туманность — хороший пример такого объекта, образовавшейся во время взрыва сверхновой. Эта вспышка сверхновой наблюдалась в 1054 году нашей эры.

Ветер от Пульсара, видео телескопа Чандра

Радиопульсар в Крабовидной туманности, сфотографированный с помощью космического телескопа Хаббла через фильтр 547nm (зеленый свет) с 7 августа 2000 года по 17 апреля 2001 года.

Магнетары

Нейтронные звезды имеют магнитное поле в миллионы раз сильнее, чем самое сильное магнитное поле, производимое на Земле. Они также известны как магнетары.

Планеты у нейтронных звезд

На сегодня известно, что у четырех есть планеты. Когда она находится в двойной системе, то возможно измерить ее массу. Из числа таких двоичных систем в радио или рентгеновском диапазоне, измеренные массы нейтронных звезд были примерно в 1.4 раза больше массы Солнца.

Двойные системы

Совсем иной тип пульсаров виден в некоторых рентгеновских двойных системах. В этих случаях, нейтронная звезда и обычная образуют двойную систему. Сильное гравитационное поле тянет материал из обычной звезды. Материал, падающий на нее в процессе аккреции, нагревается так сильно, что производит рентгеновские лучи. Импульсные рентгеновские лучи видны, когда горячие пятна на вращающемся пульсаре проходят через луч зрения с Земли.

Для бинарных систем, содержащих неизвестный объект, эта информация помогает отличить: является ли он нейтронной звездой, или например черной дырой, потому что черные дыры куда более массивные.

НЕЙТРОННАЯ ЗВЕЗДА
звезда, в основном состоящая из нейтронов. Нейтрон - это нейтральная субатомная частица, одна из главных составляющих вещества. Гипотезу о существовании нейтронных звезд выдвинули астрономы В.Бааде и Ф.Цвикки сразу после открытия нейтрона в 1932. Но подтвердить эту гипотезу наблюдениями удалось лишь после открытия пульсаров в 1967.
См. также ПУЛЬСАР . Нейтронные звезды образуются в результате гравитационного коллапса нормальных звезд с массами в несколько раз больше солнечной. Плотность нейтронной звезды близка к плотности атомного ядра, т.е. в 100 млн. раз выше плотности обычного вещества. Поэтому при своей огромной массе нейтронная звезда имеет радиус всего ок. 10 км. Из-за малого радиуса нейтронной звезды сила тяжести на ее поверхности чрезвычайно велика: примерно в 100 млрд. раз выше, чем на Земле. От коллапса эту звезду удерживает "давление вырождения" плотного нейтронного вещества, не зависящее от его температуры. Однако если масса нейтронной звезды станет выше примерно 2 солнечных, то сила тяжести превысит это давление и звезда не сможет противостоять коллапсу.
См. также ГРАВИТАЦИОННЫЙ КОЛЛАПС . У нейтронных звезд очень сильное магнитное поле, достигающее на поверхности 10 12-10 13 Гс (для сравнения: у Земли ок. 1 Гс). С нейтронными звездами связывают небесные объекты двух разных типов.
Пульсары (радиопульсары). Эти объекты строго регулярно излучают импульсы радиоволн. Механизм излучения до конца не ясен, но считают, что вращающаяся нейтронная звезда излучает радиолуч в направлении, связанном с ее магнитным полем, ось симметрии которого не совпадает с осью вращения звезды. Поэтому вращение вызывает поворот радиолуча, периодически направляющегося на Землю.
Рентгеновские двойные. С нейтронными звездами, входящими в двойную систему с массивной нормальной звездой, связаны также пульсирующие рентгеновские источники. В таких системах газ с поверхности нормальной звезды падает на нейтронную звезду, разгоняясь до огромной скорости. При ударе о поверхность нейтронной звезды газ выделяет 10-30% своей энергии покоя, тогда как при ядерных реакциях этот показатель не достигает и 1%. Нагретая до высокой температуры поверхность нейтронной звезды становится источником рентгеновского излучения. Однако падение газа не происходит равномерно по всей поверхности: сильное магнитное поле нейтронной звезды захватывает падающий ионизованный газ и направляет его к магнитным полюсам, куда он и падает, как в воронку. Поэтому сильно нагреваются только районы полюсов, которые на вращающейся звезде становятся источниками рентгеновских импульсов. Радиоимпульсы от такой звезды уже не поступают, поскольку радиоволны поглощаются в окружающем ее газе.
Состав. Плотность нейтронной звезды растет с глубиной. Под слоем атмосферы толщиной всего несколько сантиметров находится жидкая металлическая оболочка толщиной несколько метров, а ниже - твердая кора километровой толщины. Вещество коры напоминает обычный металл, но гораздо плотнее. В наружной части коры это в основном железо; с глубиной в его составе увеличивается доля нейтронов. Там, где плотность достигает ок. 4*10 11 г/см3, доля нейтронов увеличивается настолько, что некоторые из них уже не входят в состав ядер, а образуют сплошную среду. Там вещество похоже на "море" из нейтронов и электронов, в которое вкраплены ядра атомов. А при плотности ок. 2*10 14 г/см3 (плотность атомного ядра) вообще исчезают отдельные ядра и остается сплошная нейтронная "жидкость" с примесью протонов и электронов. Вероятно, нейтроны и протоны ведут себя при этом как сверхтекучая жидкость, подобная жидкому гелию и сверхпроводящим металлам в земных лабораториях.

При еще более высоких плотностях в нейтронной звезде образуются наиболее необычные формы вещества. Может быть, нейтроны и протоны распадаются на еще более мелкие частицы - кварки; возможно также, что рождается много пи-мезонов, которые образуют так называемый пионный конденсат.
См. также
ЧАСТИЦЫ ЭЛЕМЕНТАРНЫЕ ;
СВЕРХПРОВОДИМОСТЬ ;
СВЕРХТЕКУЧЕСТЬ .
ЛИТЕРАТУРА
Дайсон Ф., Тер Хаар Д. Нейтронные звезды и пульсары. М., 1973 Липунов В.М. Астрофизика нейтронных звезд. М., 1987

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "НЕЙТРОННАЯ ЗВЕЗДА" в других словарях:

    НЕЙТРОННАЯ ЗВЕЗДА, очень маленькая звезда с большой плотностью, состоящая из НЕЙТРОНОВ. Является последней стадией эволюции многих звезд. Нейтронные звезды образуются, когда массивная звезда вспыхивает в качестве СВЕРХНОВОЙ звезды, взрывая свои… … Научно-технический энциклопедический словарь

    Звезда, вещество которой, согласно теоретическим представлениям, состоит в основном из нейтронов. Нейтронизация вещества связана с гравитационным коллапсом звезды после исчерпания в ней ядерного горючего. Средняя плотность нейтронных звезд 2.1017 … Большой Энциклопедический словарь

    Строение нейтронной звезды. Нейтронная звезда астрономический объект, являющийся одним из конечных продук … Википедия

    Звезда, вещество которой согласно теоретическим представлениям состоит в основном из нейтронов. Средняя плотность такой звезды Нейтронная звезда2·1017 кг/м3, средний радиус 20 км. Обнаруживается по импульсному радиоизлучению см. Пульсары … Астрономический словарь

    Звезда, вещество которой, согласно теоретическим представлениям, состоит в основном из нейтронов. Нейтронизация вещества связана с гравитационным коллапсом звезды после исчерпания в ней ядерного горючего. Средняя плотность нейтронной звезды… … Энциклопедический словарь

    Гидростатически равновесная звезда, в во к рой состоит в осн. из нейтронов. Образуется в результате превращения протонов в нейтроны при гравитац. коллапсе на конечных стадиях эволюции достаточно массивных звёзд (с массой, в неск. раз превышающей… … Естествознание. Энциклопедический словарь

    Нейтронная звезда - одна из стадий эволюции звезд, когда в результате гравитационного коллапса она сжимается до таких малых размеров (радиус шара 10 20 км), что электроны оказываются вдавленными в ядра атомов и нейтрализуют их заряд, все вещество звезды становится… … Начала современного естествознания

    Калвера Нейтронная звезда. Была обнаружена астрономами из Пенсильванского государественного университета США и канадского университета Макгилла в созвездии Малой медвидице. Звезда необычна по своим характеристикам и не похожа ни на одну… … Википедия

    - (англ. runaway star) звезда, которая движется с аномально высокой скоростью по отношению к окружающей межзвездной среде. Собственное движение подобной звезды часто указывается именно относительно звездной ассоциации, членом которой… … Википедия

Звёзды, у которых масса в 1,5-3 раза больше, чем у Солнца не смогут в конце жизни остановить своё сжатие на стадии белого карлика. Мощные силы гравитации сожмут их до такой плотности, при которой произойдёт "нейтрализация" вещества: взаимодействие электронов с протонами привёдёт к тому, что почти вся масса звезды будет заключена в нейтронах. Образуется нейтронная звезда . Наиболее массивные звёзды могут обратиться в нейтронные, после того как они взорвутся как сверхновые.

Концепция нейтронных звезд

Концепция нейтронных звёзд не нова: первое предположение о возможности их существования было сделано талантливыми астрономами Фрицем Цвикки и Вальтером Баарде из Калифорнии в 1934г. (несколько раньше в 1932г. возможность существования нейтронных звёзд была предсказана известным советским учёным Л. Д. Ландау.) В конце 30-х годов она стала предметом исследований других американских учёных Оппенгеймера и Волкова. Интерес этих физиков к данной проблеме был вызван стремлением определить конечную стадию эволюции массивной сжи- мающейся звезды. Так как роль и значение сверхновых вскрылись примерно в то же время, было высказано предположение, что нейтронная звезда может оказаться остатком взрыва сверхновой. К несчастью, с началом второй мировой войны внимание учёных переключилось на военные нужды и детальное изучение этих новых и в высшей степени загадочных объектов было приостановлено. Затем, в 50-х годах, изучение нейтронных звёзд возобновили чисто теоретически с целью установить, имеют ли они отношение к проблеме рождения химических элементов в центральных областях звёзд.
остаются единственным астрофизическим объектом, существование и свойства которых были предсказаны задолго до их открытия.

В начале 60-х годов открытие космических источников рентгеновского излучения весьма обнадёжило тех, кто рассматривал нейтронные звёзды как возможные источники небесного рентгеновского излучения. К концу 1967г. был обнаружен новый класс небесных объектов - пульсары, что привело учёных в замешательство. Это открытие явилось наиболее важным событием в изучении нейтронных звёзд, так как оно вновь подняло вопрос о происхождении космического рентгеновского излучения. Говоря о нейтронных звёздах, следует учитывать, что их физические характеристики установлены теоретически и весьма гипотетичны, так как физические условия, существующие в этих телах, не могут быть воспроизведены в лабораторных экспериментах.

Свойства нейтронных звезд

Решающее значение на свойства нейтронных звёзд оказывают гравитационные силы. По различным оценкам, диаметры нейтронных звёзд составляют 10-200 км. И этот незначительный по космическим понятиям объём "набит" таким количеством вещества, которое может составить небесное тело, подобное Солнцу, диаметром около 1,5 млн. км, а по массе почти в треть миллиона раз тяжелее Земли! Естественное следствие такой концентрации вещества - невероятно высокая плотность нейтронной звезды. Фактически она оказывается настолько плотной, что может быть даже твёрдой. Сила тяжести нейтронной звезды столь велика, что человек весил бы там около миллиона тонн. Расчёты показывают, что нейтронные звёзды сильно намагничены. Согласно оценкам, магнитное поле нейтронной звезды может достигать 1млн. млн. гаусс, тогда как на Земле оно составляет 1 гаусс. Радиус нейтронной звезды принимается порядка 15 км, а масса - около 0,6 - 0,7 массы Солнца. Наружный слой представляет собой магнитосферу, состоящую из разрежённой электронной и ядерной плазмы, которая пронизана мощным магнитным полем звезды. Именно здесь зарождаются радиосигналы, которые являются отличительным признаком пульсаров. Сверхбыстрые заряженные частицы, двигаясь по спиралям вдоль магнитных силовых линий, дают начало разного рода излучениям. В одних случаях возникает излучение в радиодиапазоне электромагнитного спектра, в иных - излучение на высоких частотах.

Плотность нейтронной звезды

Почти сразу же под магнитосферой плотность вещества достигает 1 т/см3, что в 100 000 раз больше плотности железа. Следующий за наружным слой имеет характеристики металла. Этот слой "сверхтвёрдого" вещества, находящегося в кристаллической форме. Кристаллы состоят из ядер атомов с атомной массой 26 - 39 и 58 - 133. Эти кристаллы чрезвычайно малы: чтобы покрыть расстояние в 1 см, нужно выстроить в одну линию около 10 млрд. кристалликов. Плотность в этом слое более чем в 1 млн. раз выше, чем в наружном, или иначе, в 400 млрд. раз превышает плотность железа.
Двигаясь дальше к центру звезды, мы пересекаем третий слой. Он включает в себя область тяжёлых ядер типа кадмия, но также богат нейтронами и электронами. Плотность третьего слоя в 1 000 раз больше, чем предыдущего. Глубже проникая в нейтронную звезду, мы достигаем четвёртого слоя, плотность при этом возрастает незначительно - примерно в пять раз. Тем не менее при такой плотности ядра уже не могут поддерживать свою физическую целостность: они распадаются на нейтроны, протоны и электроны. Большая часть вещества пребывает в виде нейтронов. На каждый электрон и протон приходится по 8 нейтронов. Этот слой, по существу, можно рассматривать как нейтронную жидкость, "загрязнённую" электронами и протонами. Ниже этого слоя находится ядро нейтронной звезды. Здесь плотность примерно в 1,5 раза больше, чем в вышележащем слое. И тем не менее даже такое небольшое увеличение плотности приводит к тому, что частицы в ядре движутся много быстрее, чем в любом другом слое. Кинетическая энергия движения нейтронов, смешанных с небольшим количеством протонов и электронов, столь велика, что постоянно происходят неупругие столкновения частиц. В процессах столкновения рождаются все известные в ядерной физике частицы и резонансы, которых насчитывается более тысячи. По всей вероятности, присутствует большое число ещё не известных нам частиц.

Температура нейтронной звезды

Температуры нейтронных звёзд сравнительно высоки. Этого и следует ожидать, если учесть, как они возникают. За первые 10 - 100 тыс. лет существования звезды температура ядра уменьшается до нескольких сотен миллионов градусов. Затем наступает новая фаза, когда температура ядра звезды медленно уменьшается вследствие испускания электромагнитного излучения.

Нейтронная звезда
Neutron star

Нейтронная звезда – сверхплотная звезда, образующаяся в результате взрыва Сверхновой. Вещество нейтронной звезды состоит в основном из нейтронов.
Нейтронная звезда имеет ядерную плотность (10 14 -10 15 г/см 3) и типичный радиус 10-20 км. Дальнейшему гравитационному сжатию нейтронной звезды препятствует давление ядерной материи, возникающее за счёт взаимодействия нейтронов. Это давление вырожденного существенно более плотного нейтронного газа в состоянии удерживать от гравитационного коллапса массы вплоть до 3M. Таким образом, масса нейтронной звезды меняется в пределах (1.4-3)M.


Рис. 1. Сечение нейтронной звезды массой 1.5M и радиусом R = 16 км. Указана плотность ρ в г/см 3 в различных частях звезды.

Нейтрино, образующиеся в момент коллапса сверхновой, быстро охлаждают нейтронную звезду. Её температура по оценкам падает с 10 11 до 10 9 К за время около 100 с. Дальше темп остывания уменьшается. Однако он высок по космическим масштабам. Уменьшение температуры с 10 9 до 10 8 К происходит за 100 лет и до 10 6 К – за миллион лет.
Известно ≈ 1200 объектов, которые относят к нейтронным звёздам. Около 1000 из них расположены в пределах нашей галактики. Структура нейтронной звезды массой 1.5M и радиусом 16 км показана на рис. 1: I – тонкий внешний слой из плотно упакованных атомов. Область II представляет собой кристаллическую решётку атомных ядер и вырожденных электронов. Область III – твёрдый слой из атомных ядер, перенасыщенных нейтронами. IV – жидкое ядро, состоящее в основном из вырожденных нейтронов. Область V образует адронную сердцевину нейтронной звезды. Она, помимо нуклонов, может содержать пионы и гипероны. В этой части нейтронной звезды возможен переход нейтронной жидкости в твёрдое кристаллическое состояние, появление пионного конденсата, образование кварк-глюонной и гиперонной плазмы. Отдельные детали строения нейтронной звезды в настоящее время уточняются.
Обнаружить нейтронные звёзды оптическими методами сложно из-за малого размера и низкой светимости. В 1967 г. Э. Хьюиш и Дж. Белл (Кембриджский университет) открыли космические источники периодического радиоизлучения – пульсары. Периоды повторения радиоимпульсов пульсаров строго постоянны и для большинства пульсаров лежат в интервале от 10 -2 до нескольких секунд. Пульсары – это вращающиеся нейтронные звёзды. Только компактные объекты, имеющие свойства нейтронных звёзд, могут сохранять форму, не разрушаясь при таких скоростях вращения. Сохранение углового момента и магнитного поля при коллапсе сверхновой и образовании нейтронной звезды приводит к рождению быстро вращающихся пульсаров с очень сильным магнитным полем 10 10 –10 14 Гс. Магнитное поле вращается вместе с нейтронной звездой, однако, ось этого поля не совпадает с осью вращения звезды. При таком вращении радиоизлучение звезды скользит по Земле как луч маяка. Каждый раз, когда луч пересекает Землю и попадает на земного наблюдателя, радиотелескоп фиксирует короткий импульс радиоизлучения. Частота его повторения соответствует периоду вращения нейтронной звезды. Излучение нейтронной звезды возникает за счёт того, что заряженные частицы (электроны) с поверхности звезды двигаются вовне по силовым линиям магнитного поля, испуская электромагнитные волны. Таков механизм радиоизлучения пульсара, впервые предложенный



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта