Главная » Обработка грибов » Деление многочленов столбиком калькулятор. Деление многочлена на многочлен с остатком

Деление многочленов столбиком калькулятор. Деление многочлена на многочлен с остатком

Несколько лет назад с удивлением узнала, что сегодня в школах (даже во многих физ-мат школах), на кружках, да и в случаях “репетирования’’ не учат делить полиномы, или многочлены, в столбик. Самое забавное при этом, что схему Горнера школьники знают и используют для деления полиномов. Похоже, считается, что деление в столбик слишком сложно для неокрепшего разума, а вот выучить наизусть табличку, которая позволяет делить на многочлен первой степени, ему вполне по силам. Естественно, никто при этом не заботится о том, чтобы школьники поняли, почему так можно делить. Чтобы восполнить вопиющий пробел в образовании таких ребят, привожу здесь метод деления полинома на полином столбиком, который на самом деле довольно прост и позволяет делить на полиномы произвольной степени.

Начнем с того, что для двух многочленов и ( не должен быть тождественно равным нулю) справедлива . Если же остаток нулевой, то говорят, что делится на без остатка.

А теперь давайте рассмотрим примеры: на них учиться делить полиномы проще.

Пример 1. Разделим на (обратите внимание, оба многочлена записаны по убыванию степеней ). Сначала запишу то, что должно получиться, а затем приведу объяснения, как это получить.

Сначала старший член делимого — это — поделим на старший член делителя, то есть на . Полученный результат, который равен , будет старшим членом частного. Теперь умножим делитель на этот многочлен (получим ) и вычтем полученный результат из делимого. Получим остаток . Старший член этого остатка, который равен снова поделим на старший член делителя, который равен , получим , что и будет вторым членом частного. Делитель, умноженный на этот член, вычитаем из первого остатка. Получаем второй остаток, который равен нулю. На этом процесс деления заканчивается.

Легко проверить, что

Вообще говоря, деление заканчивается, как только степень полученного остатка будет меньше (строго меньше!) степени делителя. Давайте рассмотрим еще один пример.

Пример 2. Поделим на .

Деление закончено, поскольку степень последнего остатка меньше степени делителя (), иначе говоря, старший член остатка не делится нацело на старший член делителя.

Проверка. Действительно, нетрудно убедиться в том, что

Начнём с некоторых определений. Многочленом n-й степени (или n-го порядка) будем именовать выражение вида $P_n(x)=\sum\limits_{i=0}^{n}a_{i}x^{n-i}=a_{0}x^{n}+a_{1}x^{n-1}+a_{2}x^{n-2}+\ldots+a_{n-1}x+a_n$. Например, выражение $4x^{14}+87x^2+4x-11$ есть многочлен, степень которого равна $14$. Его можно обозначить так: $P_{14}(x)=4x^{14}+87x^2+4x-11$.

Коэффициент $a_0$ называют старшим коэффициентом многочлена $P_n(x)$. Например, для многочлена $4x^{14}+87x^2+4x-11$ старший коэффициент равен $4$ (число перед $x^{14}$). Число $a_n$ называют свободным членом многочлена $P_n(x)$. Например, для $4x^{14}+87x^2+4x-11$ свободный член равен $(-11)$. Теперь обратимся к теореме, на которой, собственно говоря, и будет основано изложение материала на данной странице.

Для любых двух многочленов $P_n(x)$ и $G_m(x)$ можно найти такие многочлены $Q_p(x)$ и $R_k(x)$, что будет выполнено равенство

\begin{equation} P_n(x)=G_m(x)\cdot Q_p(x)+R_k(x) \end{equation}

причём $k < m$.

Словосочетание "разделить многочлен $P_n(x)$ на многочлен $G_m(x)$" означает "представить многочлен $P_n(x)$ в форме (1)". Будем называть многочлен $P_n(x)$ - делимым, многочлен $G_m(x)$ - делителем, многочлен $Q_p(x)$ - частным от деления $P_n(x)$ на $G_m(x)$, а многочлен $R_k(x)$ - остачей от деления $P_n(x)$ на $G_m(x)$. Например, для многочленов $P_6(x)=12x^6+3x^5+16x^4+6x^3+8x^2+2x+1$ и $G_4(x)=3x^4+4x^2+2$ можно получить такое равенство:

$$ 12x^6+3x^5+16x^4+6x^3+8x^2+2x+1=(3x^4+4x^2+2)(4x^2+x)+2x^3+1 $$

Здесь многочлен $P_6(x)$ является делимым, многочлен $G_4(x)$ - делителем, многочлен $Q_2(x)=4x^2+x$ - частным от деления $P_6(x)$ на $G_4(x)$, а многочлен $R_3(x)=2x^3+1$ - остатком от деления $P_6(x)$ на $G_4(x)$. Замечу, что степень остатка (т.е. 3) меньше степени делителя, (т.е. 4), посему условие равенства соблюдено.

Если $R_k(x)\equiv 0$, то говорят, что многочлен $P_n(x)$ делится на многочлен $G_m(x)$ без остатка. Например, многочлен $21x^6+6x^5+105x^2+30x$ делится на многочлен $3x^4+15$ без остатка, так как выполнено равенство:

$$ 21x^6+6x^5+105x^2+30x=(3x^4+15)\cdot(7x^2+2x) $$

Здесь многочлен $P_6(x)=21x^6+6x^5+105x^2+30x$ является делимым; многочлен $G_4(x)=3x^4+15$ - делителем; а многочлен $Q_2(x)=7x^2+2x$ - частным от деления $P_6(x)$ на $G_4(x)$. Остаток равен нулю.

Чтобы разделить многочлен на многочлен часто применяют деление "столбиком" или, как его ещё называют, "уголком". Реализацию этого метода разберём на примерах.

Перед тем, как перейти к примерам, я введу ещё один термин. Он не является общепринятым , и использовать его мы будем исключительно для удобства изложения материала. До конца этой страницы будем называть старшим элементом многочлена $P_n(x)$ выражение $a_{0}x^{n}$. Например, для многочлена $4x^{14}+87x^2+4x-11$ старшим элементом будет $4x^{14}$.

Пример №1

Разделить $10x^5+3x^4-12x^3+25x^2-2x+5$ на $5x^2-x+2$, используя деление "столбиком".

Итак, мы имеем два многочлена, $P_5(x)=10x^5+3x^4-12x^3+25x^2-2x+5$ и $G_2(x)=5x^2-x+2$. Степень первого равна $5$, а степень второго равна $2$. Многочлен $P_5(x)$ - делимое, а многочлен $G_2(x)$ - делитель. Наша задача состоит в нахождении частного и остатка. Поставленную задачу будем решать пошагово. Будем использовать ту же запись, что и для деления чисел:

Первый шаг

Разделим старший элемент многочлена $P_5(x)$ (т.е. $10x^5$) на старший элемент многочлена $Q_2(x)$ (т.е. $5x^2$):

$$ \frac{10x^5}{5x^2}=2x^{5-2}=2x^3. $$

Полученное выражение $2x^3$ - это первый элемент частного:

Умножим многочлен $5x^2-x+2$ на $2x^3$, получив при этом:

$$ 2x^3\cdot (5x^2-x+2)=10x^5-2x^4+4x^3 $$

Запишем полученный результат:

Теперь вычтем из многочлена $10x^5+3x^4-12x^3+25x^2-2x+5$ многочлен $10x^5-2x^4+4x^3$:

$$ 10x^5+3x^4-12x^3+25x^2-2x+5-(10x^5-2x^4+4x^3)=5x^4-16x^3+25x^2-2x+5 $$

На этом первый шаг заканчивается. Тот результат, что мы получили, можно записать в развёрнутой форме:

$$ 10x^5+3x^4-12x^3+25x^2-2x+5=(5x^2-x+2)\cdot 2x^3+5x^4-16x^3+25x^2-2x+5 $$

Так как степень многочлена $5x^4-16x^3+25x^2-2x+5$ (т.е. 4) больше степени многочлена $5x^2-x+2$ (т.е. 2), то процесс деления надобно продолжить. Перейдём ко второму шагу.

Второй шаг

Теперь уже будем работать с многочленами $5x^4-16x^3+25x^2-2x+5$ и $5x^2-x+2$. Точно так же, как и на первом шаге, разделим старший элемент первого многочлена (т.е. $5x^4$) на старший элемент второго многочлена (т.е. $5x^2$):

$$ \frac{5x^4}{5x^2}=x^{4-2}=x^2. $$

Полученное выражение $x^2$ - это второй элемент частного. Прибавим к частному $x^2$

Умножим многочлен $5x^2-x+2$ на $x^2$, получив при этом:

$$ x^2\cdot (5x^2-x+2)=5x^4-x^3+2x^2 $$

Запишем полученный результат:

Теперь вычтем из многочлена $5x^4-16x^3+25x^2-2x+5$ многочлен $5x^4-x^3+2x^2$:

$$ 5x^4-16x^3+25x^2-2x+5-(5x^4-x^3+2x^2)=-15x^3+23x^2-2x+5 $$

Этот многочлен допишем уже под чертой:

На этом второй шаг заканчивается. Полученный результат можно записать в развёрнутой форме:

$$ 10x^5+3x^4-12x^3+25x^2-2x+5=(5x^2-x+2)\cdot (2x^3+x^2)-15x^3+23x^2-2x+5 $$

Так как степень многочлена $-15x^3+23x^2-2x+5$ (т.е. 3) больше степени многочлена $5x^2-x+2$ (т.е. 2), то продолжаем процесс деления. Перейдём к третьему шагу.

Третий шаг

Теперь уже будем работать с многочленами $-15x^3+23x^2-2x+5$ и $5x^2-x+2$. Точно так же, как и на предыдущих шагах, разделим старший элемент первого многочлена (т.е. $-15x^3$) на старший элемент второго многочлена (т.е. $5x^2$):

$$ \frac{-15x^3}{5x^2}=-3x^{2-1}=-3x^1=-3x. $$

Полученное выражение $(-3x)$ - это третий элемент частного. Допишем к частному $-3x$

Умножим многочлен $5x^2-x+2$ на $(-3x)$, получив при этом:

$$ -3x\cdot (5x^2-x+2)=-15x^3+3x^2-6x $$

Запишем полученный результат:

Теперь вычтем из многочлена $-15x^3+23x^2-2x+5$ многочлен $-15x^3+3x^2-6x$:

$$ -15x^3+23x^2-2x+5-(-15x^3+3x^2-6x)=20x^2+4x+5 $$

Этот многочлен допишем уже под чертой:

На этом третий шаг заканчивается. Полученный результат можно записать в развёрнутой форме:

$$ 10x^5+3x^4-12x^3+25x^2-2x+5=(5x^2-x+2)\cdot (2x^3+x^2-3x)+20x^2+4x+5 $$

Так как степень многочлена $20x^2+4x+5$ (т.е. 2) равна степени многочлена $5x^2-x+2$ (т.е. 2), то продолжаем процесс деления. Перейдём к четвёртому шагу.

Четвёртый шаг

Теперь уже будем работать с многочленами $20x^2+4x+5$ и $5x^2-x+2$. Точно так же, как и на предыдущих шагах, разделим старший элемент первого многочлена (т.е. $20x^2$) на старший элемент второго многочлена (т.е. $5x^2$):

$$ \frac{20x^2}{5x^2}=4x^{2-2}=4x^0=4. $$

Полученное число $4$ - это четвёртый элемент частного. Допишем к частному $4$

Умножим многочлен $5x^2-x+2$ на $4$, получив при этом:

$$ 4\cdot (5x^2-x+2)=20x^2-4x+8 $$

Запишем полученный результат:

Теперь вычтем из многочлена $20x^2+4x+5$ многочлен $20x^2-4x+8$.

Общий вид одночлена

f(x)=ax n , где:

-a - коэффициент, который может принадлежать любому из множеств N, Z, Q, R, C

-x - переменная

-n показатель степени, который принадлежит множеству N

Два одночлена подобны, если они имеют одну и ту же переменную и одинаковый показатель степени.

Примеры: 3x 2 и -5x 2 ; ½x 4 и 2√3x 4

Сумма одночленов, не подобных друг другу, называется многочленом (или полиномом). В этом случае одночлены являются слагаемыми полинома. Полином, содержащий два слагаемых, называется биномом (или двучленом).
Пример: p(x)=3x 2 -5; h(x)=5x-1
Полином, содержащий три слагаемых, называется трехчленом.

Общий вид многочлена с одной переменной

где:

  • a n ,a n-1 ,a n-2 ,...,a 1 ,a 0 - коэффициенты полинома. Они могут быть натуральными, целыми, рациональными, действительными или комплексными числами.
  • a n - коэффициент при слагаемом с наибольшим показателем степени (ведущий коэффициент)
  • a 0 - коэффициент при слагаемом с наименьшим показателем степени (свободный член, или константа)
  • n - степень полинома

Пример 1
p(x)=5x 3 -2x 2 +7x-1

  • полином третьей степени с коэффициентами 5, -2, 7 и -1
  • 5 - ведущий коэффициент
  • -1 - свободный член
  • x - переменная

Пример 2
h(x)=-2√3x 4 +½x-4

  • полином четвертой степени с коэффициентами -2√3,½ и -4
  • -2√3 - ведущий коэффициент
  • -4 - свободный член
  • x - переменная

Деление полиномов

p(x) и q(x) - два полинома:
p(x)=a n x n +a n-1 x n-1 +...+a 1 x 1 +a 0
q(x)=a p x p +a p-1 x p-1 +...+a 1 x 1 +a 0

Чтобы найти частное и остаток от деления p(x) на q(x) , нужно использовать следующий алгоритм:

  1. Степень p(x) должна быть больше либо равной степени q(x) .
  2. Мы должны записать оба полинома в порядке понижения степени. Если в p(x) нет члена с какой-либо степенью, его надо дописать с коэффициентом 0.
  3. Ведущий член p(x) делится на ведущий член q(x) , и результат записывается под разделительной линией (в знаменателе).
  4. Умножаем полученный результат на все члены q(x) и записываем результат с противоположными знаками под членами p(x) с соответствующими степенями.
  5. Складываем почленно слагаемые с одинаковыми степенями.
  6. К результату приписываем оставшиеся члены p(x) .
  7. Делим ведущий член полученного полинома на первый член полинома q(x) и повторяем шаги 3-6.
  8. Эта процедура повторяется до тех пор, пока вновь полученный полином не будет иметь меньшую степень, чем q(x) . Этот полином будет являться остатком от деления.
  9. Полином, записанный под разделительной линией, является результатом деления (частным).

Пример 1
Шаг 1 и 2) $p(x)=x^5-3x^4+2x^3+7x^2-3x+5 \\ q(x)=x^2-x+1$

3) x 5 -3x 4 +2x 3 +7x 2 -3x+5

4) x 5 -3x 4 +2x 3 +7x 2 -3x+5

5) x 5 -3x 4 +2x 3 +7x 2 -3x+5

6) x 5 -3x 4 +2x 3 +7x 2 -3x+5

/ -2x 4 -x 3 +7x 2 -3x+5

7) x 5 -3x 4 +2x 3 +7x 2 -3x+5

/ -2x 4 +x 3 +7x 2 -3x+5

2x 4 -2x 3 +2x 2

/ -x 3 +9x 2 -3x+5

8) x 5 -3x 4 +2x 3 +7x 2 -3x+5

/ -2x 4 -x 3 +7x 2 -3x+5

2x 4 -2x 3 +2x 2

/ -x 3 +9x 2 -3x+5

/ 6x-3 СТОП

x 3 -2x 2 -x+8 --> C(x) Частное

Ответ: p(x) = x 5 - 3x 4 + 2x 3 + 7x 2 - 3x + 5 = (x 2 - x + 1)(x 3 - 2x 2 - x + 8) + 6x - 3

Пример 2
p(x)=x 4 +3x 2 +2x-8
q(x)=x 2 -3x

X 4 +0x 3 +3x 2 +2x-8

/ 3x 3 +3x 2 +2x-8

/ 38x-8 r(x) СТОП

x 2 +3x+12 --> C(x) Частное

Ответ: x 4 + 3x 2 + 2x - 8 = (x 2 - 3x)(x 2 + 3x + 12) + 38x - 8

Деление на полином первой степени

Это деление можно выполнить с использованием вышеупомянутого алгоритма или даже более быстрым образом, если воспользоваться методом Горнера.
Если f(x)=a n x n +a n-1 x n-1 +...+a 1 x+a 0 , полином можно переписать в виде f(x)=a 0 +x(a 1 +x(a 2 +...+x(a n-1 +a n x)...))

q(x) - полином первой степени ⇒ q(x)=mx+n
Тогда полином в частном будет иметь степень n-1 .

По методу Горнера, $x_0=-\frac{n}{m}$.
b n-1 =a n
b n-2 =x 0 .b n-1 +a n-1
b n-3 =x 0 .b n-2 +a n-2
...
b 1 =x 0 .b 2 +a 2
b 0 =x 0 .b 1 +a 1
r=x 0 .b 0 +a 0
где b n-1 x n-1 +b n-2 x n-2 +...+b 1 x+b 0 - частное. Остатком будет полином нулевой степени, поскольку степень полинома в остатке должна быть меньше, чем степень делителя.
Деление с остатком ⇒ p(x)=q(x).c(x)+r ⇒ p(x)=(mx+n).c(x)+r если $x_0=-\frac{n}{m}$
Отметим, что p(x 0)=0.c(x 0)+r ⇒ p(x 0)=r

Пример 3
p(x)=5x 4 -2x 3 +4x 2 -6x-7
q(x)=x-3
p(x)=-7+x(-6+x(4+x(-2+5x)))
x 0 =3

b 3 =5
b 2 =3.5-2=13
b 1 =3.13+4=43 ⇒ c(x)=5x 3 +13x 2 +43x+123; r=362
b 0 =3.43-6=123
r=3.123-7=362
5x 4 -2x 3 +4x 2 -6x-7=(x-3)(5x 3 +13x 2 +43x+123)+362

Пример 4
p(x)=-2x 5 +3x 4 +x 2 -4x+1
q(x)=x+2
p(x)=-2x 5 +3x 4 +0x 3 +x 2 -4x+1
q(x)=x+2
x 0 =-2
p(x)=1+x(-4+x(1+x(0+x(3-2x))))

b 4 =-2          b 1 =(-2).(-14)+1=29
b 3 =(-2).(-2)+3=7     b 0 =(-2).29-4=-62
b 2 =(-2).7+0=-14     r=(-2).(-62)+1=125
⇒ c(x)=-2x 4 +7x 3 -14x 2 +29x-62; r=125
-2x 5 +3x 4 +x 2 -4x+1=(x+2)(-2x 4 +7x 3 -14x 2 +29x-62)+125

Пример 5
p(x)=3x 3 -5x 2 +2x+3
q(x)=2x-1
$x_0=\frac{1}{2}$
p(x)=3+x(2+x(-5+3x))
b 2 =3
$b_1=\frac{1}{2}\cdot 3-5=-\frac{7}{2}$
$b_0=\frac{1}{2}\cdot \left(-\frac{7}{2}\right)+2=-\frac{7}{4}+2=\frac{1}{4}$
$r=\frac{1}{2}\cdot \frac{1}{4}+3=\frac{1}{8}+3=\frac{25}{8} \Rightarrow c(x)=3x^2-\frac{7}{2}x+\frac{1}{4}$
$\Rightarrow 3x^3-5x^2+2x+3=(2x-1)(3x^2--\frac{7}{2}x+\frac{1}{4})+\frac{25}{8}$
Вывод
Если мы делим на полином степени выше, чем один, для нахождения частного и остатка нужно воспользоваться алгоритмом 1-9 .
Если мы делим на полином первой степени mx+n , то для нахождения частного и остатка нужно использовать метод Горнера с $x_0=-\frac{n}{m}$.
Если нас интересует только остаток от деления, достаточно найти p(x 0) .
Пример 6
p(x)=-4x 4 +3x 3 +5x 2 -x+2
q(x)=x-1
x 0 =1
r=p(1)=-4.1+3.1+5.1-1+2=5
r=5

Сегодня мы узнаем, как выполняется деление многочленов друг на друга, причем выполнять деление мы будем уголком по аналогии с обычными числами. Это очень полезный прием, который, к сожалению, не изучают в большинстве школ. Поэтому внимательно прослушайте данный видеоурок. Ничего сложного в таком делении нет.

Для начала давайте разделим друг на друга два числа:

Как можно это сделать? В первую очередь, мы отсекаем столько разрядов, чтобы полученное числовое значение было больше чем то, на которое мы делим. Если мы отсечем один разряд, то получим пять. Очевидно, семнадцать в пять не вмещается, поэтому этого недостаточно. Берем два разряда — у нас выйдет 59 — оно уже больше, чем семнадцать, поэтому мы можем выполнить операцию. Итак, сколько раз семнадцать помещается в 59? Давайте возьмем три. Перемножаем и записываем результат под 59. Итого у нас получилось 51. Вычитаем и у нас вышло «восемь». Теперь сносим следующий разряд — пять. Делим 85 на семнадцать. Берем пять. Перемножим семнадцать на пять и получаем 85. Вычитаем и у нас получается ноль.

Решаем реальные примеры

Задача № 1

Теперь выполним те же самые шаги, но не с числами, а с многочленами. Для примера возьмем такое:

\[\frac{{{x}^{2}}+8x+15}{x+5}=x+3\]

Обратите внимание, если при делении чисел друг на друга мы подразумевали, что делимое всегда больше делителя, то в случае деления полиномов уголком, необходимо, чтобы степень делимого была больше, чем делителя. В нашем случае все в порядке — мы работаем с конструкциями второй и первой степени.

Итак, первый шаг: сравниваем первые элементы. Вопрос: на что нужно домножить $x$, чтобы получилось ${{x}^{2}}$? Очевидно, что на еще один $x$. Умножаем $x+5$ на только что найденное число $x$. У нас есть ${{x}^{2}}+5$, которое вычитаем из делимого. Остается $3x$. Теперь сносим следующее слагаемое — пятнадцать. Снова посмотрим на первые элементы: $3x$ и $x$. На что следует домножить $x$, чтобы вышло$3x$? Очевидно, что на три. Домножаем почленно $x+5$ на три. Когда мы вычтем, то получим ноль.

Как видите, вся операция деления уголком свелась к сравнению старших коэффициентов при делимом и делителе. Это даже проще, чем когда вы делите числа. Тут не требуется выделять какое-то количество разрядов — мы просто на каждом шаге сравниваем старшие элементы. Вот и весь алгоритм.

Задача № 2

Давайте попробуем еще:

\[\frac{{{x}^{2}}+x-2}{x-1}=x+2\]

Первый шаг: посмотрим на старшие коэффициенты. На сколько нужно домножить $x$, чтобы записать${{x}^{2}}$? Домножаем почленно. Обратите внимание, при вычитании у нас получится именно $2x$, потому что

Сносим -2 и снова сравним первый полученный коэффициент со старшим элементом делителя. Итого у нас вышел «красивый» ответ.

Переходим ко второму примеру:

\[\frac{{{x}^{3}}+2{{x}^{2}}-9x-18}{x+3}={{x}^{2}}-x-6\]

В этот раз в качестве делимого выступает полином третьей степени. Сравним между собой первые элементы. Для того чтобы получилось ${{x}^{3}}$, необходимо $x$ домножить на ${{x}^{2}}$. После вычитания сносим $9x$. Домножаем делитель на $-x$ и вычитаем. В итоге наше выражение полностью разделилось. Записываем ответ.

Задача № 3

Переходим к последней задаче:

\[\frac{{{x}^{3}}+3{{x}^{2}}+50}{x+5}={{x}^{2}}-2x+10\]

Сравниваем ${{x}^{3}}$ и $x$. Очевидно, нужно домножить на ${{x}^{2}}$. В итоге мы видим, что мы получили очень «красивый» ответ. Записываем его.

Вот и весь алгоритм. Ключевых моментов здесь два:

  1. Всегда сравнивайте первую степень делимого и делителя — повторяем это на каждом шаге;
  2. Если в исходном выражении пропущены какие-либо степени, при делении уголком их обязательно следует добавить, но с нулевыми коэффициентами, иначе ответ будет неправильным.

Больше никаких премудростей и хитростей в таком делении нет.

Материал сегодняшнего урока нигде и никогда не встречается в «чистом» виде. Его редко изучают в школах. Однако умение делить многочлены друг на друга очень поможет вам при решении уравнений высших степеней, а также всевозможных задач «повышенной трудности». Без данного приема вам придется раскладывать многочлены на множители, подбирать коэффициенты — и результат при этом отнюдь не гарантирован. Однако многочлены можно делить и уголком — так же, как и обычные числа! К сожалению, данный прием не изучают в школах. Многие учителя считают, что деление многочленов уголком — это что-то безумно сложное, из области высшей математики. Спешу вас заверить: это не так. Более того, делить многочлены даже проще, чем обычные числа! Посмотрите урок — и убедитесь в этом сами.:) В общем, обязательно возьмите этот прием на вооружение. Умение делить многочлены друг на друга очень пригодится вам при решении уравнений высших степеней и в других нестандартных задачах.

Я надеюсь, этот ролик поможет тем, кто работает с полиномами, особенно высших степеней. Это относится и к старшеклассникам, и к студентам университетов. А у меня на этом все. До встречи!

Напомним, что разделить натуральное число a на натуральное число b – это значит представить число a в виде:

где частное c и остаток r – целые неотрицательные числа, причем остаток r удовлетворяет неравенству:

Если друг на друга делить многочлены, то возникает похожая ситуация.

Действительно, при выполнении над многочленами операций сложения, вычитания и умножения результатом всегда будет многочлен. В частности, при перемножении двух многочленов , отличных от нуля, степень произведения будет равна сумме степеней сомножителей.

Однако в результате деления многочленов многочлен получается далеко не всегда.

Говорят, что один многочлен нацело (без остатка) делится на другой многочлен , если результатом деления является многочлен.

Если же один многочлен не делится нацело на другой многочлен, то всегда можно выполнить деление многочленов с остатком , в результате которого и частное, и остаток будут многочленами.

Определение . Разделить многочлен a (x ) на многочлен b (x ) с остатком – это значит представить многочлен a (x ) в виде

a (x ) = b (x ) c (x ) + r (x ) ,

где многочлен c (x ) – частное , а многочлен r (x ) – остаток , причем, степень остатка удовлетворяет неравенству:

Очень важно отметить, что формула

a (x ) = b (x ) c (x ) + r (x )

является тождеством , т.е. равенством, справедливым при всех значениях переменной x .

При делении (с остатком или без остатка) многочлена на многочлен меньшей степени в частном получается многочлен, степень которого равна разности степеней делимого и делителя.

Один из способов деления многочленов с остатком – это деление многочленов «уголком» , что представляет собой полную аналогию с тем, как это происходит при делении целых чисел.

К описанию этого способа деления многочленов мы сейчас и переходим.

Пример . Заранее расположив многочлены по убывающим степеням переменной, разделим многочлен

2x 4 - x 3 + 5x 2 - 8x + 1

на многочлен

x 2 - x + 1 .

Решение . Опишем алгоритм деления многочленов «уголком» по шагам:

  1. Делим первый член делимого 2x 4 на первый член делителя x 2 . Получаем первый член частного 2x 2 .
  2. Умножаем первый член частного 2x 2 на делитель x 2 - x + 1, а результат умножения
  3. 2x 4 - 2x 3 + 2x 2

    пишем под делимым 2x 4 - x 3 + 5x 2 - 8x + 1 .

  4. Вычитаем из делимого написанный под ним многочлен. Получаем первый остаток
  5. x 3 + 3x 2 - 8x .

    Если бы этот остаток был равен нулю, или был многочленом, степень которого меньше, чем степень делителя ( в данном случае меньше 2), то процесс деления был бы закончен. Однако это не так, и деление продолжается.

  6. Делим первый член остатка x 3 на первый член делителя x 2 . Получаем второй член частного x .
  7. Умножаем второй член частного x на делитель x 2 - x + 1 , а результат умножения
  8. x 3 - x 2 + x

    пишем под первым остатком x 3 + 3x 2 - 8x .

  9. Вычитаем из первого остатка написанный под ним многочлен. Получаем второй остаток
  10. 4x 2 - 9x + 1 .

    Если бы этот остаток был бы равен нулю, или был многочленом, степень которого меньше, чем степень делителя, то процесс деления был бы закончен. Однако это не так, и деление продолжается.

  11. Делим первый член второго остатка 4x 2 на первый член делителя x 2 . Получаем третий член частного 4 .
  12. Умножаем третий член частного 4 на делитель x 2 - x + 1 , а результат умножения


  13. Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта