Главная » Обработка грибов » Длина волны излучения лазера. Вспомним конструкцию зеленых DPSS лазеров

Длина волны излучения лазера. Вспомним конструкцию зеленых DPSS лазеров

Нам часто задают вопрос -что означают эти буквы в описании радар-детекторов: Х, К, Ка, L, POP, VG-2?

X , K и Ka -это радиочастотные диапазоны, в которых работают милицейские радары.

L (laser)-означает возможность обнаружения лазерных радаров (лидаров)

POP -это не диапазон, это режим работы милицейского радара (а для радар-детектора -режим обнаружения).

VG-2 это система обнаружения радар-детекторов (а в радар-детекторах соответственно защита от такого обнаружения)

Рассмотрим это подоробней.

Диапазон X (10.475 to 10.575 ghz) -Самый старый радиочастотный диапазон используемый для контроля скорости. Водители старшего поколения помнят большие радары которые использовала милиция еще в СССР, похожие на большую серую трубу, из-за чего получили название "труба" или "фара". Сейчас таких почти не осталось. Лично я видел последний раз такую штуку на дорогах Украины в 2007 году. Имея любой, даже самый дешевый радар-детектор на вооружении вы легко успеете притормозить, т.к. скорость работы этих радаров невысока.

Диапазон K (24.0 to 24.25 ghz) -диапазон К самый распространенный диапазон в котором на данный момент работает большинство милицейских радаров. Этот диапазон был введен в 1976 году в США и до сих пор широко используется во ввсем мире для обнаружения скорости. Радары, работающие в диапазоне К отличаются меньшими размерами и весом по сравнению с радарами диапазона Х, а также более высокой скоростью работы. Этот диапазон используют радары "Визир", "Беркут", "Искра" и др. Все которые представлены в нашем магазине обнаруживают диапазон К.

Диапазон Ка (33.4 to 36.0 ghz) -более новый диапазон. Радары работающие в этом диапазоне более точные. Для радар-детекторов обнаружение этого диапазона сложнее. Все современные радар-детекторы обнаруживают излучение радаров в диапазоне Ka, однако ввиду того что работают такие милицейские радары очень быстро, не факт что Вам удастся снизить скорость в достаточной мере для того чтобы не быть пойманым. Будьте осторожны!

Лазерный диапазон . Радары (лидары) работающие в лазерном диапазоне это кошмар для нарушителя. Его используют камеры контроля скорости, например прибор TruCam. Лазерный измеритель скорости излучает луч в инфракрасном спектре. Отражаясь от фар автомобиля или номерного знака, лазерный луч возвращается обратно, и так как все это происходит со скоростью света, то шансов снизить скорость у вас просто нет. Если Ваш радар-детектор сообщил об обнаружении лазера то это означает что вас уже поймали:(Другое дело если ловили совсем не Вас и радар-детектор "поймал" отраженный сигнал, тогда еще может повезти.
Функцию обнаружения лазерных радаров имеют все радар-детекторы, представленные в нашем магазине. Но самый действенный (единственный надежный!) способ борьбы с лазерными пушками является так называемые "шифтеры"-приборы, обманывающие лазерный измеритель скорости. В нашем магазине представлен Beltronics SHIFTER ZR4-комплекс позволяющий обнаружить и защититься от лазерного обнаружения. Вот что по-настоящему позволит защититься от TruCam! Beltronics Shifter ZR4 может работать как самостоятельно, так и в комплекте с радар-детекторами Beltronics.

режим POP -это режим работы милицейского радара в котором он излучает очень короткое время (десятки миллисекунд). Этого бывает достаточно для определения скорости, но фиксации скорости не происходит и гаишнику в принципе нечего Вам предъявить. Но он предъявит, будьте уверены. Большинство радар-детекторов могут определять сигналы в этом режиме, у многих этот режим включается принудительно.В этом режиме ваш радар-детектор более чувствителен к помехам, поэтому используйте его за городом.

VG-2 -это режим защиты от обнаружения вашего радар-детектора. В некоторых странах Европы и в некоторых штатах США использование радар-детекторов запрещено. Поэтому полицейские имеют на вооружении так называемые детекторы радар-детекторов (Radar Detector Detector-RDD). Они улавливают специфическое излучение, которое производит радар-детектор во время работы. Таким образом полицейский на расстоянии может знать что у Вас в машине установлен радар-детектор. Все современные радар-детекторы защищены от обнаружения устройствами VG-2. Смех в том что VG-2 -система, изобретенная в начале 90-х и на данный момент практически не используется. Сейчас полицейские используют новые RDD системы Spectre (Stalcar). От этих RDD очень трудно защититься, практически ни один радар-детектор на рынке не способен защититься от системы Spectre, кроме радара Beltronics STI Driver-эта штука невидима на 100%.

После прочтения этой статьи может сложиться впечатление что в радар-детекторах нет никакого смысла-все равно не поможет. Это совсем не так. Во-первых, большинство радаров работают в диапазоне К и Ка, имея Вы будете предупреждены заранее и успеете скинуть скорость.

Лазерные пушки, стационарные лазерные камеры-это проблема. С другой стороны таких устройств крайне мало, они дороже обычного радара в разы и меньше распространены чем обычные радары диапазона К даже в США, что уж говорить об Украине. Такие радары нельзя использовать с рук, только с треноги или закрепленные стационарно.Для стопроцентной защиты от лазерных радаров вам потребуется шифтер-дорого но надежно.

Даже самый простой "антирадар" обнаруживает большинство радаров диапазона K заранее, на достаточном расстоянии чтобы Вы успели остановится. Мой любимые радары среднего ценового диапазона- Stinger -лучше защищены от помех и имет большую чувствительность. Ну и премиум класс- радар-детекторы Beltronics и в особенности STI Driver -вне конкуренции!

Удачи на дорогах!

Само слово «лазер», это аббревиатура от английского "Light Amplification by Stimulated Emission of Radiation", что означает «усиление света с помощью индуцированного излучения».

Отсчет эпохи лазерной медицины начался более полу века назад, когда в 1960 г., Теодор Мэйман впервые использовал в клинике рубиновый лазер.

За рубиновым последовали другие лазеры: 1961 г. – лазер на иттриево-алюминиевом гранате с неодимом (Nd:YAG); 1962 г. – аргоновый; 1964 г. – лазер на диоксиде углерода (СО 2).

В 1965 г. Леон Голдман сообщил об использовании рубинового лазера для удаления татуировок. В дальнейшем, вплоть до 1983 г., предпринимались различные попытки использования неодимового и аргонового лазеров для лечения сосудистых патологий кожи. Но их применение было ограничено высоким риском образования рубцов.

В 1983 г. в журнале Science Рокс Андерсон и Джон Пэрриш опубликовали разработанную ими концепцию селективного фототермолиза (СФТ), что привело к революционным изменениям в лазерной медицине и дерматологии . Данная концепция позволила лучше понять процессы взаимодействия лазерного излучения с тканью. Это, в свою очередь, облегчило разработку и производство лазеров для медицинского применения.

Особенности лазерного излучения

Три свойства, присущие лазерному излучению делают его уникальным:

  1. Когерентность. Пики и спады волн располагаются параллельно и совпадают по фазе во времени и пространстве.
  2. Монохромность. Световые волны, излучаемые лазером, имеют одинаковую длину, именно ту, которая предусмотрена используемой в лазере средой.
  3. Коллимация. Волны в луче света сохраняют параллельность, не расходятся, и луч переносит энергию практически без потерь.

Способы взаимодействия лазерного излучения с кожей

Методы лазерной хирургии применяются для манипуляций на коже намного чаще, чем на любых других тканях. Это объясняется, во-первых, исключительным разнообразием и распространенностью кожной патологии и различных косметических дефектов, а во-вторых, относительной простотой выполнения лазерных процедур, что связано с поверхностным расположением объектов, требующих лечения. В основе взаимодействия лазерного света с тканями лежат оптические свойства тканей и физические свойства лазерного излучения. Распределение света, попавшего на кожу, можно разделить на четыре взаимосвязанных процесса.

Отражение. Около 5-7% света отражаются на уровне рогового слоя.

Поглощение (абсорбция). Описывается законом Бугера - Ламберта - Бера. Поглощение света, проходящего сквозь ткань, зависит от его исходной интенсивности, толщины слоя вещества, через которое проходит свет, длины волны поглощаемого света и коэффициента поглощения. Если свет не поглощается, никакого его воздействия на ткани не происходит. Когда фотон поглощается молекулой-мишенью (хромофором), вся его энергия передается этой молекуле. Важнейшими эндогенными хромофорами являются меланин, гемоглобин, вода и коллаген . К экзогенным хромофорам относятся красители для татуировок, а также частицы грязи, импрегнированные при травме.

Рассеивание. Этот процесс обусловлен главным образом коллагеном дермы. Важность явления рассеивания состоит в том, что оно быстро уменьшает плотность потока энергии, доступной для поглощения хромофором-мишенью, а, следовательно, и клиническое воздействие на ткани. Рассеивание снижается с увеличением длины волны, делая более длинные волны идеальным средством доставки энергии в глубокие кожные структуры.

Проникновение. Глубина проникновения света в подкожные структуры, как и интенсивность рассеивания, зависит от длины волны. Короткие волны (300-400 нм) интенсивно рассеиваются и не проникают глубже 100 мкм. А волны большей длины проникают глубже, так как рассеиваются меньше.

Основными физическими параметрами лазера, определяющими воздействие квантовой энергии на ту или иную биологическую мишень, являются длина генерируемой волны и плотность потока энергии и время воздействия.

Длина генерируемой волны. Длина волны излучения лазера сопоставима со спектром поглощения самых важных тканевых хромофоров (рис. 2). При выборе этого параметра обязательно следует учитывать глубину расположения структуры-мишени (хромофора), поскольку рассеивание света в дерме существенно зависит от длины волны (рис. 3). Это означает, что длинные волны поглощаются слабее, чем короткие; соответственно, их проникновение в ткани глубже. Необходимо также учитывать и неоднородность спектрального поглощения тканевых хромофоров:

  • Меланин в норме содержится в эпидермисе и волосяных фолликулах. Спектр его поглощения лежит в ультрафиолетовом (до 400 нм) и видимом (400 - 760 нм) диапазонах спектра. Поглощение меланином лазерного излучения постепенно уменьшается по мере увеличения длины волны света. Ослабление поглощения наступает в ближней инфракрасной области спектра от 900 нм.
  • Гемоглобин содержится в эритроцитах. Он имеет множество различных пиков поглощения. Максимумы спектра поглощения гемоглобина лежат в области УФ-А (320-400 нм), фиолетовом (400 нм), зеленом (541 нм) и желтом (577 нм) диапазонах.
  • Коллаген составляет основу дермы. Спектр поглощения коллагена находится в видимом диапазоне от 400 нм до 760 нм и ближней инфракрасной области спектра от 760 до 2500нм.
  • Вода составляет до 70% дермы. Спектр поглощения воды лежит в средней (2500 - 5000 нм) и дальней (5000 - 10064 нм) инфракрасной областях спектра.

Плотность потока энергии. Если длина волны света влияет на глубину, на которой происходит его поглощение тем или иным хромофором, то для непосредственного повреждения структуры-мишени важны величина энергии лазерного излучения и мощность, определяющая скорость поступления этой энергии. Энергия измеряется в джоулях (Дж), мощность – в ваттах (Вт, или Дж/с). На практике эти параметры излучения обычно используются в перерасчете на единицу площади – плотность потока энергии (Дж/см 2) и скорость потока энергии (Вт/см 2), или плотность мощности .

Виды лазерных вмешательств в дерматологии

Все виды лазерных вмешательств в дерматологии могут быть условно подразделены на два типа:

  • I тип. Операции, в ходе которых проводят абляцию участка пораженной кожи, включая эпидермис.
  • II тип. Операции, нацеленные на избирательное удаление патологических структур без нарушения целостности эпидермиса.

I тип.Абляция.
Этот феномен представляет собой одну из фундаментальных, интенсивно изучаемых, хотя еще и не до конца решенных проблем современной физики.
Термин «абляция» переводится на русский язык как удаление или ампутация. В немедицинской лексике это слово означает размывание или таяние. В лазерной хирургии под абляцией понимают ликвидацию участка живой ткани непосредственно под действием на нее фотонов лазерного излучения. При этом имеется в виду эффект, проявляющийся именно в ходе самой процедуры облучения, в отличие от ситуации (например, при фотодинамической терапии), когда облученный участок ткани после прекращения лазерного воздействия остается на месте, а его постепенная ликвидация наступает позднее в результате серии местных биологических реакций, развивающихся в зоне облучения .

Энергетические характеристики и производительность абляции определяются свойствами облучаемого объекта, характеристиками излучения и параметрами, неразрывно связывающими свойства объекта и лазерного луча, - коэффициентами отражения, поглощения и рассеивания данного вида излучения в данном виде ткани или ее отдельных составляющих. К свойствам облучаемого объекта относятся: соотношение жидкого и плотного компонентов, их химические и физические свойства, характер внутри- и межмолекулярных связей, термическая чувствительность клеток и макромолекул, кровоснабжение ткани и т. д. Характеристиками излучения – это длина волны, режим облучения (непрерывный или импульсный), мощность, энергия в импульсе, суммарная поглощенная энергия и т. д.

Наиболее детально механизм абляции исследован при использовании СО2 лазера (l = 10,6 мкм). Его излучение при плотности мощности ³ 50 кВт/см 2 интенсивно поглощается молекулами тканевой воды. При таких условиях происходит быстрый разогрев воды, а от нее и неводных компонентов ткани. Следствием этого является стремительное (взрывное) испарение тканевой воды (эффект вапоризации) и извержение водяных паров вместе с фрагментами клеточных и тканевых структур за пределы ткани с формированием абляционного кратера. Вместе с перегретым материалом из ткани удаляется и бόльшая часть тепловой энергии. Вдоль стенок кратера остается узкая полоска разогретого расплава, от которого тепло передается на окружающие интактные ткани (рис. 4). При низкой плотности энергии (рис. 5, А) выброс продуктов абляции относительно невелик, поэтому значительная часть тепла от массивного слоя расплава передается в ткань. При более высокой плотности (рис. 5, Б) наблюдается обратная картина. При этом незначительные термические повреждения сопровождаются механической травмой ткани за счет ударной волны. Часть разогретого материала в виде расплава остается вдоль стенок абляционного кратера, причем именно этот слой является резервуаром тепла, передаваемого в ткань за пределы кратера. Толщина этого слоя одинакова по всему контуру кратера. С повышением плотности мощности она уменьшается, а с понижением растет, что сопровождается соответственно уменьшением или увеличением зоны термических повреждений. Таким образом, повышая мощность излучения, мы добиваемся увеличения скорости удаления ткани, снижая при этом глубину термического повреждения .

Область применения СО 2 -лазера очень обширна. В фокусированном режиме он используется для иссечения тканей с одновременной коагуляцией сосудов. В дефокусированном режиме за счет уменьшения плотности мощности производится послойное удаление (вапоризация) патологической ткани. Именно таким способом ликвидируют поверхностные злокачественные и потенциально злокачественные опухоли (базальноклеточная карцинома, актинический хейлит, эритроплазия Кейра), ряд доброкачественных новообразований кожных покровов (ангиофиброма, трихлеммома, сирингома, трихоэпителиома и др.), крупные послеожоговые струпы, воспалительные кожные заболевания (гранулемы, узелковый хондродерматит ушной раковины), кисты, инфекционные поражения кожи (бородавки, рецидивирующие кондиломы, глубокие микозы), сосудистые поражения (пиогенная гранулема, ангиокератома, кольцевидная лимфангиома), образования, обусловливающие косметические дефекты (ринофима, глубокие постугревые рубцы, эпидермальные родимые пятна, лентиго, ксантелазма) и др.

Дефокусированный луч СО 2 -лазера используют и в сугубо косметической процедуре - так называемой лазерной дермабразии, то есть послойном удалении поверхностных слоев кожи с целью омоложения облика пациента . В импульсном режиме с длительностью импульса менее 1 мс за один проход селективно вапоризируется 25-50 мкмткани; при этом образуется тонкая зона резидуального термического некроза в пределах 40-120 мкм. Размеры этой зоны достаточны для временной изоляции дермальных кровеносных и лимфатических сосудов, что в свою очередь позволяет снизить риск формирования рубца.

Обновление кожи после лазерной дермабразии обусловлено несколькими причинами. Абляция уменьшает выраженность морщин и текстурных аномалий за счет поверхностного испарения ткани, тепловой коагуляции клеток в дерме и денатурации экстрацеллюлярных матричных белков. Во время процедуры происходит мгновенная видимая контракция кожи в пределах 20-25% как результат усадки (сжатия) ткани из-за дегидратации и сжатия коллагеновых волокон. Наступление отсроченного, но более продолжительного результата обновления кожи достигается за счет процессов, связанных с реакцией тканей на травму. После воздействия лазером в области сформировавшейся раны развивается асептическое воспаление. Это стимулирует посттравматическое высвобождение факторов роста и инфильтрацию фибробластами. Наступающая реакция автоматически сопровождается всплеском активности, что неизбежно ведет к тому, что фибробласты начинают производить больше коллагена и эластина. В результате вапоризации происходит активация процессов обновления и кинетики пролиферации эпидермальных клеток. В дерме запускаются процессы регенерации коллагена и эластина с последующим их расположением в параллельной конфигурации.

Аналогичные события происходят при использовании импульсных лазеров, излучающих в ближней и средней инфракрасной области спектра (1,54-2,94 мкм):эрбиевого с диодной накачкой (l = 1,54 мкм), тулиевого (l = 1,927 мкм), Ho:YSSG (l = 2,09 мкм), Er:YSSG (l = 2,79 мкм), Er:YAG (l = 2,94 мкм). Для перечисленных лазеров характерны очень высокие коэффициенты поглощения водой. Например, излучение Er:YAG-лазера поглощается водосодержащими тканями в 12-18 раз активнее, чем излучение СО 2 -лазера. Как и в случае СО 2 -лазера, вдоль стенок абляционного кратера в ткани, облученной Er:YAG-лазером, образуется слой расплава. Следует иметь в виду, что при работе на биоткани с этим лазером существенное значение для характера тканевых изменений имеет энергетическая характеристика импульса, в первую очередь его пиковая мощность. Это означает, что даже при минимальной мощности излучения, но более длительном импульсе резко возрастает глубина термонекроза. В таких условиях масса удаленных перегретых продуктов абляции относительно меньше массы оставшихся. Это обусловливает глубокие термические повреждения вокруг абляционного кратера. В то же время при мощном импульсе ситуация иная - минимальные термические повреждения вокруг кратера при высокоэффективной абляции. Правда, в этом случае положительный эффект достигается ценой обширных механических повреждений ткани ударной волной. За один проход эрбиевым лазером происходит абляция ткани на глубину 25-50 мкм с минимальным резидуальным термическим повреждением. Вследствие этого процесс реэпителизации кожи значительно короче, чем после воздействия СО 2 -лазера.

II тип. Селективное воздействие.
К операциям этого типа относятся процедуры, в ходе которых добиваются лазерного повреждения определенных внутридермальных и подкожных образований без нарушения целостности кожного покрова. Эта цель достигается подбором характеристик лазера: длины волны и режима облучения. Они должны обеспечить поглощение лазерного света хромофором (окрашенной структурой-мишенью), что приведет к его разрушению или обесцвечиванию за счет превращения энергии излучения в тепловую (фототермолиз), а в некоторых случаях и в механическую энергию. Мишенью лазерного воздействия могут быть: гемоглобин эритроцитов, находящихся в многочисленных расширенных дермальных сосудах при винных пятнах (PWS); пигмент меланин различных кожных образований; угольные, а также другие, по-разному окрашенные инородные частицы, вводимые под эпидермис при татуировке или попадающие туда в результате иных воздействий.

Идеальным селективным воздействием можно считать такое воздействие, при котором лучи лазера поглощаются только структурами мишени, а за ее пределами поглощение отсутствует. Для достижения такого результата специалисту, выбравшему лазер с соответствующей длиной волны, оставалось бы лишь установить плотность энергии излучения и продолжительность экспозиций (или импульсов), а также интервалов между ними. Эти параметры определяют с учетом (ВТР) для данной мишени - промежутка времени, за который возросшая в момент подачи импульса температура мишени опускается на половину ее прироста по отношению к исходной. Превышение длительности импульса над значением ВТР вызовет нежелательный перегрев ткани вокруг мишени. К такому же эффекту приведет и уменьшение интервала между импульсами. В принципе, все эти условия могут быть смоделированы математически перед операцией, однако сам состав кожи не позволяет в полной мере воспользоваться расчетными данными. Дело в том, что в базальном слое эпидермиса находятся меланоциты и отдельные кратиноциты, которые содержат меланин. Поскольку этот пигмент интенсивно поглощает свет в видимой, а также близких к ней ультрафиолетовой и инфракрасной областях спектра («оптическое окно» меланина находится в пределах от 500 до 1100 нм), любое лазерное излучение в данном диапазоне будет поглощаться меланином. Это может привести к термическому повреждению и гибели соответствующих клеток. Более того, излучение в видимой части спектра поглощается также цитохромами и флавиновыми ферментами (флавопротеидами) как меланинсодержащих клеток, так и всех остальных типов клеток эпидермиса и дермы. Из этого следует, что при лазерном облучении мишени, расположенной под поверхностью кожи, некоторое повреждение эпидермальных клеток становится неизбежным. Поэтому реальная клиническая задача сводится к компромиссному поиску таких режимов лазерного облучения, при которых стало бы возможным достигать максимального поражения мишени при наименьшем повреждении эпидермиса (с расчетом на его последующую регенерацию, главным образом за счет соседних необлученных участков кожи).

Соблюдение всех этих условий применительно к конкретной мишени приведет к ее максимальному повреждению (разогреву или распаду) при минимальном перегреве или механической травме соседних структур.

Так, для облучения патологических сосудов винного пятна (PWS) наиболее рациональным является использование лазера с самой большой длиной волны, соответствующей пикам светопоглощения гемоглобина (l = 540, 577, 585 и 595 нм), при длительности импульсов порядка миллисекунд, поскольку при этом поглощение излучения меланином будет незначительным (положение 1 теории селективного фототермолиза). Относительно большая длина волны эффективно обеспечит глубинный прогрев ткани (положение 2), а сравнительно продолжительный импульс будет соответствовать весьма крупным размерам мишени (сосуды с эритроцитами; положение 3).

Если же целью процедуры является ликвидация частиц татуировки, то помимо подбора длины волны излучения, соответствующей цвету этих частиц, потребуется установить продолжительность импульса, которая значительно меньше, чем в случае винных пятен, чтобы добиться механического разрушения частиц при минимальном термическом повреждении других структур (положение 4).

Разумеется, соблюдение всех этих условий не обеспечивает абсолютную защиту эпидермиса, однако исключает слишком грубое его повреждение, которое привело бы впоследствии к стойкому косметическому дефекту из-за чрезмерного рубцевания.

Реакции ткани на лазерное воздействие

При взаимодействии лазерного света с тканью происходят следующие реакции.

Фотостимуляция. Для фотостимуляции используются низкоинтенсивные терапевтические лазеры. Терапевтический лазер по энергетическим параметрам оказывает действие, не повреждающее биосистему, но в то же время этой энергии достаточно для активации процессов жизнедеятельности организма, например ускорения заживления ран.

Фотодинамическая реакция. В основе принципа – воздействие светом определенной длины волны на фотосенсибилизатор (естественный или искусственно введенный), обеспечивающее цитотоксический эффект на патологическую ткань. В дерматологии фотодинамическое воздействие используется для лечения вульгарных угрей, псориаза, красного плоского лишая, витилиго, пигментной крапивницы и др.

Фототермолиз и фотомеханические реакции- при поглощении излучения происходит преобразование энергии лазерного луча в тепло на том участке кожи, который содержит хромофор. При достаточной мощности лазерного луча это приводит к тепловому разрушению мишени. Селективный фототермолиз можно применить для удаления пороков развития поверхностно расположенных сосудов, некоторых пигментных образований кожи, волос, татуировок.

Литература

  1. Лазеро- и светолечение. Доувер Дж.С.Москва. Рид Элсивер 2010.С.5-7
  2. Неворотин А. И. Введение в лазерную хирургию. Учебное пособие. - Спб.: СпецЛит, 2000.
  3. Неворотин А. И. Лазерная рана в теоретическом и прикладном аспектах. // Лазерная биология и лазерная медицина: практика. Мат. докл. респ. школы-семинара. Часть 2. - Тарту-Пюхяярве: Изд-во Тартуского университета ЭССР, 1991, с. 3-12.
  4. Anderson R. R., Parish J. A. The optics of human skin. J Invest Dermatol 1981; 77:13-19.
  5. Anderson R. R., Parrish J. A. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 1983; 220:524-527.
  6. Goldman L., Blaney D. J., Kindel D. J. et al. Effect of the laser beam on the skin: preliminary report. J Invest Dermatol 1963; 40:121-122.
  7. Kaminer M. S., Arndt K. A., Dover J. S. et al. Atlas of cosmetic surgery. 2nd ed. - Saunders-Elsevier 2009.
  8. Margolis R. J., Dover J. S., Polla L. L. et al. Visible action spectrum for melanin-specific selective photothermolysis. Lasers Surg Med 1989; 9:389-397.

Расширение спектрального диапазона лазера. Одной из главных задач специалистов, разрабатывающих лазерные устройства, является создание источников когерентного излучения, длину волны которых можно перестраивать во всем спектральном диапазоне от дальней инфракрасной области до ультрафиолета и еще более коротковолнового излучения.

Создание лазера на красителях оказалось исключительно важным событием с этой точки зрения, так как их излучение можно перестраивать в диапазоне длин волн, выходящем за пределы видимой области спектра. Однако имеются существенные разрывы в спектре лазерного излучения, т. е. области, в которых известные лазерные переходы редки, а перестройка их частоты возможна лишь в узких спектральных диапазонах.

Широкие полосы флуоресценции, на существовании которых основана работа перестраиваемого лазера на красителях, не обнаружены в дальней инфракрасной области спектра, а используемые в лазерах красители быстро разрушаются интенсивным излучением накачки при возбуждении красителя, когда надо получить генерацию в ультрафиолетовой области спектра.

Нелинейная оптика.

В поисках способов заполнить эти пробелы многие специалисты по лазерам использовали нелинейные эффекты в некоторых оптических материалах. В 1961 г. исследователи из Мичиганского университета сфокусировали свет рубинового лазера длина волны 694,3 нм в кристалл кварца и зарегистрировали в прошедшем кристалл излучении не только сам свет рубинового лазера, но и излучение с удвоенной частотой, т. е. на длине волны 347,2 нм. Хотя это излучение было много слабее, чем на длине волны 694,3 нм, тем не менее это коротковолновое излучение имело характерную для лазерного света монохроматичность и пространственную когерентность.

Процесс генерации такого коротковолнового излучения известен как удвоение частоты, или генерация второй гармоники. ГВГ, и представляет собой один пример из множества нелинейных оптических эффектов, которые использовались для расширения перестраиваемого, спектрального диапазона лазерного излучения. ГВГ часто применяют для преобразования инфракрасного излучения 1,06 мкм и другие линии неодимового лазера в излучение, попадающее в желто-зеленую область спектра например, 530 нм, в которой можно получить лишь небольшое число интенсивных лазерных линий.

Генерацию гармоник можно также использовать для того, чтобы получить излучение с частотой в три раза большей, чем у исходного лазерного излучения. Нелинейные характеристики рубидия и других щелочных металлов применяют, например, для утроения частоты неодимового лазера до значения, соответствующего длине волны 353 нм, т. е. попадающего в ультрафиолетовую область спектра.

Теоретически возможны процессы генерации гармоник, более высоких, чем третья, но эффективность такого преобразования крайне низка, поэтому с практической точки зрения они не представляют интереса. Возможность генерации когерентного излучения на новых частотах не ограничивается процессом генерации гармоник. Одним из таких процессов является процесс параметрического усиления, который заключается в следующем.

Пусть на нелинейную среду воздействуют три волны мощная световая волна с частотой 1 волна накачки и две слабые световые волны с более низкими частотами 2 и 3. При выполнении условия 1 23 и условия волнового синхронизма имеет место перекачка энергии мощной волны с частотой 1 в энергию волн с частотами 2 и 3. Если нелинейный кристалл поместить в оптический резонатор, то получим прибор, очень напоминающий лазер и носящий название параметрического генератора.

Такой процесс был бы полезен даже в том случае, если бы возможности его использования были ограничены получением разностей частот двух существующих. лазерных источников. Фактически же параметрический генератор является устройством, способным генерировать когерентное оптическое излучение, частоту которого можно перестраивать почти во всем видимом диапазоне. Причина эта заключается в том, что нет необходимости использовать дополнительные источники когерентного излучения на частотах 2 и 3. Колебания эти могут сами возникать в кристалле из шумовых фотонов тепловых шумов, которые всегда в нем присутствуют.

Эти шумовые фотоны имеют широкий спектр частот, расположенный преимущественно в инфракрасной области спектра. При определенной температуре кристалла и ориентации его по отношению к направлению волны накачки и к оси резонатора упомянутое выше условие волнового синхронизма выполняется для определенной пары частот 2 и 3. Для перестройки частоты излучения надо изменить температуру кристалла или его ориентацию.

Рабочей частотой может быть любая из двух частот 2 и 3 в зависимости от того, какой диапазон частот излучения прибора нужен. Быструю перестройку частоты в ограниченном спектральном диапазоне можно получить с помощью электрооптического изменения показателей преломления кристалла. Как и в случае лазера, имеется пороговый уровень мощности накачки, который для получения стационарных колебаний следует превысить. В большинстве параметрических генераторов в качестве источника накачки используют лазеры видимого диапазона, такие, как аргоновый лазер, или вторую гармонику неодимового лазера.

На выходе прибора получают перестраиваемое излучение инфракрасного диапазона. 2.

Конец работы -

Эта тема принадлежит разделу:

Лазер на красителях

Параметры излучения твердотельного лазера в значительной степени зависят от оптических качеств используемого кристалла. Неоднородности кристаллической структуры могут серьезно ограничивать.. В то же время жидкостные лазеры не столь громоздки, как газовые системы, и проще в эксплуатации.Из расчетных типов..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Лазер (от англ. « light amplification by stimulated emission of radiation » - «усиление света путем стимулирования излучения») или оптический квантовый генератор - это специальный тип источника излучения с обратной связью, излучающим телом в котором является инверсно-населенная среда. Принципы работы лазера основаны на свойствах лазерного излучения : монохроматичности и высокой когерентности (пространственной и временной). Т акже к числу особенностей излучения часто относят малую угловую расходимость (иногда можно встретить термин «высокая направленность излучения»), что, в свою очередь, позволяет говорить о высокой интенсивности лазерного излучения. Таким образом, чтобы понять принципы работы лазера, необходимо поговорить о характерных свойствах лазерного излучения и инверсно-населенной среды – одного из трех основных компонент лазера.

Спектр лазерного излучения. Монохроматичность.

Одной из характеристик излучения любого источника является его спектр. Солнце, бытовые осветительные приборы обладают широким спектром излучения, в котором присутствуют компоненты с разными длинами волн. Наш глаз воспринимает такое излучение как белый свет, если в нем интенсивность разных компонент примерно одинакова, или как свет с каким-либо оттенком (например, в свете нашего Солнца доминируют зеленая и желтая компоненты).

Лазерные источники излучения, напротив, имеют очень узкий спектр. В некотором приближении можно сказать, что все фотоны лазерного излучения имеют одну и ту же (или близкие) длины волн. Так, излучение рубинового лазера, например, имеет длину волны 694.3 нм, что соответствует свету красного оттенка. Относительно близкую длину волны (632.8 нм) имеет и первый газовый лазер – гелий-неоновый. Аргон-ионный газовый лазер, напротив, имеет длину волны 488.0 нм, что воспринимается нашим глазом как бирюзовый цвет (промежуточный между зеленым и голубым). Лазеры на основе сапфира, легированного ионами титана, имеет длину волны, лежащую в инфракрасной области (обычно вблизи длины волны 800 нм), поэтому его излучение невидимо для человека. Некоторые лазеры (например, полупроводниковые с вращающейся дифракционной решеткой в качестве выходного зеркала) могут перестраивать длину волны своего излучения. Общим для всех лазеров, однако, является то, что основная доля энергии их излучения сосредоточена в узкой спектральной области. Это свойство лазерного излучения и называется монохроматичностью (от греч. «один цвет»). На рис. 1 для иллюстрации данного свойства приведены спектры излучения Солнца (на уровне внешних слоев атмосферы и на уровне моря) и полупроводникового лазера производства компании Thorlabs .

Рис. 1. Спектры излучения Солнца и полупроводникового лазера.

Степень монохроматичности лазерного излучения можно охарактеризовать спектральной шириной лазерной линии (ширина может быть задана как отстройка по длине волны или частоте от максимума интенсивности). Обычно спектральная ширина задается по уровню 1/2 ( FWHM ), 1/ e или 1/10 от максимума интенсивности. В некоторых современных лазерных установках достигнута ширина пика излучения в несколько кГц, что соответствует ширине лазерной линии менее чем в одну миллиардную нанометра. Для специалистов отметим, что ширина лазерной линии может быть на порядки уже ширины линии спонтанного излучения, что также является одной из отличительных характеристик лазера (по сравнению, например, с люминесцентными и суперлюминесцентными источниками).

Когерентность лазерного излучения

Монохроматичность – важное, но не единственное свойство лазерного излучения. Другим определяющим свойством излучения лазера является его когерентность. Обычно говорят о пространственной и временной когерентности.

Представим себе, что лазерный пучок разделен пополам полупрозрачным зеркалом: половина энергии пучка прошла через зеркало, другая половина отразилась и ушла в систему направляющих зеркал (рис. 2). После этого второй пучок вновь сводится с первым, но с некоторой временной задержкой. Максимальное время задержки, при котором пучки могут интерферировать (т.е. взаимодействовать с учетом фазы излучения, а не только его интенсивности) и называется временем когерентности лазерного излучения, а длина добавочного пути, который второй пучок прошел из-за своего отклонения – длиной продольной когерентности. Длина продольной когерентности современных лазеров может превышать километр, хотя для большинства приложений (напр., для лазеров промышленной обработки материалов) столь высокой пространственной когерентности лазерного пучка не требуется.

Можно разделить лазерный пучок и по-другому: вместо полупрозрачного зеркала поставить полностью отражающую поверхность, но перекрыть ей не весь пучок, а только часть его (рис. 2). Тогда будет наблюдаться взаимодействие излучения, которое распространялось в разных частях пучка. Максимальное расстояние между точками пучка, излучение в которых будет интерферировать, называется длиной поперечной когерентности лазерного пучка. Конечно, для многих лазеров длина поперечной когерентности просто равна диаметру пучка лазерного излучения.



Рис. 2. К объяснению понятий временной и пространственной когерентности

Угловая расходимость лазерного излучения. Параметр M 2 .

Как бы мы ни стремились сделать пучок лазерного излучения параллельным, он всегда будет иметь ненулевую угловую расходимость. Минимальный возможный угол расходимости лазерного излучения α d («дифракционный предел») по порядку величины определяется выражением:

α d ~ λ /D, (1)

где λ - длина волны лазерного излучения, а D – ширина пучка, вышедшего из лазера. Легко подсчитать, что при длине волны 0.5 мкм (зеленое излучение) и ширине лазерного луча 5 мм угол расходимости составит ~10 -4 рад, или 1/200 градуса. Несмотря на стольмалое значение, угловая расходимость может оказаться критичным для некоторых приложений (например, для использования лазеров в боевых спутниковых системах), поскольку оно задает верхний предел достижимой плотности мощности лазерного излучения.

В целом качество лазерного пучка можно задать параметром M 2 . Пусть минимально достижимая площадь пятна, создаваемого идеальной линзой при фокусировке гауссова пучка, равна S . Тогда если та же линза фокусирует пучок от данного лазера в пятно площади S 1 > S , параметр M 2 лазерного излучения равен:

M 2 = S 1 / S (2)

Для наиболее качественных лазерных систем параметр M 2 близок к единице (в частности, в продаже имеются лазеры с параметром M 2 , равным 1.05). Надо, однако, иметь в виду, что далеко не для всех классов лазеров на сегодняшний день достижимо низкое значение этого параметра, что надо учитывать при выборе класса лазера для конкретной задачи.

Мы вкратце привели основные свойства лазерного излучения. Опишем теперь на основные компоненты лазера: среду с инверсной населенностью, лазерный резонатор, накачку лазера, а также схему лазерных уровней.

Среда с инверсной населенностью. Схема лазерных уровней. Квантовый выход.

Основным элементом, преобразующим энергию внешнего источника (электрическую, энергию нелазерного излучения, энергию дополнительного лазера накачки) в световую, является среда, в которой создана инверсная населенность пары уровней. Термин «инверсная населенность» означает, что определенная доля структурных частиц среды (молекул, атомов или ионов) переведена в возбужденное состояние, причем для некоторой пары энергетических уровней этих частиц (верхний и нижний лазерный уровни) на верхнем по энергии уровне находится больше частиц, чем на нижнем.

При проходе через среду с инверсной населенностью излучение, кванты которого имеют энергию, равную разнице энергий двух лазерных уровней, может усиливаться, при этом снимая возбуждение части активных центров (атомов/молекул/ионов). Усиление происходит за счет образования новых квантов электромагнитного излучения, имеющих ту же длину волны, направление распространения, фазу и состояние поляризации, что и исходный квант. Таким образом, в лазере происходит генерация пакетов одинаковых (равных по энергии, когерентных и движущихся в одном направлении) фотонов (рис. 3), что и определяет основные свойства лазерного излучения.


Рис. 3. Генерация когерентных фотонов при вынужденном излучении.

Создать инверсно населенную среду в системе, состоящей всего из двух уровней, однако, в классическом приближении невозможно . Современные лазеры обычно имеют трехуровневую или четырехуровневую систему уровней, участвующих в лазерной генерации. При этом возбуждение переводит структурную единицу среды на самый верхний уровень, с которого частицы за короткое время релаксируют к более низкому значению энергии - верхнему лазерному уровню. В лазерную генерацию вовлекается также один из нижележащих уровней - основное состояние атома в трехуровневой схеме или промежуточное - в четырехуровневой (рис. 4). Четырехуровневая схема оказывается более предпочтительной в силу того, что промежуточный уровень обычно населен гораздо меньшим количеством частиц, чем основное состояние, соответственно создать инверсную населенность (превышение числа возбужденных частиц над числом атомов на нижнем лазерном уровне) оказывается гораздо проще (для начала лазерной генерации нужно сообщить среде меньшее количество энергии).


Рис. 4. Трехуровневая и четырехуровневая системы уровней.

Таким образом, при лазерной генерации минимальное значение сообщаемой рабочей среде энергии равно энергии возбуждения самого верхнего уровня системы, а генерация происходит между двумя нижележащими уровнями. Это обуславливает тот факт, что КПД лазера изначально ограничивается отношением энергии возбуждения к энергии лазерного перехода. Данное отношение называется квантовым выходом лазера. Стоит отметить, что обычно КПД лазера от электросети в несколько раз (и в некоторых случаях даже в несколько десятков раз) ниже его квантового выхода.

Особой структурой энергетических уровней обладают полупроводниковые лазеры. В процесс генерации излучения в полупроводниковых лазерах вовлечены электроны двух зон полупроводника, однако благодаря примесям, формирующим светоизлучающий p - n переход, границы этих зон в разных участках диода оказываются сдвинутыми друг относительно друга. Инверсная населенность в области p - n перехода в таких лазерах создается за счет перетекания электронов в область перехода из зоны проводимости n ‑участка и дырок из валентной зоны p ‑участка. Подробнее о полупроводниковых лазерах можно прочитать в специальной литературе.

В современных лазерах применяются различные методы создания инверсной населенности, или накачки лазера.

Накачка лазера. Способы накачки.

Чтобы лазер начал генерировать излучение, необходимо подвести энергию к его активной среде, чтобы создать в ней инверсную населенность. Данный процесс называется накачкой лазера. Существует несколько основных методов накачки, применимость которых в конкретном лазере зависит от рода активной среды. Так, для эксимерных и некоторых газовых лазеров, работающих в импульсном режиме (например, CO 2 - лазера) возможно возбуждение молекул лазерной среды электрическим разрядом. В непрерывных газовых лазерах для накачки можно использовать тлеющий разряд. Накачка полупроводниковых лазеров осуществляется за счет приложения напряжения к p ‑ n переходу лазера. Для твердотельных лазеров можно использовать некогерентный источник излучения (лампу-вспышку, линейку или массив светоизлучающих диодов) или другой лазер, длина волны которого соответствует разности энергий основного и возбужденного состояний примесного атома (в твердотельных лазерах, как правило, лазерная генерация возникает на атомах или ионах примеси, растворенных в сетке матрицы - например, для рубинового лазера активной примесью являются ионы хрома).

Обобщая, можно сказать, что метод накачки лазера определяется его типом и особенностями активного центра генерирующей среды. Как правило, для каждого конкретного типа лазеров имеется наиболее эффективный метод накачки, который и определяет тип и конструкцию системы подвода энергии к активной среде.

Резонатор лазера. Условие лазерной генерации. Устойчивые и неустойчивые резонаторы.

Активной среды и системы доставки к ней энергии еще недостаточно для возникновения лазерной генерации, хотя на их основе уже можно построить некоторые устройства (например, усилитель или суперлюминесцентный источник излучения). Лазерная генерация, т.е. испускание монохроматического когерентного света, возникает только при наличии обратной связи, или лазерного резонатора.

В наиболее простом случае резонатор представляет собой пару зеркал, одно из которых (выходное зеркало лазера) является полупрозрачным. В качестве другого зеркала, как правило, ставят отражатель с коэффициентом отражения на длине волны генерации, близким к 100% («глухое зеркало»), чтобы избежать генерации лазера «в две стороны» и лишней потери энергии.

Резонатор лазера обеспечивает возвращение части излучения назад в активную среду. Это условие важно для возникновения когерентного и монохроматичного излучения, поскольку возвращенные в среду фотоны будут вызывать излучение одинаковых с собой по частоте и фазе фотонов. Соответственно, вновь возникающие в активной среде кванты излучения будут когерентны с уже вышедшими за пределы резонатора. Таким образом, характерные свойства лазерного излучения обеспечиваются во многом именно конструкцией и качеством лазерного резонатора.

Коэффициент отражения выходного полупрозрачного зеркала лазерного резонатора подбирается таким образом, чтобы обеспечить максимальную выходную мощность лазера, либо исходя из технологической простоты изготовления. Так, в некоторых волоконных лазерах в качестве выходного зеркала может использоваться ровно сколотый торец волоконного световода.

Очевидным условием устойчивой лазерной генерации является условие равенства оптических потерь в лазерном резонаторе (включая потери на выход излучения через зеркала резонатора) и коэффициента усиления излучения в активной среде:

exp(a × 2L) = R 1 × R 2 × exp(g × 2L) × X,(3)

где L = длина активной среды, a - коэффициент усиления в активной среде, R 1 и R 2 - коэффициенты отражения зеркал резонатора и g - «серые» потери в активной среде (т.е. потери излучения, связанные с флуктуациями плотности, дефектами лазерной среды, рассеяние излучения и прочие виды оптических потерь, обуславливающих ослабление излучения при прохождении через среду, кроме непосредственно поглощения квантов излучения атомами среды). Последний множитель « X » обозначает все прочие потери, присутствующие в лазере (например, в лазер может быть введен специальный поглощающий элемент, чтобы лазер генерировал импульсы малой длительности), при их отсутствии он равен 1. Чтобы получить условие развития лазерной генерации из спонтанно излученных фотонов, очевидно, равенство надо заменить знаком «>».

Из равенства (3) вытекает следующее правило для выбора выходного лазерного зеркала: если коэффициент усиления излучения активной средой с учетом серых потерь (a - g ) × L мал, коэффициент отражения выходного зеркала R 1 должен быть выбран большим, чтобы лазерная генерация не затухала из-за выхода излучения из резонатора. Если же коэффициент усиления достаточно велик, обычно имеет смысл выбрать меньшее значение R 1 , поскольку высокий коэффициент отражения будет приводить к повышению интенсивности излучения внутри резонатора, что может сказаться на времени жизни лазера.

Однако резонатор лазера нуждается в юстировке. Предположим, что резонатор составлен из двух параллельных, но не отъюстированных зеркал (например, расположенных под углом друг к другу). В таком резонаторе излучение, пройдя через активную среду несколько раз, выходит за пределы лазера (рис. 5). Резонаторы, в которых излучение за конечное время выходит за его пределы, называются неустойчивыми. Такие резонаторы используются в некоторых системах (например, в мощных импульсных лазерах специальной конструкции), однако, как правило, неустойчивости резонатора в практических приложениях стараются избежать.


Рис. 5. Неустойчивый резонатор с разъюстированными зеркалами; устойчивый резонатор и

стационарный пучок излучения в нем.

Чтобы повысить устойчивость резонатора, в качестве зеркал используют изогнутые отражающие поверхности. При определенных значениях радиусов отражающих поверхностей данный резонатор оказывается нечувствительным к малым нарушениям юстировки, что позволяет существенно упростить работу с лазером.

Мы кратко описали минимальный необходимый набор элементов для создания лазера и основные особенности лазерного излучения.

1. Прохождение монохроматического света через прозрачную среду.

2. Создание инверсной населенности. Способы накачки.

3. Принцип действия лазера. Типы лазеров.

4. Особенности лазерного излучения.

5. Характеристики лазерного излучения, применяемого в медицине.

6. Изменения свойств ткани и ее температуры под действием непрерывного мощного лазерного излучения.

7. Использование лазерного излучения в медицине.

8. Основные понятия и формулы.

9. Задачи.

Мы знаем, что свет испускается отдельными порциями - фотонами, каждый из которых возникает в результате излучательного перехода атома, молекулы или иона. Естественный свет - это совокупность огромного числа таких фотонов, различающихся по частоте и фазе, испущенных в случайные моменты времени в случайных направлениях. Получение мощных пучков монохроматического света с помощью естественных источников - задача практически неразрешимая. В то же время потребность в таких пучках ощущалась как физиками, так и специалистами многих прикладных наук. Создание лазера позволило решить эту задачу.

Лазер - устройство, генерирующее когерентные электромагнитные волны за счет вынужденного излучения микрочастиц среды, в которой создана высокая степень возбуждения одного из энергетических уровней.

Лазер (LASER Light Amplification by Stimulated of Emission Radiation) - усиление света с помощью вынужденного излучения.

Интенсивность лазерного излучения (ЛИ) во много раз превосходит интенсивность естественных источников света, а расходимость лазерного луча менее одной угловой минуты (10 -4 рад).

31.1. Прохождение монохроматического света через прозрачную среду

В лекции 27 мы выяснили, что прохождение света через вещество сопровождается как фотонным возбуждением его частиц, так и актами вынужденного излучения. Рассмотрим динамику этих процессов. Пусть в среде распространяется монохроматический свет, частота которого (ν) соответствует переходу частиц этой среды с основного уровня (E 1) на возбужденный (Е 2):

Фотоны, попадающие в частицы, находящиеся в основном состоянии, будут поглощаться, а сами частицы будут переходить в возбужденное состояние Е 2 (см. рис. 27.4). Фотоны, которые попадают в возбужденные частицы, инициируют вынужденное излучение (см. рис. 27.5). При этом происходит удвоение фотонов.

В состоянии теплового равновесия соотношение между числом возбужденных (N 2) и невозбужденных (N 1) частиц подчиняется распределению Больцмана:

где k - постоянная Больцмана, T - абсолютная температура.

При этом N 1 >N 2 и поглощение доминирует над удвоением. Следовательно, интенсивность выходящего света I будет меньше интенсивности падающего света I 0 (рис. 31.1).

Рис. 31.1. Ослабление света, проходящего через среду, в которой степень возбуждения менее 50 % (N 1 > N 2)

По мере поглощения света степень возбуждения будет расти. Когда она достигнет 50 % (N 1 = N 2), между поглощением и удвоением установится равновесие, так как вероятности попадания фотонов в возбужденную и невозбужденную частицы станут одинаковыми. Если освещение среды прекратится, то через некоторое время среда вернется в начальное состояние, соответствующее распределению Больцмана (N 1 > N 2). Сделаем предварительный вывод:

При освещении среды монохроматическим светом (31.1) невозможно добиться такого состояния среды, при котором степень возбуждения превышает 50 %. И все-таки давайте рассмотрим вопрос о прохождении света через среду, в которой каким-то способом достигнуто состояние N 2 > N 1 . Такое состояние называется состоянием с инверсной населенностью (от лат. inversio - переворачивание).

Инверсная населенность - такое состояние среды, при котором число частиц на одном из верхних уровней больше, чем на нижнем.

В среде с инверсной населенностью вероятность попадания фотона в возбужденную частицу больше, чем в невозбужденную. Поэтому процесс удвоения доминирует над процессом поглощения и имеет место усиление света (рис. 31.2).

По мере прохождения света через среду с инверсной населенностью степень возбуждения будет снижаться. Когда она достигнет 50%

Рис. 31.2. Усиление света, проходящего через среду с инверсной населенностью (N 2 > N 1)

(N 1 = N 2), между поглощением и удвоением установится равновесие и эффект усиления света исчезнет. Если освещение среды прекратится, то через некоторое время среда вернется в состояние, соответствующее распределению Больцмана (N 1 > N 2).

Если вся эта энергия выделится в излучательных переходах, то мы получим световой импульс огромной мощности. Правда, он еще не будет обладать требуемой когерентностью и направленностью, но будет в высокой степени монохроматичен (hv = E 2 - E 1). Это еще не лазер, но уже нечто близкое.

31.2. Создание инверсной населенности. Способы накачки

Так можно ли добиться инверсной населенности? Оказывается, можно, если использовать три энергетических уровня со следующей конфигурацией (рис. 31.3).

Пусть среда освещается мощной вспышкой света. Часть спектра излучения будет поглощена в переходе с основного уровня Е 1 на широкий уровень Е 3 . Напомним, что широким является энергетический уровень с малым временем релаксации. Поэтому большинство частиц, попавших на уровень возбуждения Е 3 , безызлучательно переходит на узкий метастабильный уровень Е 2 , где происходит их накопление. Вследствие узости этого уровня лишь малая доля фотонов вспышки

Рис. 31.3. Создание инверсной населенности на метастабильном уровне

способна вызвать вынужденный переход Е 2 → Е 1 . Этим и обеспечиваются условия для создания инверсной населенности.

Процесс создания инверсной населенности называется накачкой. В современных лазерах применяются различные виды накачки.

Оптическая накачка прозрачных активных сред использует импульсы света от внешнего источника.

Электроразрядная накачка газовых активных сред использует электрический разряд.

Инжекционная накачка полупроводниковых активных сред использует электрический ток.

Химическая накачка активной среды из смеси газов использует энергию химической реакции между компонентами смеси.

31.3. Принцип действия лазера. Типы лазеров

Функциональная схема лазера показана на рис. 31.4. Рабочее тело (активная среда) представляет собой длинный узкий цилиндр, торцы которого закрыты двумя зеркалами. Одно из зеркал (1) полупрозрачно. Такая система называется оптическим резонатором.

Система накачки переводит частицы с основного уровня Е 1 на поглощательный уровень Е 3 , откуда они безызлучательно переходят на метастабильный уровень Е 2 , создавая его инверсную населенность. После этого начинаются спонтанные излучательные переходы Е 2 → Е 1 с испусканием монохроматических фотонов:

Рис. 31.4. Схематическое устройство лазера

Фотоны спонтанного излучения, испущенные под углом к оси резонатора, выходят через боковую поверхность и в процессе генерации не участвуют. Их поток быстро иссякает.

Фотоны, которые после спонтанного излучения движутся вдоль оси резонатора, многократно проходят через рабочее тело, отражаясь от зеркал. При этом они взаимодействуют с возбужденными частицами, инициируя вынужденное излучение. За счет этого происходит «лавинообразное» нарастание индуцированных фотонов, движущихся в том же направлении. Многократно усиленный поток фотонов выходит через полупрозрачное зеркало, создавая мощный пучок почти параллельных когерентных лучей. Фактически лазерное излучение порождается первым спонтанным фотоном, который движется вдоль оси резонатора. Это и обеспечивает когерентность излучения.

Таким образом, лазер преобразует энергию источника накачки в энергию монохроматического когерентного света. Эффективность такого преобразования, т.е. КПД, зависит от типа лазера и лежит в диапазоне от долей процента до нескольких десятков процентов. У большинства лазеров КПД составляет 0,1-1 %.

Типы лазеров

Первый созданный лазер (1960 г.) использовал в качестве рабочего тела рубин и оптическую систему накачки. Рубин - это кристаллическая окись алюминия А1 2 О 3 , содержащая около 0,05 % атомов хрома (именно хром придает рубину розовый цвет). Атомы хрома, внедренные в кристаллическую решетку, являются активной средой

с конфигурацией энергетических уровней, изображенной на рис. 31.3. Длина волны излучения рубинового лазера равна λ = 694,3 нм. Затем появились лазеры, использующие другие активные среды.

В зависимости от типа рабочего тела лазеры делятся на газовые, твердотельные, жидкостные, полупроводниковые. В твердотельных лазерах активный элемент обычно изготавливается в виде цилиндра, длина которого много больше его диаметра. Газовые и жидкие активные среды помещают в цилиндрическую кювету.

В зависимости от способа накачки можно получить непрерывную и импульсную генерацию лазерного излучения. При непрерывной системе накачки инверсия населенности поддерживается длительное время за счет внешнего источника энергии. Например, непрерывное возбуждение электрическим разрядом в газовой среде. При импульсной системе накачки инверсия населенности создается в импульсном режиме. Частота следования импульсов от 10 -3

Гц до 10 3 Гц.

31.4. Особенности лазерного излучения

Лазерное излучение по своим свойствам значительно отличается от излучения обычных источников света. Отметим его характерные особенности.

1. Когерентность. Излучение является высококогерентным, что обусловлено свойствами вынужденного излучения. При этом имеет место не только временная, но и пространственная когерентность: разность фаз в двух точках плоскости, перпендикулярной направлению распространения, сохраняется постоянной (рис. 31.5, а).

2. Коллимированность. Лазерное излучение является коллимированным, т.е. все лучи в пучке почти параллельны друг другу (рис. 31.5, б). На большом расстоянии лазерный пучок лишь незначительно увеличивается в диаметре. Так как угол расходимости φ мал, то интенсивность лазерного пучка слабо убывает с расстоянием. Это позволяет передавать сигналы на огромные расстояния при малом ослаблении их интенсивности.

3. Монохроматичность. Лазерное излучение является в высокой степени монохроматическим, т.е. содержит волны практически одинаковой частоты (ширина спектральной линии составляет Δλ ≈0,01 нм). На

рисунке 31.5, в приведено схематическое сравнение ширины линии лазерного луча и луча обычного света.

Рис. 31.5. Когерентность (а), коллимированность (б), монохроматичность (в) лазерного излучения

До появления лазеров излучение с некоторой степенью монохроматичности удавалось получить с помощью приборов - монохроматоров, выделяющих из сплошного спектра узкие спектральные интервалы (узкие полосы длин волн), однако мощность света в таких полосах мала.

4. Высокая мощность. С помощью лазера можно обеспечить очень высокую мощность монохроматического излучения - до 10 5 Вт в непрерывном режиме. Мощность импульсных лазеров на несколько порядков выше. Так, неодимовый лазер генерирует импульс с энергией Е = 75 Дж, длительность которого t = 3х10 -12 с. Мощность в импульсе равна Р = Е/t = 2,5х10 13 Вт (для сравнения: мощность ГЭС составляет Р ~10 9 Вт).

5. Высокая интенсивность. В импульсных лазерах интенсивность лазерного излучения очень высока и может достигать I = 10 14 -10 16 Вт/см 2 (ср. интенсивность солнечного света вблизи земной поверхности I = 0,1 Вт/см 2).

6. Высокая яркость. У лазеров, работающих в видимом диапазоне, яркость лазерного излучения (сила света с единицы поверхности) очень велика. Даже самые слабые лазеры имеют яркость 10 15 кд/м 2 (для сравнения: яркость Солнца L ~ 10 9 кд/м 2).

7. Давление. При падении лазерного луча на поверхность тела создается давление (Д). При полном поглощении лазерного излучения, падающего перпендикулярно поверхности, создается давление Д = I/c, где I -интенсивность излучения, с - скорость света в вакууме. При полном отражении величина давления в два раза больше. Для интенсивности I = 10 14 Вт/см 2 = 10 18 Вт/м 2 ; Д = 3,3х10 9 Па = 33 000 атм.

8. Поляризованность. Лазерное излучение полностью поляризовано.

31.5. Характеристики лазерного излучения, применяемого в медицине

Длина волны излучения

Длины волн излучения (λ) медицинских лазеров лежат в диапазоне 0,2 -10 мкм, т.е. от ультрафиолетовой до дальней инфракрасной области.

Мощность излучения

Мощность излучения (P) медицинских лазеров варьируется в широких пределах, определяемых целями применения. У лазеров с непрерывной накачкой Р = 0,01-100 Вт. Импульсные лазеры характеризуются мощностью в импульсе Р и и длительностью импульса τ и

Для хирургических лазеров Р и = 10 3 -10 8 Вт, а длительность импульса т и = 10 -9 -10 -3 с.

Энергия в импульсе излучения

Энергия одного импульса лазерного излучения (Е и) определяется соотношением Е и = Р и -т и, где т и - длительность импульса излучения (обычно т и = 10 -9 -10 -3 с). Для хирургических лазеров Е и = 0,1-10 Дж.

Частота следования импульсов

Эта характеристика (f) импульсных лазеров показывает количество импульсов излучения, генерируемых лазером за 1 с. Для терапевтических лазеров f = 10-3 000 Гц, для хирургических f = 1-100 Гц.

Средняя мощность излучения

Эта характеристика (Р ср) импульсно-периодических лазеров показывает, какую энергию лазер излучает за 1 с, и определяется следующим соотношением:

Интенсивность (плотность мощности)

Эта характеристика (I) определяется как отношение мощности лазерного излучения к площади поперечного сечения пучка. Для непрерывных лазеров I = P/S. В случае импульсных лазеров различают интенсивность в импульсе I и = P и /S и среднюю интенсивность I ср = Р ср /S.

Интенсивность хирургических лазеров и давление, создаваемое их излучением, имеют следующие значения:

для непрерывных лазеров I ~ 10 3 Вт/см 2 , Д = 0,033 Па;

для импульсных лазеров I и ~ 10 5 -10 11 Вт/см 2 , Д = 3,3 - 3,3х10 6 Па.

Плотность энергии в импульсе

Эта величина (W) характеризует энергию, которая приходится на единицу площади облучаемой поверхности за один импульс и определяется соотношением W = E и /S, где S (см 2) - площадь светового пятна (т.е. поперечного сечения лазерного луча) на поверхности биоткани. У лазеров, используемых в хирургии, W ≈ 100 Дж/см 2 .

Параметр W можно рассматривать как дозу облучения D за 1 импульс.

31.6. Изменения свойств ткани и ее температуры под действием непрерывного мощного лазерного излучения

Изменение температуры и свойств ткани

под действием непрерывного лазерного излучения

Поглощение мощного лазерного излучения биологической тканью сопровождается выделением теплоты. Для расчета выделяющейся теплоты используют специальную величину - объемную плотность теплоты (q).

Выделение теплоты сопровождается повышением температуры и в тканях протекают следующие процессы:

при 40-60°С имеют место активация ферментов, образование отеков, изменение и в зависимости от времени действия гибель клеток денатурация протеина, начало коагуляции и некрозы;

при 60-80°С - денатурация коллагена, дефекты мембран; при 100°С - обезвоживание, выпаривание тканевой воды; свыше 150°С - обугливание;

свыше 300°С - выпаривание ткани, газообразование. Динамика протекания этих процессов изображена на рис. 31.6.

Рис. 31.6. Динамика изменения температуры ткани под воздействием непрерывного лазерного излучения

1 фаза. Сначала температура ткани повышается от 37 до 100 °С. В этом диапазоне температур термодинамические свойства ткани остаются практически неизменными, и происходит линейный рост температуры со временем (α = const и I = const).

2 фаза. При температуре 100 °С начинается выпаривание тканевой воды, и до окончания этого процесса температура остается постоянной.

3 фаза. После выпаривания воды температура вновь начинает расти, но медленнее, чем на участке 1, так как обезвоженная ткань поглощает энергию слабее нормальной.

4 фаза. По достижении температуры Т ≈ 150 °С начинается процесс обугливания и, следовательно, «почернения» биоткани. При этом коэффициент поглощения α возрастает. Поэтому наблюдается нелинейный, ускоряющийся со временем рост температуры.

5 фаза. По достижении температуры Т ≈ 300 °С начинается процесс испарения обезвоженной обугленной биоткани и рост температуры вновь прекращается. Именно в этот момент лазерный луч рассекает (удаляет) ткань, т.е. становится скальпелем.

Степень повышения температуры зависит от глубины залегания ткани (рис. 31.7).

Рис. 31.7. Процессы, протекающие в облучаемых тканях на различной глубине: а - в поверхностном слое ткань нагревается до нескольких сотен градусов и испаряется; б - мощность излучения, ослабленного верхним слоем, недостаточна для испарения ткани. Происходит коагуляция ткани (иногда совместно с обугливанием - черная жирная линия); в - происходит нагревание ткани вследствие передачи теплоты из зоны (б)

Протяженности отдельных зон определяются как характеристиками лазерного излучения, так и свойствами самой ткани (в первую очередь коэффициентами поглощения и теплопроводности).

Воздействие мощного сфокусированного пучка лазерного излучения сопровождается и возникновением ударных волн, которые могут стать причиной механического повреждения прилегающих тканей.

Абляция ткани под воздействием мощного импульсного лазерного излучения

При воздействии на ткань коротких импульсов лазерного излучения с высокой плотностью энергии реализуется другой механизм рассечения и удаления биоткани. В этом случае происходит очень быстрый нагрев тканевой жидкости до температуры Т > Т кип. При этом тканевая жидкость оказывается в метастабильном перегретом состоянии. Затем происходит «взрывное» вскипание тканевой жидкости, которое сопровождается удалением ткани без обугливания. Это явление называется абляцией. Абляция сопровождается генерацией механических ударных волн, способных вызвать механическое повреждение тканей в окрестностях зоны лазерного воздействия. Этот факт необходимо учитывать при выборе параметров импульсного лазерного излучения, например при шлифовке кожи, сверлении зубов или при лазерной коррекции остроты зрения.

31.7. Использование лазерного излучения в медицине

Процессы, характеризующие взаимодействие лазерного излучения (ЛИ) с биообъектами, можно разделить на 3 группы:

невозмущающее воздействие (не оказывающее заметного действия на биообъект);

фотохимическое действие (возбужденная лазером частица либо сама принимает участие в соответствующих химических реакциях, либо передает свое возбуждение другой частице, участвующей в химической реакции);

фоторазрушение (за счет выделения тепла или ударных волн).

Лазерная диагностика

Лазерная диагностика представляет собой невозмущающее воздействие на биообъект, использующее когерентность лазерного излучения. Перечислим основные методы диагностики.

Интерферометрия. При отражении лазерного излучения от шероховатой поверхности возникают вторичные волны, которые интерферируют между собой. В результате образуется картина темных и светлых пятен (спеклов), расположение которых дает информацию о поверхности биообъекта (метод спеклоинтерферометрии).

Голография. С помощью лазерного излучения получают 3-мерное изображение объекта. В медицине этот метод позволяет получать объемные изображения внутренних полостей желудка, глаза и т.д.

Рассеяние света. При прохождении остронаправленного лазерного пучка через прозрачный объект происходит рассеяние света. Регистрация угловой зависимости интенсивности рассеянного света (метод нефелометрии) позволяет определять размеры частиц среды (от 0,02 до 300 мкм) и степень их деформации.

При рассеянии может изменяться поляризация света, что также используется в диагностике (метод поляризационной нефелометрии).

Эффект Доплера. Этот метод основан на измерении доплеровского сдвига частоты ЛИ, который возникает при отражении света даже от медленно движущихся частиц (метод аненометрии). Таким способом измеряется скорость кровотока в сосудах, подвижность бактерий и т.д.

Квазиупругое рассеяние. При таком рассеянии происходит незначительное изменение длины волны зондирующего ЛИ. Причина этого - изменение в процессе измерения рассеивающих свойств (конфигурации, конформации частиц). Временные изменения параметров рассеивающей поверхности проявляются в изменении спектра рассеяния по сравнению со спектром подающего излучения (спектр рассеяния либо уширяется, либо в нем появляются дополнительные максимумы). Данный метод позволяет получать информацию о меняющихся характеристиках рассеивателей: коэффициенте диффузии, скорости направленного транспорта, размерах. Так осуществляется диагностика макромолекул белков.

Лазерная масс-спектроскопия. Этот метод используют для исследования химического состава объекта. Мощные пучки лазерного излучения испаряют вещество с поверхности биообъекта. Пары подвергают масс-спектральному анализу, по результатам которого судят о составе вещества.

Лазерный анализ крови. Лазерный луч, пропускаемый через узкий кварцевый капилляр, по которому прокачивается специально обработанная кровь, вызывает флуоресценцию ее клеток. Флуоресцентное свечение затем улавливается чувствительным датчиком. Это свечение специфично для каждого типа клеток, проходящих поодиночке через сечение лазерного луча. Подсчитывается общее число клеток в заданном объеме крови. Определяются точные количественные показатели по каждому типу клеток.

Метод фоторазрушения. Его используют для исследования поверхностного состава объекта. Мощные пучки ЛИ позволяют брать микропробы с поверхности биообъектов путем испарения вещества и последующего масс-спектрального анализа этого пара.

Использование лазерного излучения в терапии

В терапии используются низкоинтенсивные лазеры (интенсивность 0,1-10 Вт/см 2). Низкоинтенсивное излучение не вызывает заметного деструктивного действия на ткани непосредственно во время облучения. В видимой и ультрафиолетовой областях спектра эффекты облучения обусловлены фотохимическими реакциями и не отличаются от эффектов, вызываемых монохроматическим светом, полученным от обычных некогерентных источников. В этих случаях лазеры являются просто удобными монохроматическими источниками света, обеспечи-

Рис. 31.8. Схема применения лазерного источника для внутрисосудистого облучения крови

вающими точную локализацию и дозировку воздействия. В качестве примера на рис. 31.8 приведена схема использования источника лазерного излучения для внутрисосудистого облучения крови у больных с сердечной недостаточностью.

Ниже указаны наиболее распространенные методы лазеротерапии.

Терапия с помощью красного света. Излучение Не-Ne лазера с длиной волны 632,8 нм используется с противовоспалительной целью для лечения ран, язв, ишемической болезни сердца. Лечебный эффект связан с влиянием света этой длины волны на пролиферативную активность клетки. Свет выступает в роли регулятора клеточного метаболизма.

Терапия с помощью синего света. Лазерное излучение с длиной волны в синей области видимого света используется, например, для лечения желтухи новорожденных. Это заболевание - следствие резкого возрастания в организме концентрации билирубина, который имеет максимум поглощения в синей области. Если облучать детей лазерным излучением такого диапазона, то билирубин распадается, образуя водорастворимые продукты.

Лазерофизиотерапия - использование лазерного излучения при сочетании с различными методами электрофизиотерапии. Некоторые лазеры имеют магнитные насадки для сочетанного действия лазерного излучения и магнитного поля - магнитолазеротерапии. К ним относится магнито-инфракрасный лазерный терапевтический аппарат «Мильта».

Эффективность лазеротерапии увеличивается при сочетанном воздействии с лекарственными веществами, предварительно нанесенными на облучаемую зону (лазерофорез).

Фотодинамическая терапия опухолей. Фотодинамическая терапия (ФДТ) используется для удаления опухолей, доступных для облучения светом. ФДТ основана на применении локализующихся в опухолях фотосенсибилизаторов, повышающих чувствительность тканей при их

последующем облучении видимым светом. Разрушение опухолей при ФДТ основано на трех эффектах: 1) прямое фотохимическое уничтожение клеток опухоли; 2) повреждение кровеносных сосудов опухоли, приводящее к ишемии и гибели опухоли; 3) возникновение воспалительной реакции, мобилизирующей противоопухолевую иммунную защиту тканей организма.

Для облучения опухолей, содержащих фотосенсибилизаторы, используется лазерное излучение с длиной волны 600-850 нм. В этой области спектра глубина проникновения света в биологические ткани максимальна.

Фотодинамическая терапия применяется при лечении опухолей кожи, внутренних органов: легких, пищевода (при этом к внутренним органам лазерное излучение доставляется с помощью световодов).

Использование лазерного излучения в хирургии

В хирургии высокоинтенсивные лазеры используются для рассечения тканей, удаления патологических участков, остановки кровотечения, сваривания биотканей. Выбирая должным образом длину волны излучения, его интенсивность и длительность воздействия, можно получать различные хирургические эффекты. Так, для разрезания биологических тканей используется сфокусированный луч непрерывного СО 2 -лазера, имеющего длину волны λ = 10,6 мкм, мощность 2х10 3 Вт/см 2 .

Применение лазерного луча в хирургии обеспечивает избирательное и контролируемое воздействие. Лазерная хирургия имеет ряд преимуществ:

Бесконтактность, дающую абсолютную стерильность;

Селективность, позволяющую выбором длины волны излучения дозированно разрушать патологические ткани, не затрагивая окружающие здоровые ткани;

Бескровность (за счет коагуляции белков);

Возможность микрохирургических воздействий, благодаря высокой степени фокусировки луча.

Укажем некоторые области хирургического применения лазеров.

Лазерная сварка тканей. Соединение рассеченных тканей представляет собой необходимый этап многих операций. На рисунке 31.9 показано, как сваривание одного из стволов крупного нерва осуществляется в контактном режиме с использованием припоя, который

Рис. 31.9. Сваривание нерва при помощи лазерного луча

каплями из пипетки подается по месту лазирования.

Разрушение пигментированных участков. Лазеры, работающие в импульсном режиме, используются для разрушения пигментированных участков. Данный метод (фототермолиз) используется для лечения ангиом, татуировок, склеротических бляшек в кровеносных сосудах и т.п.

Лазерная эндоскопия. Внедрение эндоскопии произвело коренной переворот в оперативной медицине. Чтобы избежать больших открытых операций, лазерное излучение доставляется к месту воздействия с помощью волоконно-оптических световодов, которые позволяют подводить лазерное излучение к биотканям внутренних полых органов. При этом значительно снижается риск инфицирования и возникновения послеоперационных осложнений.

Лазерный пробой. Короткоимпульсные лазеры в сочетании со световодами применяют для удаления бляшек в сосудах, камней в желчном пузыре и почках.

Лазеры в офтальмологии. Использование лазеров в офтальмологии позволяет выполнять бескровные оперативные вмешательства без нарушения целостности глазного яблока. Это операции на стекловидном теле; приваривание отслоившейся сетчатки; лечение глаукомы путем «прокалывания» лазерным лучом отверстий (диаметром 50÷100 мкм) для оттока внутриглазной жидкости. Послойная абляция тканей роговицы применяется при коррекции зрения.

31.8. Основные понятия и формулы

Окончание таблицы

31.9. Задачи

1. В молекуле фенилаланина разница энергий в основном и возбужденном состояниях составляет ΔЕ = 0,1 эВ. Найти соотношение между заселенностями этих уровней при Т = 300 К.

Ответ: n = 3,5*10 18 .



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта