Главная » Обработка грибов » Генетические алгоритмы поиск решения. Применение генетических алгоритмов

Генетические алгоритмы поиск решения. Применение генетических алгоритмов

Выдавал благородную пустоту. Однако недостаточный уровень *вырезано цензурой* отодвинул дату публикации, и вот только сейчас после позорного нудливого попрошайничества с моей стороны эта статья получила возможность показать себя миру. За этот промежуток времени успели выйти в свет как минимум три (столько мне на глаза попалось) статьи на подобную тему, и, вполне вероятно, что-то из написанного ниже вы прочитаете не впервые. Таким людям я предлагаю не хмурить носики от очередной попытки неопытного юнца научно-популярно объяснить ГА, а проходить к следующему экспонату ко второй части, где описывается создание на основе ГА бота для программистской игры Robocode. Это, по последним сведениям разведки, еще не встречалось на хабре.

Часть первая. Жизнь и творчество генетического алгоритма.

Начнем издалека. Есть некоторый набор задач, которые требуют решения. Наша цель - найти действия, которые смогут преобразовать Дано (начальные условия задач) в Ответ (целевое состояние).

Если ситуация простая, и решение такой задачи можно явно посчитать из условий при помощи этих ваших матанов, то и славно, тут и без наших премудростей все хорошо, нас наебали, все расходимся. Например, при решении квадратного уравнения ответ (значения x1, x2) получаются из начального условия (коэффициентов a, b, c) путем применения формулы, которую мы все учили в школе. А что делать в более печальном случае, когда нужной формулы в учебнике нету? Можно попробовать с помощью мозгового штурма решить одну из задач. Аналитически. Численными методами. Силой отчаянного перебора функций. Через некоторое время послышатся мечтательное студенческое «хоть бы оно само решилось». Ага, тут-то мы и вылезаем из-за занавесок. Итак, цель - написать программу, которая бы находила функцию (программу), получающую на вход исходные данные и возвращающую годные циферки. Сила метапрограммирования, в бой!

Хм, как же мы будем добиваться такой цели? Принесем у костра жертву богам рекурсии: напишем программу, которая напишет программу, которая бы находила функцию (программу)... Нет, во второй раз такое не прокатит. Лучше мы возьмем пример у природы, кинув наш взор на такие явления, как механизм эволюции, естественный отбор. Всё как в жизни: наши программы будут жить, спариваться, давать потомство и погибать под гнетом более приспособившихся особей, передавая свои лучшие качества потомкам. Звучит безумно, но стоит приглядеться.

Бог нашего мира программ - это наша задача. Программы должны верить в нее, спариваться ради нее, ставить в нее честь свечки в церкви и жить с единственной целью - найти смысл жизни решение этой задачи. Наиболее приспособившийся к среде (приблизившийся к решению задачи) становится альфа-самцом, выживает и дает крепкое потомство. Лузер, который просидел всю жизнь за онлайн играми не познал успеха в решении задачи, имеет совсем маленькие шансы дать потомство. Генофонд будет очищаться от вклада этих прыщавых товарищей, а всё общество программ будет идти к светлому будущему решенной задачи. Что же, в общих чертах уже понятно, теперь нужно разобраться с нюансами: во-первых, как вы себе представление спаривание программ? во-вторых, откуда мы возьмем первое поколение программ? в-третьих, по какому признаку мы будем определять приспособленность особей и как она будет влиять на скрещивание? в-четвертых, стоит определиться с условиями окончания работы алгоритма, когда всю эту оргию останавливать.

Искусство спаривания программ

Думаю, многие из нас иногда испытывают жгучее желание применить к программам насильственное действие сексуального характера. Тут мы вынуждены заранее предупредить, что у нас такие межвидовые девиации не поощряются. У нас всё как завещала католическая церковь: программа с программой, только после брака… и партнеров не меняют, даже если тот томный парень купил тебе коктейль в баре. Хотя нет, вру, многоженство гаремного типа процветает. Да, и еще, несмотря на применение ниже таких слов как «отец» или «сын», программы у нас гермафродиты. Ну и инцест тоже… Тьфу, и я еще о церкви говорил *facepalm*. Ладно, об этом позже.

Вопрос скрещивания программ не так уж прост. Случайный обмен функциями, строками или переменными приведет к жирному потоку страшных слов в ваш адрес от компилятора/интерпретатора, а никак не новую программу. То есть необходимо найти способ скрестить программы корректно . Умные дяди нашли выход. А умные мальчики и девочки, изучавшие строения компиляторов, тоже уже догадались. Да-да, это синтаксическое дерево .

Сразу же умерю пыл: у нас борода еще не очень густая, поэтому будем использовать самые простые типы программ. Желающие могут отправиться в долину несметного богатства программирования, а нас тут всё просто - программа состоит из выражений, в свою очередь состоящих из простых функций с некоторой арностью, переменных и констант. Каждое выражение считает по одному из возвращаемых программой значений.

Например: некоторая особь-программа square из двух выражений, пытающаяся (не особо удачно) решить квадратное уравнение:
function square(a, b, c){ x1 = min(sin(b)*(a+1), 0); x2 = 3 + exp(log(b*a)); return {x1, x2}; }
С представлением определились, теперь надо разобраться с хранением. Так как вокруг этих самых программ еще предстоит множество плясок, в том числе передача их из одной часть системы в другую (которые, вообще говоря, в моем случае вообще были написаны на разных языках), то хранение нашей особи в виде дерева не очень-то удобное. Для представления более удобным способом (идеально - набор строк над некоторым конечным алфавитом) нашу особь-программу-набор_деревьев придется научиться кодировать/раскодировать.

Вроде как дерево, а вроде и нет
Итак, надо представить дерево в виде строки. Тут нас выручит сила karva-деревьев. Для начала стоит определиться с набором функций, переменных и констант, которые могут попасться в дереве. Переменные и константы соответствуют листьям дерева и будут называться терминалами, функции - остальным (внутренним) узлам дерева, именуются нетерминалами. Так же стоит обратить внимание на то, что функции могут иметь разное количество аргументов, посему такие знания («арность», - тихо пробежало слово по губам знатоков) нам очень даже понадобятся. В итоге получается таблица кодировки, например, такая:

Здесь n, +, *, if - функции; 2 - константа; a и b - переменные. В реальных задачах таблица поувесистей, с таким набором и квадратное уравнение не решить. Также надо иметь ввиду тот факт, что во избежании деления на нуль и других сценариев апокалипсиса все функции должны быть определены на всём множестве вещественных чисел (ну, или какое вы там множество используете в задаче). А то придется сидеть на карауле, отлавливать логарифмы от нуля и потом разбираться, что с этим делать. Мы люди не гордые, мы пойдем легким путем, исключая подобные варианты.

Так вот, с помощью такой таблицы гонять функции из дерева в строку и обратно не проблема. Например, пришла нам такая строка на расшифровку:

По таблице идентифицируем каждый элемент, вспоминаем также и про арность:

Теперь при помощи арности расставляем ссылки на аргументы функций:

Прошу обратить внимание на то, что последние 3 элемента списка оказались никому не нужны, и их значения никак не влияют на результат функции. Это получилось из-за того, что количество задействованных элементов списка, количество узлов дерева постоянно плавает в зависимости от их арностей. Так что лучше набрать про запас, чем потом мучиться с некорректным деревом.

Теперь если его потянуть вверх за первый элемент, то у нас в руке будет болтаться дерево выражения:

Значение функции можно вычислить рекурсивным обходом по дереву, она у нас оказывается такой:

У меня глаза от папы такие
Возвращаемся к самому горячему - к скрещиванию. Операции скрещивания программ мы ставим следующие условия: во-первых, две скрещивающиеся особи дают два потомка (т.е. размер популяции постоянный); во-вторых, в результате скрещивания потомки должны в определенной мере обладать характеристиками обеих родителей (т.е. яблоко не должно укатываться уж очень далеко от яблони). Мы теперь узнали, как программа будет представляться - это набор строк или деревьев. Соответственно, и скрещивать их можно как строки или как деревья.

Скрещивание деревьев представляет собой обмен случайно выбранными ветками. Скрещивание строк можно реализовать несколькими способами: одноточечная рекомбинация (кусочное склеивание), двуточечная рекомбинация, поэлементный обмен и др. Их можно описать длинными сложноподчиненными предложениями с деепричастными оборотами, но и одного взгляда на схемку достаточно, чтобы смекнуть, что к чему:

Стоит только заметить, что места склейки в рекомбинации выбираются случайно, так же как и в поэлементном скрещивании обмен совершается с некоторой вероятностью. Скрещивание деревьями в плане наследственности выглядит перспективней, но реализуется сложнее.

Эй, эта девушка со мной!

С самой интимной частью процесса разобрались (многие уже почувствовали через эту статью, насколько скудна личная жизнь автора). Теперь от взаимоотношения между парой особей перейдем к социальным основам.

Особи делятся на поколения. Новое поколение состоит из детей особей предыдущего поколения. Получается, есть текущее поколение сыновей и дочерей, поколение отцов и матерей, бабушек и дедушек, прабабушек и так далее до нулевого поколения - прародителей всего гордого народа. Каждая особь нового поколения после рождения пытается решить задачу, ее действия оценивает некоторая божественная функция пригодности, и в зависимости от ее оценок деятельности юнца особь получает некоторые шансы на воспроизведение потомства, то есть попадания в класс лучших представителей поколения, выбранных для продолжения рода. Наш мир суров и жесток, и по всем канонам антиутопий (или согласно идеям фюрера, как хотите) ни к чему не пригодные родители-пенсионеры после выполнения своей миссии рождения потомства отправляются в путешествие на газенвагене, освобождая жилплощадь паре своих чад. Дети идут по стопам родителей, и так из поколения в поколение.

Та самая функция приспособленности (или фитнесс-функция), которая выдает квоты на спаривание, должна адекватно оценивать способность особи решать задачу, и выдавать числовое выражение этой приспособленности (чем больше значение - тем лучше приспособленность). Например, в случае того самого квадратного уравнения это может быть мера того, насколько значение левой стороны уравнения близко к нулю при подставленных значениях x1, x2, вычисленных программой-особью.

Функция приспособленности выдает каждой особи поколения некоторое число, показывающее ее полезность, приспособленность. Это значение будет влиять на процедуру отбора (селекции): чем больше у особи это значение, тем больше у нее вероятность найти пару для скрещивания (и даже не одну). На практике, после вычисления приспособленности для всех особей поколения мы нормируем эти значения (чтобы сумма приспособленностей особей равнялась 1) и для каждого из мест для поцелуев бросается жребий (случайное число от 0 до 1), определяющий счастливчика. Альфа-самец может получить себе несколько мест, неудачник ничего не получит и так и останется в одиночестве с потертым календариком 1994 года с Памеллой. Такой способ селекции называется «отбором методом рулетки», и схематично это выглядит как-то так:

Существуют и другие способы селекции, но все они придерживаются общего правила: чем больше у особи приспособленность, тем больше она должна участвовать в скрещивании. Также в процесс можно включить опцию элитизма, когда лучший представитель поколения получает за заслуги перед Отечеством премию в виде дополнительных лет жизни: он переходит в следующее поколение без изменений, хотя и может параллельно наделать детей. Это позволяет нам не потерять очень удачное решение, которое может разрушиться в процессе скрещивания.

Тут же упомянем и мутацию. Это операция случайным образом с некоторой маленькой вероятностью меняет фрагмент особи, что позволяет разнообразить генофонд. Полезная вещь, вдруг такая мутация лактозу расщепить поможет! А если нет, и еще одна рука лишняя - то уж помучайся с ней до конца дней своих, потомство дать все равно шансов маловато.

Сотворения мира и Апокалипсис

Как переходить от поколения к поколению выяснили, теперь вопрос следующий - «а что стало первопричиной, с чего все началось?». В отличие от этого вашего мира, у нас для объяснения таких вещей не надо придумывать уловки типа «большого взрыва» или «7 дней». Тут ответ предельно ясен - всё началось с нулевого поколения, которое было сотворено случайным образом. Да-да, просто генерируем рандомом строки/деревья. Единственное требование - корректность особи, а насколько она ущербна - никого не волнует, отбор сделает свое дело.

Существует же наш мир настолько долго, насколько нам надо. Мы или задаем планку удовлетворяющей нас приспособленности, и при появлении достаточно крутой особи останавливаем процесс, или проверяем, насколько особи поколения сильно различаются друг от друга. Логично, что если всё поколение состоит из однояйцевых близняшек, то дальнейшее спаривание возбуждает не даст ничего нового генофонду, а на одну мутацию надеяться наивно. Также можно установить ограничение по времени.

Эй, ты! Харошш парить мозг! Что в итоге-то?

Сделаем паузу в этом увлекательном словоблудии и оглянемся назад (ну т.е. наверх). Если подводить итоги, то генетический алгоритм выглядит так:

Мы учимся представлять решение задачи в виде особи генетического алгоритма - списка фиксированной длины над некоторым алфавитом. После этого подбираем функцию приспособленности, которая могла бы оценивать особей, и генерируем случайным образом нулевое поколение. Тут начинается круговорот свободной любви: вычисляется приспособленность особей поколения, по этим данным формируются пары (лузеры выкидываются, а альфа-самцы не ограничиваются одной парой), оставшиеся спариваются, рожают пару детишек (к которым еще и мутация приложилась) и накладывают на себя руки. Так продолжается до тех пор, пока не найдется избранный, или изменения перестают нас радовать, или нам все это дело надоело. Ну и как же я обойдусь без схемки:

Часть вторая. Роль генетического алгоритма в образе бота Robocode.

Что-то первая часть затянулась, мы все утомились, поэтому не будем повторяться. Также опустим некоторые особенности реализации.
Узнать что такое Robocode можно тут: habrahabr.ru/blogs/programmers_games/59784 (картинки утеряны правда). Если коротко - эта программистская игра, изначально созданная для изучения особенностей языка Java, которая позволяет участникам создавать своих ботов-роботов и устраивать между ними бои. Каждый участник пишет код на Java, который управляет небольшим танком, и сражается с другими такими же танками.

Перед нами стоит следующая задача: разработка при помощи генетического алгоритма автоматизированную системы управления ботом-танком. Робот должен создаваться и модифицироваться автоматически, т.е. в ходе своей эволюции «подстраиваться» под конкретного и заранее выбранного соперника в боях 1 на 1.

Как представить решение задачи в виде особи

Сначала определим возможности танка. Список основных действий, которые может совершить робот во время боя, ограничивается четырьмя пунктами: повернуть пушку, повернуть корпус, выстрелить, передвинуться. Пятое действие, поворот радара, мы исключили из рассмотрения, реализовав его тривиально - постоянное вращение (таким образом, танк будет всегда обладать актуальной информацией о положении врага).

Очевидно, что для успешного ведения боя эти действия должны совершаться не хаотично, а зависеть от обстановки (состояния) на поле битвы: от положения танков, их скоростей, энергии и остальных параметров. Таким образом, процесс управления танком сводится к совершению вышеописанных действий на основе состояния боя. Закон, который определяет поведение танка (его действия) на основе обстановки на поле боя, мы будем именовать функцией управления, и именно она будет особью нашего генетического алгоритма.

Так как функция управления должна возвращать 4 значения (энергия выстрела, угол поворота башни, угол поворота корпуса, перемещение танка), то, как объяснялось в прошлой части, она будет состоять из четырех выражений, т.е. из четырех строк/деревьев.

Для составления таблицы кодирования необходимо определиться с набором базовых функций, переменных и констант.

Функции:
+(x, y) = x + y
++(x, y, z) = x + y + z
n(x) = -x
*(x, y) = x * y
**(x, y) = x * y * z
min(x, y) = x > y? y: x
s(x) = 1/(1+exp(-x))
if(x, y, z, w) = x > y? z: w

Переменные:
x, y - координаты танка соперника относительно нашего танка;
dr - расстояние, которое осталось «доехать» нашему танку;
tr - угол, на который осталось повернуться нашему танку;
w - расстояние от нашего танка до края поля;
dh - угол между направлением на танк соперника и пушкой нашего танка;
GH - угол поворота пушки нашего танка;
h - направление движения танка соперника;
d - расстояние между нашим танком и танком соперника;
e - энергия танка соперника;
E - энергия нашего танка.

Ну и константы: 0.5, 0, 1, 2, 10

Функция приспособленности

Опишем, как была выбрана функция приспособленности. Результаты боя «Robocode» формирует на основе множества нюансов. Это не только количество побед, но и всевозможные очки за активность, за выживаемость, за попадание в соперника и т.д. В итоге «Robocode» ранжирует роботов по параметру «total scores», который учитывает все вышеописанные тонкости. Его мы и будем использовать при подсчете приспособленности особи: итоговая приспособленность будет равняться доле в процентах очков нашего танка от суммы очков обеих танков, и принимает значение от 0 до 100. Соответственно, если значение приспособленности больше 50, то наш робот набрал больше очков, чем соперник, следовательно, сильнее его. Заметим, что согласно такой системе подсчета, первое место далеко не всегда занимает тот, кто победил в большинстве раундов боя. Ну тут мы разводим руками с фразой про мотороллер: создатели определили критерии, мы им следуем.

Вообще говоря, вычисление приспособленности особи включает в себя проведение серии боев! Т.е. такой, казалось бы, незначительный пункт, как просчет приспособленности, состоит из таких плясок с бубном:
1) Наша система сохраняет закодированные хромосомы особи в файл chromosome.dat;
2) Для каждой особи запускается среда «Robocode», которая организовывает поединок. На вход ей мы подаем файл формата.battle, описывающий условия боя - список сражающихся танков, размеры поля, количество раундов и прочее;
3) Для битвы Robocode загружает танки, наш робот-оболочка считывает файл chromosome.dat с закодированным поведением, интерпретирует его в набор действий и ведет согласно им бой;
4) Среда Robocode по окончании поединка записывает результат битвы в файл results.txt и на этом завершает свою работу;
5) Наша система подбирает этот файл, парсит и выделяет из него значения total score нашего танка и соперника. Путем нехитрой арифметики получаем значение приспособленности.

Как наши их, да?

Подведем итоги нашего конструкторского бюро. Наша система состоит из двух частей (программ). Первая из них на основе генетического алгоритма собирает особь и сохраняет ее в виде набора строк, а вторая (код робота) интерпретирует ее (перерабатывая в дерево выражения) и осуществляет управление танком (вычисляя рекурсивным обходом значение деревьев выражений при заданных переменных, то есть текущем состоянии боя). Первая программа написана на языке СИ, вторая - на языке Java.

При реализации генетического алгоритма число особей в популяции было выбрано равным 51 (25 пар + одна элитная особь). Один шаг эволюции (смена популяции) занимает около дюжины минут, следовательно, в сумме дело затягивается на несколько часов.

В качестве результата продемонстрируем итоги создания соперника роботам Walls и Crazy:




В первом случае мы остановили процесс после достижения одной из особей приспособленности рубежа 70, во втором нам было достаточно, что средняя приспособленности особей поколения превышает 50.

После созерцания промыть глаза спиртом

Если кто не боится плакать кровавыми слезами в конвульсиях от созерцания быдлокодинга (особенно волосы начнут шевелиться от кода робота - у нас с java взаимная ненависть), то прикрепляю

Одной из задач интеллектуальных систем является поиск оптимального решения: когда на систему влияет множество внешних и внутренних факторов, интеллектуальное устройство должно учесть их все и выбрать оптимальное поведение с точки зрения своей выгоды. Допустим, если Вы — хозяин склада, Вам необходимо учитывать много факторов (стоимость единиц товаров, спрос, издержки на хранение различных товаров на складе и т.д.) для минимизации издержек и получение наибольшей прибыли.

Другой пример: вы едете по скользкой дороге, и вдруг ваш автомобиль начинает заносить, справа в нескольких метрах от вас столб, а по встречной полосе едет грузовик. Внимание вопрос: как выйти из ситуации с наименьшими потерями, а лучше вообще без них. Факторов, которые нужно учитывать много: ваша скорость и скорость встречного автомобиля, расстояние до столба, «крутость» заноса и т.д. Что нужно делать? Давать газу, пытаясь выйти из заноса, или тормозить, или, может, попытаться аккуратно съехать в кювет, так чтобы не попасть в столб. Вариантов много, и для того чтобы определить оптимальный — нужно попробовать их все. Будь это компьютерной игрой – вы могли бы сохраниться и переигрывать до тех пор, пака результат вас не удовлетворит. Это и есть поиск оптимального решения.

В системах искусственного интеллекта для решения подобных задач применяются .

Генетические алгоритмы – адаптивные методы поиска, которые используются для решения задач функциональной оптимизации. Они основаны на механизмах и моделях эволюции, и генетических процессов биологических алгоритмов.

Скажем проще: по сути, генетический алгоритм — это метод перебора решений для тех задач, в которых невозможно найти решение с помощью математических формул. Однако простой перебор решений в сложной многомерной задаче – это бесконечно долго. Поэтому генетический алгоритм перебирает не все решения, а только лучшие. Алгоритм берёт группу решений и ищет среди них наиболее подходящие. Затем немного изменяет их – получает новые решения, среди которых снова отбирает лучшие, а худшие отбрасывает. Таким образом, на каждом шаге работы алгоритм отбирает наиболее подходящие решения (проводит селекцию), считая, что они на следующем шаге дадут ещё более лучшие решения (эволюционируют).

Причём тут биология?

Как вы уже поняли, в теории генетических алгоритмов проводится аналогия между задачей и биологическим процессом. Отсюда и терминология…

Особь – одно решение задачи.

Популяция — набор решений задачи. В начале алгоритма случайным образом генерируется набор решений (начальная популяция). Эти решения будут становиться лучше (эволюционировать) в процессе работы алгоритма до тех пор, пока не удовлетворят условиям задачи.

И сразу самый простой классический пример. Допустим, роботу необходимо объехать шесть контрольных точек за наименьшее время. Расстояние от каждой точки до каждой задано в виде матрицы расстояний.

Это вариация задачи о коммивояжёре (путешественнике) – относится к классу NP-полных, проще говоря, не может быть решена с помощью математических формул.

Решение задачи – это последовательность прохождения контрольных точек. Возьмём несколько возможных решений (особей)– это и есть .

Определения качества решений

Функция пригодности – функция определяющая качество особей популяции. В нашем примере это будет сумма расстояний от точки до точки в выбранном маршруте.

ФП = Р(1)+Р(2)+Р(3)+Р(4)+Р(5)+Р(6),

где Р(1) … Р(6) – расстояние между точками в соответствующем переходе из матрицы расстояний

Нам необходимо найти минимальное расстояние, поэтому, чем меньше значение ФП для особи, тем лучше.

Давайте посчитаем функции пригодности. Для первой особи:

Для остальных особей таким же образом получаем.

Года четыре назад, в универе услышал о таком методе оптимизации, как генетический алгоритм. О нем везде сообщалось ровно два факта: он клёвый и он не работает. Вернее, работает, но медленно, ненадежно, и нигде его не стоит использовать. Зато он красиво может продемонстрировать механизмы эволюции. В этой статье я покажу красивый способ вживую посмотреть на процессы эволюции на примере работы этого простого метода. Нужно лишь немного математики, программирования и все это приправить воображением.

Кратко об алгоритме

Итак, что же такое генетический алгоритм? Это, прежде всего, метод многомерной оптимизации, т.е. метод поиска минимума многомерной функции. Потенциально этот метод можно использовать для глобальной оптимизации, но с этим возникают сложности, опишу их позднее.

Сама суть метода заключается в том, что мы модулируем эволюционный процесс: у нас есть какая-то популяция (набор векторов), которая размножается, на которую воздействуют мутации и производится естественный отбор на основании минимизации целевой функции. Рассмотрим подробнее эти процессы.

Итак, прежде всего наша популяция должна размножаться . Основной принцип размножения - потомок похож на своих родителей. Т.е. мы должны задать какой-то механизм наследования. И лучше будет, если он будет включать элемент случайности. Но скорость развития таких систем очень низкая - разнообразие генетическое падает, популяция вырождается. Т.е. значение функции перестает минимизироваться.

Для решения этой проблемы был введен механизм мутации , который заключается в случайном изменении каких-то особей. Этот механизм позволяет привнести что-то новое в генетическое разнообразие.
Следующий важный механизм - селекция . Как было сказано, селекция - отбор особей (можно из только родившихся, а можно из всех - практика показывает, что это не играет решающую роль), которые лучше минимизируют функцию. Обычно отбирают столько особей, сколько было до размножения, чтобы из эпохи в эпоху у нас было постоянное количество особей в популяции. Также принято отбирать «счастливчиков» - какое-то число особей, которые, возможно, плохо минимизируют функцию, но зато внесут разнообразия в последующие поколения.

Этих трех механизмов чаще всего недостаточно, чтобы минимизировать функцию. Так популяция вырождается - рано или поздно локальный минимум забивает своим значением всю популяцию. Когда такое происходит, проводят процесс, называемый встряской (в природе аналогии - глобальные катаклизмы), когда уничтожается почти вся популяция, и добавляются новые (случайные) особи.

Вот описание классического генетического алгоритма, он прост в реализации и есть место для фантазии и исследований.

Постановка задачи

Итак, когда я уже решил, что хочу попробовать реализовать этот легендарный (пусть и неудачливый) алгоритм, речь зашла о том, что же я буду минизимировать? Обычно берут какую-нибудь страшную многомерную функцию с синусами, косинусами и т.д. Но это не очень интересно и вообще не наглядно. Пришла одна незатейливая идея - для отображения многомерного вектора отлично подходит изображение, где значение отвечает за яркость. Таким образом, мы можем ввести простую функцию - расстояние до нашего целевого изображения, измеряемое в разности яркости пикселей. Для простоты и скорости я взял изображения с яркостью 0, либо 255.

С точки зрения математики такая оптимизация - сущий пустяк. График такой функции представляет собой огромную многомерную «яму» (как трехмерный парабалоид на рисунке), в которую неизбежно скатишься, если идти по градиенту. Единственный локальный минимум является глобальным. .

Проблема только в том, что уже близко к минимуму количество путей, по которым можно спуститься вниз сильно сокращается, а всего у нас столько направлений, сколько измерений (т.е. количество пикселей). Очевидно, что решать эту задачу при помощи генетического алгоритма не стоит, но мы можем посмотреть на интересные процессы, протекающие в нашей популяции.

Реализация

Были реализованы все механизмы, описанные в первом параграфе. Размножение проводилось простым скрещиванием случайных пикселей от «мамы» и от «папы». Мутации производились путем изменения значения случайного пикселя у случайной особи на противоположное. А встряска производилась, если минимум не меняется на протяжении пяти шагов. Тогда производится «экстремальная мутация» - замена происходит более интенсивно, чем обычно.

В качестве исходных картинок я брал нонограмы («японские сканворды»), но, по правде говоря, можно брать просто черные квадраты - нет абсолютно никакой разницы. Ниже показаны результаты для нескольких изображений. Здесь для всех, кроме «домика», количество мутаций было 100 в среднем на каждую особь, особей в популяции было 100, при размножении популяция увеличивалась в 4 раза. Счастливчиков было 30% в каждой эпохе. Для домика значения были выбраны меньшие (30 особей в популяции, мутаций по 50 на особь).




Экспериментально я установил, что использование «счастливчиков» в селекции понижает скорость стремления популяции к минимуму, но зато помогает выбираться из стагнации - без «счастливчиков» стагнация будет постоянна. Что можно увидеть из графиков: левый график - развитие популяции «фараона» со счастливчиками, правый - без счастливчиков.


Таким образом, мы видим, что этот алгоритм позволяет решить поставленную задачу, пусть и за очень долгое время. Слишком большое количество встрясок, в случае больших изображений, может решить большее количество особей в популяции. Оптимальный подбор параметров для разных размерностей я оставляю за рамками данного поста.

Глобальная оптимизация

Как было сказано, локальная оптимизация - задача довольно тривиальная, даже для многомерных случаев. Гораздо интересней посмтреть, как будет алгоритм справляться с глобальной оптимизацией. Но для этого нужно сначала построить функцию со множеством локальных минимумов. А это в нашем случае не так сложно. Достаточно брать минимум из расстояний до нескольких изображений (домик, динозаврик, рыбка, кораблик). Тогда первоначальный алгоритм будет «скатываться» в какую-то случайную ямку. И можно просто запускать его несколько раз.

Но есть более интересное решение данной проблемы: можно понять, что мы скатились в локальный минимум, сделать сильную встряску (или вообще инициировать особи заново), и в дальнейшем добавлять штрафы при приближении к известному минимуму. Как видно, картинки чередуются. Замечу, что мы не имеем права трогать исходную функцию. Но мы можем запоминать локальные минимумы и самостоятельно добавлять штрафы.

На этой картинке изображен результат, когда при достижении локального минимума (сильная стагнация), популяция просто вымирает.

Здесь популяция вымирает, и добавляется небольшой штраф (в размере обычного расстояния до известного минимума). Это сильно снижает вероятность повторов.

Более интересно, когда популяция не вымирает, а просто начинает подстрариваться под новые условия (след. рисунок). Это достигается при помощи штрафа в виде 0.000001 * sum ^ 4. В таком случае, новые образы становятся немного зашумлены:

Этот шум устраняется путем ограничения штрафа в max(0.000001 * sum ^ 4, 20). Но мы видим, что четвертого локального минимума (динозавра) достичь не удается - скорее всего, потому, что он слишком близко расположен к какому-то другому.

Биологическая интерпретация


Какие же выводы мы можем сделать из, не побоюсь этого слова, моделирования? Прежде всего, мы видим, половое размножение - важнейший двигатель развития и приспосабливаемости. Но только его не достаточно. Роль случайных, маленьких изменений чрезвычайна важна. Именно они обеспечивают возникновение новых видов животных в процессе эволюции, а у нас обеспечивает разнообразие популяции.

Важнейшую роль в эволюции Земли играли природные катаклизмы и массовые вымирания (вымирания динозавров, насекомых и т.д. - крупных всего было около десяти - см. диаграмму ниже). Это было подтверждено и нашим моделированием. А отбор «счастливчиков» показал, что самые слабые организмы на сегодня способны в будущем стать основой для последующих поколений.

Как говорится, все как в жизни. Этот метод «сделай эволюцию сам» наглядно показывает интересные механизмы и их роль в развитии. Конечно, существует много более стоящих эволюционных моделей (основанных, конечно, на дифурах), учитывающих больше факторов, более приближенные к жизни. Конечно, существуют более эффективные методы оптимизации.

P.S.

Писал программу на Matlab (вернее, даже на Octave), потому что тут все - голимые матрицы, и есть инструменты для работы с картинками. Исходный код прилагается.

Исходный код

function res = genetic(file) %generating global A B; im2line(file); dim = length(A(1,:)); count = 100; reprod = 4; mut = 100; select = 0.7; stagn = 0.8; pop = round(rand(count,dim)); res = ; B = ; localmin = ; localcount = ; for k = 1:300 %reproduction for j = 1:count * reprod pop = ; end %mutation idx = 10 * (length(res) > 5 && std(res(1:5)) == 0) + 1; for j = 1:count * mut a = floor(rand() * count) + 1; b = floor(rand() * dim) + 1; pop(a,b) = ~pop(a,b); end %selection val = func(pop); val(1:count) = val(1:count) * 10; npop = zeros(count,dim); = sort(val); res = ; opt = pop(i(1),:); fn = sprintf("result/%05d-%d.png",k,s(1)); line2im(opt*255,fn); if (s(1) == 0 || localcount > 10) localmin = ; localcount = ; B = ; % pop = round(rand(count,dim)); continue; % break; end for j = 1:floor(count * select) npop(j,:) = pop(i(j),:); end %adding luckers for j = (floor(count*select)+1) : count npop(j,:) = pop(floor(rand() * count) + 1,:); end %fixing stagnation if (length(res) > 5 && std(res(1:5)) == 0) if (localmin == res(1)) localcount = localcount+1; else localcount = 1; end localmin = res(1); for j = 1:count*stagn a = floor(rand() * count) + 1; npop(a,:) = crossingover(npop(a,:),rand(1,dim)); end end pop = npop; end res = res(length(res):-1:1); end function res = crossingover(a, b) x = round(rand(size(a))); res = a .* x + b .* (~x); end function res = func(v) global A B; res = inf; for i = 1:size(A,1) res = min(res,sum(v ~= A(i,:),2)); end for i = 1:size(B,1) res = res + max(0.000001 * sum(v == B(i,:),2) .^ 4,20); end end function = im2line(files) global A sz; A = ; files = cellstr(files); for i = 1:size(files,1) imorig = imread(char(files(i,:))); sz = size(imorig); A = )]; end A = A / 255; end function = line2im(im,file) global sz; imwrite(reshape(im*255,sz),file); end

Теги: Добавить метки

В последнее время все больше «ходят» разговоры про новомодные алгоритмы, такие как нейронные сети и генетический алгоритм. Сегодня я расскажу про генетические алгоритмы, но давайте на этот раз постараемся обойтись без заумных определений и сложных терминах.
Как сказал один из великих ученных: «Если вы не можете объяснить свою теорию своей жене, ваша теория ничего не стоит!» Так давайте попытаемся во всем разобраться по порядку.

Щепотка истории

Как говорит Википедия: «Отец-основатель генетических алгоритмов Джон Холланд, который придумал использовать генетику в своих целях аж в 1975 году». Для справки в этом же году появился Альтаир 8800, и нет, это не террорист, а первый персональный компьютер. К тому времени Джону было уже целых 46 лет.

Где это используют

Поскольку алгоритм самообучающийся, то спектр применения крайне широк:
  • Задачи на графы
  • Задачи компоновки
  • Составление расписаний
  • Создание «Искусственного интеллекта»

Принцип действия

Генетический алгоритм - это в первую очередь эволюционный алгоритм, другими словами, основная фишка алгоритма - скрещивание (комбинирование). Как несложно догадаться идея алгоритма наглым образом взята у природы, благо она не подаст на это в суд. Так вот, путем перебора и самое главное отбора получается правильная «комбинация».
Алгоритм делится на три этапа:
  • Скрещивание
  • Селекция (отбор)
  • Формирования нового поколения
Если результат нас не устраивает, эти шаги повторяются до тех пор, пока результат нас не начнет удовлетворять или произойдет одно из ниже перечисленных условий:
  • Количество поколений (циклов) достигнет заранее выбранного максимума
  • Исчерпано время на мутацию
Более подробно о шагах
Создание новой популяции . На этом шаге создается начальная популяция, которая, вполне возможно, окажется не кошерной, однако велика вероятность, что алгоритм эту проблему исправит. Главное, чтобы они соответствовали «формату» и были «приспособлены к размножению».
Размножение . Ну тут все как у людей, для получения потомка требуется два родителя. Главное, чтобы потомок (ребенок) мог унаследовать у родителей их черты. При это размножаются все, а не только выжившие (эта фраза особенно абсурдна, но так как у нас все в сферическом вакууме, то можно все), в противном случае выделится один альфа самец, гены которого перекроют всех остальных, а нам это принципиально не приемлемо.
Мутации . Мутации схожи с размножением, из мутантов выбирают некое количество особей и изменяют их в соответствии с заранее определенными операциями.
Отбор . Тут начинается самое сладкое, мы начинаем выбирать из популяции долю тех, кто «пойдет дальше». При этом долю «выживших» после нашего отбора мы определяем заранее руками, указывая в виде параметра. Как ни печально, остальные особи должны погибнуть.

Практика

Вы успешно прослушали «сказку» про чудо-алгоритм и вполне возможно заждались, когда мы его начнем эксплуатировать наконец, хочу вас обрадовать, время настало.
Давайте рассмотрим на примере моих любимых Диофантовых уравнений (Уравнения с целочисленными корнями).
Наше уравнение: a+2b+3c+4d=30
Вы наверно уже подозреваете, что корни данного уравнения лежат на отрезке , поэтому мы берем 5
случайных значений a,b,c,d. (Ограничение в 30 взято специально для упрощения задачи)
И так, у нас есть первое поколение:
  1. (1,28,15,3)
  2. (14,9,2,4)
  3. (13,5,7,3)
  4. (23,8,16,19)
  5. (9,13,5,2)
Для того чтобы вычислить коэффициенты выживаемости, подставим каждое решение в выражение. Расстояние от полученного значения до 30 и будет нужным значением.
  1. |114-30|=84
  2. |54-30|=24
  3. |56-30|=26
  4. |163-30|=133
  5. |58-30|=28
Меньшие значения ближе к 30, соответственно они более желанны. Получается, что большие значения будут иметь меньший коэффициент выживаемости. Для создания системы вычислим вероятность выбора каждой (хромосомы). Но решение заключается в том, чтобы взять сумму обратных значений коэффициентов, и исходя из этого вычислять проценты. (P.S. 0.135266 - сумма обратных коэффициентов )
  1. (1/84)/0.135266 = 8.80%
  2. (1/24)/0.135266 = 30.8%
  3. (1/26)/0.135266 = 28.4%
  4. (1/133)/0.135266 = 5.56%
  5. (1/28)/0.135266 = 26.4%
Далее будем выбирать пять пар родителей, у которых будет ровно по одному ребенку. Давать волю случаю мы будем давать ровно пять раз, каждый раз шанс стать родителем будет одинаковым и будет равен шансу на выживание.
3-1, 5-2, 3-5, 2-5, 5-3
Как было сказано ранее, потомок содержит информацию о генах отца и матери. Это можно обеспечить различными способами, но в данном случае будет использоваться «кроссовер». (| = разделительная линия)
  • Х.-отец: a1 | b1,c1,d1 Х.-мать: a2 | b2,c2,d2 Х.-потомок: a1,b2,c2,d2 or a2,b1,c1,d1
  • Х.-отец: a1,b1 | c1,d1 Х.-мать: a2,b2 | c2,d2 Х.-потомок: a1,b1,c2,d2 or a2,b2,c1,d1
  • Х.-отец: a1,b1,c1 | d1 Х.-мать: a2,b2,c2 | d2 Х.-потомок: a1,b1,c1,d2 or a2,b2,c2,d1
Есть очень много путей передачи информации потомку, а кросс-овер - только один из множества. Расположение разделителя может быть абсолютно произвольным, как и то, отец или мать будут слева от черты.
А теперь сделаем тоже самое с потомками:
  • Х.-отец: (13 | 5,7,3) Х.-мать: (1 | 28,15,3) Х.-потомок: (13,28,15,3)
  • Х.-отец: (9,13 | 5,2) Х.-мать: (14,9 | 2,4) Х.-потомок: (9,13,2,4)
  • Х.-отец: (13,5,7 | 3) Х.-мать: (9,13,5 | 2) Х.-потомок: (13,5,7,2)
  • Х.-отец: (14 | 9,2,4) Х.-мать: (9 | 13,5,2) Х.-потомок: (14,13,5,2)
  • Х.-отец: (13,5 | 7, 3) Х.-мать: (9,13 | 5, 2) Х.-потомок: (13,5,5,2)
Теперь вычислим коэффициенты выживаемости потомков.
  • (13,28,15,3) - |126-30|=96(9,13,2,4) - |57-30|=27
    (13,5,7,2) - |57-30|=22
    (14,13,5,2) - |63-30|=33
    (13,5,5,2) - |46-30|=16

    Печально так как средняя приспособленность (fitness) потомков оказалась 38.8, а у родителей этот коэффициент равнялся 59.4. Именно в этот момент целесообразнее использовать мутацию, для этого заменим один или более значений на случайное число от 1 до 30.
    Алгоритм будет работать до тех, пор, пока коэффициент выживаемости не будет равен нулю. Т.е. будет решением уравнения.
    Системы с большей популяцией (например, 50 вместо 5-и сходятся к желаемому уровню (0) более быстро и стабильно.

    Код

    На этом простота заканчивается и начинается чудесный C++...
    Класс на C++ требует 5 значений при инициализации: 4 коэффициента и результат. Для вышепривиденного примера это будет выглядеть так: CDiophantine dp(1,2,3,4,30);

    Затем, чтобы решить уравнение, вызовите функцию Solve(), которая возвратит аллель, содержащую решение. Вызовите GetGene(), чтобы получить ген с правильными значениями a, b, c, d. Стандартная процедура main.cpp, использующая этот класс, может быть такой:

    #include "" #include "diophantine.h" void main() { CDiophantine dp(1,2,3,4,30); int ans; ans = dp.Solve(); if (ans == -1) { cout << "No solution found." << endl; } else { gene gn = dp.GetGene(ans); cout << "The solution set to a+2b+3c+4d=30 is:\n"; cout << "a = " << gn.alleles << "." << endl; cout << "b = " << gn.alleles << "." << endl; cout << "c = " << gn.alleles << "." << endl; cout << "d = " << gn.alleles << "." << endl; } }

    Сам класс CDiophantine:

    #include #include #define MAXPOP 25 struct gene { int alleles; int fitness; float likelihood; // Test for equality. operator==(gene gn) { for (int i=0;i<4;i++) { if (gn.alleles[i] != alleles[i]) return false; } return true; } }; class CDiophantine { public: CDiophantine(int, int, int, int, int);// Constructor with coefficients for a,b,c,d. int Solve();// Solve the equation. // Returns a given gene. gene GetGene(int i) { return population[i];} protected: int ca,cb,cc,cd;// The coefficients. int result; gene population;// Population. int Fitness(gene &);// Fitness function. void GenerateLikelihoods(); // Generate likelihoods. float MultInv();// Creates the multiplicative inverse. int CreateFitnesses(); void CreateNewPopulation(); int GetIndex(float val); gene Breed(int p1, int p2); }; CDiophantine::CDiophantine(int a, int b, int c, int d, int res) : ca(a), cb(b), cc(c), cd(d), result(res) {} int CDiophantine::Solve() { int fitness = -1; // Generate initial population. srand((unsigned)time(NULL)); for(int i=0;i 25) break; } temppop[i] = Breed(parent1, parent2);// Create a child. } for(i=0;i

    Статья основана на материалах Википедии и сайта

Идея генетических алгоритмов (ГА) появилась достаточно давно (1950-1975 гг.), но по-настоящему объектом изучения они стали только в последние десятилетия. Первооткрывателем в этой области признано считать Д. Холланда, который позаимствовал многое из генетики и адаптировал под вычислительные машины. ГА широко используются в системах искусственного интеллекта, нейронных сетях и задачах оптимизации.

Эволюционный поиск

Модели генетических алгоритмов были созданы на базе эволюции в живой природе и методах рандомного поиска. При этом случайный поиск является реализацией наиболее простой функции эволюции – случайных мутаций и последующего отбора.

Эволюционный поиск с математической точки зрения означает не что иное, как преобразование имеющегося конечного множества решений в новое. Функция, отвечающая за этот процесс, и есть генетический поиск. Главным отличием такого алгоритма от случайного поиска является активное использование накопленной в ходе итераций (повторений) информации.

Зачем нужны генетические алгоритмы

ГА преследуют следующие цели:

  • объяснить адаптационные механизмы как в естественной среде, так и в интеллектуально-исследовательской (искусственной) системе;
  • моделирование эволюционных функций и их применение для эффективного поиска решений различных задач, главным образом оптимизационных.

На данный момент сутью генетических алгоритмов и их модифицированных версий можно назвать поиск эффективных решений с учетом качества результата. Другими словами, поиск наилучшего баланса между производительностью и точностью. Происходит это за счет известной всем парадигмы «выживание наиболее приспособленной особи» в неопределенных и нечетких условиях.

Особенности ГА

Перечислим главные отличия ГА от большинства других методов поиска оптимального решения.

  • работа с закодированными определенным образом параметрами задачи, а не напрямую с ними;
  • поиск решения происходит не путем уточнения начального приближения, а во множестве возможных решений;
  • использование только целевой функции, не прибегая к ее производным и модификациям;
  • применение вероятностного подхода к анализу, вместо строго детерминированного.

Критерии работы

Генетические алгоритмы производят расчеты исходя из двух условий:

  1. Выполнение заданного числа итераций.
  2. Качество найденного решения соответствует требованиям.

При выполнении одного из этих условий генетический алгоритм перестанет выполнять дальнейшие итерации. Помимо этого, использование ГА различных областей пространства решений позволяет им куда лучше находить новые решения, которые имеют более подходящие значения целевой функции.

Базовая терминология

Ввиду того, что ГА основаны на генетике, то и большая часть терминологии соответствует ей. Любой генетический алгоритм работает исходя из начальной информации. Множество начальных значений есть популяция Пt = {п1, п2, ..., пn}, где пi = {г1, ..., гv}. Разберем подробнее:

  • t - это номер итерации. t1, ..., tk - означает итерации алгоритма с номера 1 по k, и на каждой итерации создается новая популяция решений.
  • n - размер популяции Пt.
  • п1, ..., пi - хромосома, особь, или организм. Хромосома или цепочка - это закодированная последовательность генов, каждый из которых имеет порядковый номер. При этом следует иметь в виду, что хромосома может быть частным случаем особи (организма).
  • гv - это гены, являющиеся частью закодированного решения.
  • Локус - это порядковый номер гена в хромосоме. Аллель - значение гена, которое может быть как числовым, так и функциональным.

Что значит "закодированный" в контексте ГА? Обычно любое значение кодируется на основе какого-либо алфавита. Простейшим примером является перевод чисел из десятеричной системы счисления в двоичное представление. Таким образом алфавит представляется как множество {0, 1}, а число 15710 будет кодироваться хромосомой 100111012 , состоящей из восьми генов.

Родители и потомки

Родителями называются элементы, выбираемые в соответствии с заданным условием. Например, часто таким условием является случайность. Выбранные элементы за счет операций скрещивания и мутации порождают новые, которые называются потомками. Таким образом, родители в течение реализации одной итерации генетического алгоритма создают новое поколение.


Наконец, эволюцией в данном контексте будет чередование поколений, каждое новое из которых отличается набором хромосом в угоду лучшей приспособленности, то есть более подходящему соответствию заданным условиям. Общий генетический фон в процессе эволюции называется генотипом, а формирование связи организма с внешней средой – фенотипом.

Функция приспособленности

Волшебство генетического алгоритма в функции пригодности. У каждой особи есть свое значение, которое можно узнать через функцию приспособления. Ее главной задачей является оценка этих значений у разных альтернативных решений и выбор лучшего из них. Иными словами, наиболее приспособленного.

В оптимизационных задачах функция приспособленности носит название целевой, в теории управления называется погрешностью, в теории игр – функцией стоимости, и т. д. Что именно будет представлено в виде функции приспособления, зависит от решаемой задачи.

В конечном итоге можно заключить, что генетические алгоритмы анализируют популяцию особей, организмов или хромосом, каждая из которых представлена комбинацией генов (множеством некоторых значений), и выполняют поиск оптимального решения, преобразовывая особи популяции посредством проведения искусственной эволюции среди них.

Отклонения в ту или иную сторону отдельных элементов в общем случае находятся в соответствии с нормальным законом распределения величин. При этом ГА обеспечивает наследственность признаков, наиболее приспособленные из которых закрепляются, обеспечивая тем самым лучшую популяцию.

Базовый генетический алгоритм

Разложим по шагам наиболее простой (классический) ГА.

  1. Инициализация начальных значений, то есть определение первичной популяции, того множества особей, с которыми будет происходить эволюция.
  2. Установление первичной приспособленности каждой особи в популяции.
  3. Проверка условий прекращения итераций алгоритма.
  4. Использование функции селекции.
  5. Применение генетических операторов.
  6. Создание новой популяции.
  7. Шаги 2-6 повторяются в цикле до выполнения необходимого условия, после чего происходит выбор наиболее приспособленной особи.

Пройдемся вкратце по мало очевидным частям алгоритма. Условий прекращения работы может быть два:

  1. Количество итераций.
  2. Качество решения.

Генетическими операторами является оператор мутаций и оператор скрещивания. Мутация изменяет случайные гены с определенной вероятностью. Как правило, вероятность мутации имеет низкое числовое значение. Поговорим подробнее о процедуре генетического алгоритма "скрещивание". Он происходит по следующему принципу:

  1. Для каждой пары родителей, содержащих L генов, случайным образом выбирается точка скрещивания Тскi.
  2. Первый потомок составляется путем присоединения к генам первого родителя [Тскi+1; L] генов второго родителя.
  3. Второй потомок составляется обратным путем. Теперь к генам второго родителя добавляется гены первого родителя на позициях [Тскi+1; L].

Тривиальный пример

Решим задачу генетическим алгоритмом на примере поиска особи с максимальным числом единиц. Пусть особь состоит из 10 генов. Зададим первичную популяцию в количестве восьми особей. Очевидно, наилучшей особью должна быть 1111111111. Составим для решения ГА.

  • Инициализация. Выберем 8 случайных особей:

Из таблицы видно, что особи 3 и 7 имеют наибольшее число единиц, а значит являются наиболее подходящими членами популяции для решения задачи. Так как на данный момент решения требуемого качества нет, алгоритм продолжает работу. Необходимо провести селекцию особей. Для простоты объяснения пусть селекция происходит случайным образом, и мы получаем выборку особей {п7, п3, п1, п7, п3, п7, п4, п2} - это родители для новой популяции.

  • Использование генетических операторов. Снова для простоты положим, что вероятность мутаций равна 0. Иными словами все 8 особей передают свои гены такими, какие есть. Для проведения скрещивания, составим пары особей случайным образом: (п2, п7), (п1, п7), (п3, п4) и (п3, п7). Так же случайным способом выбираются точки скрещивания для каждой пары:
  • Составление новой популяции, состоящей из потомков:

Дальнейшие действия очевидны. Самое интересное в ГА открывается в случае, если оценить среднее количество единиц в каждой популяции. В первой популяции в среднем на каждую особь приходилось 5,375 единиц, в популяции потомков – 6,25 единиц на особь. И такая особенность будет наблюдаться даже в случае, если в ходе мутаций и скрещивания особь с наибольшим числом единиц в первой популяции потеряется.

План реализации

Создание генетического алгоритма представляет собой достаточно сложную задачу. Сначала перечислим план в виде шагов, после чего подробнее разберем каждый из них.

  1. Определение представления (алфавита).
  2. Определение операторов случайных изменений.
  3. Определение выживания особей.
  4. Генерация первичной популяции.

Первый этап гласит о том, что алфавит, в который будут кодироваться все элементы множества решений или популяции, должен быть достаточно гибким, чтобы одновременно позволял производить нужные операции случайных перестановок и оценивать приспособленность элементов, как первичных, так и прошедших через изменения. Математически установлено, что создать идеальный алфавит для этих целей невозможно, поэтому его составление – это один из самых сложных и ответственных этапов, чтобы обеспечить стабильную работу ГА.


Не менее сложным является определение операторов изменения и создания потомков. Существует множество операторов, которые способны выполнять требуемые действия. Например, из биологии известно, что каждый вид может размножаться двумя способами: половым (скрещиванием) и бесполым (мутациями). В первом случае родители обмениваются генетическим материалом, во втором – происходят мутации, определенные внутренними механизмами организма и внешним воздействием. Помимо этого, можно применять несуществующие в живой природе модели размножения. Например, использовать гены трех и более родителей. Аналогично скрещиванию в генетическом алгоритме мутации может быть заложен разнообразный механизм.

Выбор способа выживания может быть крайне обманчивым. Существует множество способов в генетическом алгоритме для селекции. И, как показывает практика, правило "выживание наиболее приспособленного" далеко не всегда оказывается лучшим. При решении сложных технических проблем часто оказывается, что лучшее решение выплывает из множества средних или даже худших. Поэтому зачастую принято использовать вероятностный подход, который гласит, что лучшее решение имеет больше шансов на выживание.


Последний этап обеспечивает гибкость работы алгоритма, которой нет ни у какого другого. Первичную популяцию решений можно задать как исходя из каких-либо известных данных, так и совершенно случайным образом простой перестановкой генов внутри особей и созданием случайных особей. Однако всегда стоит помнить, что от начальной популяции во многом зависит эффективность алгоритма.

Эффективность

Эффективность генетического алгоритма полностью зависит от правильности реализации этапов, описанных в плане. Особенно влиятельным пунктом здесь является создание первичной популяции. Для этого существует множество подходов. Опишем несколько:

  1. Создание полной популяции, что будет включать всевозможные варианты особей в некоторой заданной области.
  2. Случайное создание особей на основе всех допустимых значений.
  3. Точечное случайное создание особей, когда среди допустимых значений выбирается диапазон для генерации.
  4. Комбинирование первых трех способов создания популяции.

Таким образом, можно заключить, что эффективность генетических алгоритмов во многом зависит от опыта программиста в этом вопросе. Это является как недостатком генетических алгоритмов, так и их достоинством.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта