Главная » Обработка грибов » Изоферменты катализируют. Изоферменты (изозимы)

Изоферменты катализируют. Изоферменты (изозимы)

Изоферменты , или изоэнзимы – это множественные формы фермента , катализирующие одну и ту же реакцию, но отличающиеся друг от друга по физическим и химическим свойствам, в частности по сродству к субстрату, максимальной скорости катализируемой реакции (активности), электрофоретической подвижности или регуляторным свойствам.

В живой природе имеются ферменты, молекулы которых состоят из двух и более субъединиц, обладающих одинаковой или разной первичной, вторичной или третичной структурой. Субъединицы нередко называют протомерами, а объединенную олигомерную молекулу – мультимером (рис. 14.8 а-г).

Считают, что процесс олигомеризации придает субъединицам белков повышенную стабильность и устойчивость по отношению к действию денатурирующих агентов, включая нагревание, влияние протеиназ и др. Однако на нынешнем этапе знаний нельзя ответить однозначно на вопрос о существенности четвертичной структуры для каталитической активности ферментов, поскольку пока отсутствуют методы, позволяющие в «мягких» условиях разрушить лишь четвертичную структуру. Обычно применяемые методы жесткой обработки (экстремальные значения рН, высокие концентрации гуанидинхлорида или мочевины) приводят к разрушению не только четвертичной, но и вторичной, и третичной структур стабильного олигомерного фермента, протомеры которого оказываются денатурированными и, как следствие, лишенными биологической активности.

Рис. 14.8. Модели строения некоторых олигомерных ферментов: а – молекула глутаматдегидрогеназы, состоящая из 6 протомеров (336 кДа); б – молекула РНК-полимеразы; в – половина молекулы каталазы; г – молекулярный комплекс пируватдегидрогеназы

Следует указать на отсутствие ковалентных, главновалентных связей между субъединицами. Связи в основном являются нековалентными, поэтому такие ферменты довольно легко диссоциируют на протомеры. Удивительной особенностью таких ферментов является зависимость активности всего комплекса от способа упаковки отдельных субъединиц. Если генетически различимые субъединицы могут существовать более чем в одной форме, то соответственно и фермент, образованный из двух или нескольких типов субъединиц, сочетающихся в разных количественных пропорциях, может существовать в нескольких сходных, но не одинаковых формах. Подобные разновидности фермента получили название изоферментов (изоэнзимов или, реже, изозимов ).

Одним из наиболее изученных ферментов, множественность форм которого детально изучена методом гель-электрофореза, является лактатдегидрогеназа (ЛДГ), катализирующая обратимое превращение пировиноградной кислоты в молочную. Она может состоять из четырёх субъединиц двух разных Н- и М- типов (сердечный и мышечный). Активный фермент представляет собой одну из следующих комбинаций: НННН, НННМ, ННММ, НМММ, ММММ или Н 4 , Н 3 М, Н 2 М 2 , НМ 3 , М 4 . Они соответствуют изоферментам ЛДГ 1 , ЛДГ 2 , ЛДГ 3 , ЛДГ 4 , и ЛДГ 5 . При этом синтез Н- и М-типов осуществляется различными генами и в разных органах экспрессируется по-разному.

Поскольку Н-протомеры при рН 7,0-9,0 несут более выраженный отрицательный заряд, чем М-протомеры, то изофермент Н 4 при электрофорезе будет мигрировать с наибольшей скоростью в электрическом поле к положительному электроду (аноду). С наименьшей скоростью будет продвигаться к аноду изофермент М 4 , в то время как остальные изоферменты будут занимать промежуточные позиции (рис. 14.9).

Рис. 14.9. Распределение и относительное количество изоферментов ЛДГ в различных органах

Для каждой ткани в норме характерно свое соотношение форм (изоферментный спектр) ЛДГ. Например, в сердечной мышце преобладает тип Н 4 , т. е. ЛДГ 1 , а в скелетных мышцах и печени – тип М 4 , т.е. ЛДГ 5 .

Эти обстоятельства широко используют в клинической практике, поскольку изучение появления изоферментов ЛДГ (и ряда других ферментов) в сыворотке крови может представлять интерес для дифференциальной диагностики органических и функциональных поражений органов и тканей. По изменению содержания изоферментов в сыворотке крови можно судить как о топографии патологического процесса, так и о степени поражения органа или ткани.

В одних случаях субъединицы имеют почти идентичную структуру и каждая содержит каталитически активный участок (например, -галактозидаза, состоящая из четырё субъединиц). В других случаях субъединицы оказываются неидентичными. Примером последних может служить триптофансинтаза, состоящая из двух субъединиц, каждая из которых наделена собственной (но не основной) энзиматической активностью, однако, только будучи объединенными в макромолекулярную структуру, обе субъединицы проявляют триптофансинтазную активность.

Термин «множественные формы фермента » применим к белкам, катализирующим одну и ту же реакцию и встречающимся в природе в организмах одного вида. Термин «изофермент » применим только к тем множественным формам ферментов, которые появляются вследствие генетически обусловленных различий в первичной структуре белка (но не к формам, образовавшимся в результате модификации одной первичной последовательности).

HHHH HHHM HHMM HMMM MMMM

ЛДГ1,2

ЛДГ4,5

Изоферменты, их природа, биологическая роль, строение ЛДГ.

Изоферменты - это группа родственных ферментов, катализирующих одну и ту же реакцию. Они происходят из одного предшественника за счет дупликациии гена с последующей мутацией образуемых аллелей. Они отличаются между собой:

1) скорстью катализа;

3) условиями протекания реакции;

4) чувствительностью к регуляторам, факторам среды. (Более или менее устойчивы к ингибиторам);

5) сродством к субстрату;

6) особенностями структуры молекулы, ее ИЭТ, Mr, размерами и зарядом.

Изоферменты имеют адаптивное значение, т. е. придают специфику метаболизма.

Изоферменты обеспечивают межорганную связь, например, в процессе мышечной деятельности.

В миокарде и печени существуют различные изоферменты ЛДГ, которые обеспечивают метаболизм лактата:

в печени: ПВК -----> лактат

в сердце: лактат ------> ПВК

ЛДГ - олигомерный фермент, состоящий из 4-х субъединиц 2 типов.

H (heart) и M (muscle).

Существует 5 изоферментных форм:

H4 H3M H2M2 HM3 M4

ЛДГ1, ЛДГ2, ЛДГ3, ЛДГ4, ЛДГ5.

Поскольку H-протомеры несут более выраженный отрицательный заряд, то изофермент H4 (ЛДГ1) будет мигрировать при электрофорезе с наибольшей скоростью к аноду.

С наименьшей скоростью к аноду будет двигаться М4.

Остальные изоферменты занимают промежуточное положение.

Изоферменты ЛДГ локализованы в различных тканях:

ЛДГ1,2 ----> мозг, аэробные ткани (миокард).

ЛДГ3 ----> лейкозные клетки.

ЛДГ4,5 ----> анэробные ткани: мышечная, скелетная.

Изоферменты появляются на различных этапах онтогенеза и реализуют программу индивидуального развития.

Изоферментный профиль меняется в процессе развития.

При патологиях имеется существенный изоферментный сдвиг.

Биохимия - это наука, изучающая качественный и количественный состав, а также пути, способы, закономерности, биологическую и физиологическую роль превращения вещества, энергии и информации в живом организме.

Формирование биологической химии как самостоятельной дисциплины в системе биологических наук было длительным и сложным процессом. Современная биохимия сформировалась на рубеже ХIХ и ХХ вв. в недрах органической химии и физиологии, поэтому в ХIХ в. она называлась физиологической химией. Термин биохимия был предложен в 1858 году австрийским врачом и химиком Винцентом Клетцинским.

История биохимии отражает сложный путь познания человеком окружающего органического мира, истоки которого уходят во времена античности. В те времена гениальные пророческие идеи причудливо переплетались с наивными представлениям об окружающем мире. Так, например, Аристотель полагал, что живые существа образуются из сочетания пассивного, не имеющей жизни, начала - «материи» с активным началом - «формой», которая формирует тело и поддерживает в нем жизнь.


В последующем неоплатоники развивая эти идеи сформулировали понятие о «жизненной силе», «животворящем духе» и т.д., которые в различных модификациях существовали и в средние века. В VII – X веках в Европе с развитием алхимии стал накапливаться материал о составе сложных органических соединений.

Эпоха Возрождения характеризуется динамическим восприятием окружающего мира, которое превратило науку из ритуально-магической в открытую. Наука рассматривала человеческое тело как сложную механическую машину. Наш выдающийся современник, английский философ и историк науки Дж. Бернал так характеризует ту эпоху: «... врачи свободно общались с мастерами-художниками, математиками, астрономами и инженерами. По сути дела, многие из них занимались некоторыми из этих профессий. Так, например, Коперник получил образование и практиковал как врач...».

Именно это привело науку к новой ступени - живое стали оценивать химическими категориями. В XVI - XVII веках получила развитие ятрохимия (врачебная химия), важнейшим представителем которой был Парацельс (1493-1541), считавший, что в основе всех заболеваний лежат нарушения хода химических процессов в организме, поэтому лечить их надо тоже химическими веществами. Ятрохимия много дала практической медицине и способствовала ее сближению с химией.

Середина ХVII - конец ХVIII вв является эмпирическим периодом развития органической химии которая по определению великого шведского химика Й. Берцелиуса была химией «растительных и животных веществ». За это время произошло накопление огромного фактического материала, но еще не возникло теоретических, обобщающих представлений. Практические потребности человеческой деятельности (получение из природного сырья лекарств, масел, смол, красителей и т.д.) явились основной причиной, побуждающей к изучению органических соединений.

Совершенствование экспериментальных методов способствовало выделению индивидуальных органических соединений из растений (щавелевая, яблочная, лимонная и др. кислоты) и продуктов жизнедеятельности животных организмов (мочевина, мочевая и гиппуровая кислоты).

Следующий период - аналитический (конец ХVIII - середина ХIХ вв. - ознаменован исследованиями по установлению состава веществ, в результате которых стало очевидно, что все органические соединения содержат углерод. Вот лишь некоторые достижения этого периода:

В 1828 г. Ф. Вёлер впервые синтезировал мочевину, открыв тем самым эпоху органического синтеза.

В 1839 г Ю. Либих установил, что в состав пищи входят белки, жиры и углеводы.

В 1845 г. Г. Кольбе синтезировал уксусную кислоту

В 1854 г М. Бертло синтезировал жиры.

В 1861 г А.М. Бутлеров синтезировал углеводы.

Подводя итоги развития биохимии в ХIХ в. отметим, что основными факторами ее формирования было развитие химии важнейших природных соединений - липидов, углеводов и особенно белков, первые успехи энзимологии, разработка основных положений о многоступенчатости обмена веществ и роли ферментов в этих процессах. Биологическая химия того времени ставила своей главной целью изучение методами химии не суммарных процессов обмена веществ, а превращение в организме каждого отдельного соединения и разработка представлений о всех деталях обменных процессов в совокупности.

Наиболее интенсивно биохимия стала развивать в ХХ веке и особенно в последние десятилетия. В первой половине ХХ в. были сделаны важнейшие открытия, которые позволили построить общую схему обмена веществ, установить природу ферментов и исследовать их важнейшие свойства, значительно расширить знания об основных биологически активных соединениях. В 40-50-е годы интенсивно развивались и усовершенствовались методы биохимических исследований определившие в последующие десятилетия формирование отдельных направлений биохимии ставших самостоятельными науками - биоорганической химии, молекулярной биологии, молекулярной генетики, биотехнологии и др.

В последующем, при рассмотрении отдельных разделов биохимии, мы будем касаться их исторических аспектов, сейчас же кратко рассмотрим основные исторические этапы развития отечественной биологической химии.

Изоферменты – это изофункциональные белки. Они катализируют одну и ту же реакцию, но отличаются по некоторым функциональным свойствам в силу отличий по:

Аминокислотному составу;

Электрофоретической подвижности;

Молекулярной массе;

Кинетике ферментативных реакций;

Способу регуляции;

Стабильности и др.

Изоферменты – это молекулярные формы фермента, различия в аминокислотном составе обусловлены генетическими факторами.

Примеры изоферментов: глюкокиназа и гексокиназа.

Гексокиназа может фосфорилировать любой шестичленный цикл, гексокиназа – только превращение глюкозы. После приёма пищи, богатой глюкозой, глюкокиназа начинает работать. Гексокиназа – стационарный фермент. Он катализирует реакцию расщепления глюкозы при низких её концентрациях, поступающих в организм. Отличаются по локализации (глюкокиназа – в печени, гексокиназа – в мышцах и печени), физиологическому значению, константе Михаэльса.

Если фермент – олигомерный белок, то изоформы могут получаться в результате различной комбинации протомеров. Например, лактатдегидрогеназа состоит из 4-х субъединиц. Н – субъединицы сердечного типа, М – мышечного. Может быть 5 комбинаций этих субъединиц, а, следовательно, и 5 изоферментов: НННН (ЛДГ 1 – в сердечной мышце), НННМ (ЛДГ 2), ННММ (ЛДГ 3), НМММ (ЛДГ 4), ММММ (ЛДГ 5 – в печени и мышцах). [рис. эти 4 буквы в кружочки.

Надо отличать изоферменты от множественных форм ферментов. Множественные формы ферментов – это ферменты, которые модифицированы после своего синтеза, например фосфорилаза A и B.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Белки и их биологическая роль
Белок (протеины) – protos – предшествующий всему, первичный, наиглавнейший, определяющий всё остальное. Белки – это высокомолекулярные азотсодержащие органические вещества, состо

Характеристика простых белков
В основе классификации (создана в 1908г.) лежит растворимость белков. По этому признаку выделяют: I. гистоныипротамины, растворимые в солевых растворах. О

Хромопротеины
Для них простетическая часть окрашена (chromos – краска). К хромопротеинам относятся гемоглобин, миоглобин, каталаза, пероксидаза, ряд флавинсодержащих ферментов (сукцинатдегидрогеназа, альдегидокс

Липид-белковые комплексы
Липид-белковые комплексы – сложные белки, простетическую часть которых составляют различные липидные компоненты. К таким компонентам относятся: 1. предельные и непредельные В

Нуклеопротеины
Нуклеопротеины – это сложные белки, содержащие в качестве небольшой части нуклеиновые кислоты (до 65%). НП состоят из 2-х частей: белковой (содержит гистоны и протамины, кото

Углевод-белковые комплексы
В качестве простетической группы выступают углеводы. Все углевод-белковые комплексы делятся на гликопротеины и протеогликаны. Гликопротеины (ГП)– комплекс белков с углеводными ко

Фосфопротеины
Белки, где в качестве простетической группы – фосфорная кислота. Присоединение фосфорной кислоты к полипептидной цепи идет с образованием сложноэфирной связи с АК СЕР или ТРЕ.

Строение коферментов
Коферменты в каталитических реакциях осуществляют транспорт различных групп атомов, электронов или протонов. Коферменты связываются с ферментами: - ковалентными связями; - ионными

Свойства ферментов
Общие черты ферментов и небиологических катализаторов: 1) и те, и другие катализируют только энергетически возможные реакции; 2) увеличивают скорость реакции; 3) н

Номенклатура ферментов
1) Существует тривиальная номенклатура – названия случайные, без системы и основания, например трипсин, пепсин, химотрипсин. 2) Рабочая номенклатура – название фермента составляется из наз

Современные представления о ферментативном катализе
Первая теория ферментативного катализа была выдвинута в начале 20 века Варбургом и Бейлисом. Эта теория предлагала считать, что фермент адсорбирует на себе субстрат, и называлась адсорбционной, но

Молекулярные эффекты действия ферментов
1) Эффект концентрирования – это адсорбирование на поверхности молекулы фермента молекул реагирующих веществ, т.е. субстрата, что приводит к их лучшему взаимодействию. Пр.: электростатическое притя

Теория кислотно-основного катализа
В составе активного центра фермента имеются как кислые, так и основные функциональные группы. В результате этого фермент проявляет в ходе катализа кислотно-основные свойства, т.е. играет как роль д

Регуляция активности ферментов
Ферменты являются регулируемыми катализаторами. В качестве регуляторов могут выступать метаболиты, яды. Различают: - активаторы – вещества, увеличивающие скорость реакции;

Переваривание и всасывание белков
Функции белков многообразны, но особенно выделяются структурная, каталитическая и энергетическая функции. Энергетическая ценность белка около 4,1 ккал/г. Среди всех веществ, поступающих в

Превращение белков в органах пищеварения
Все белки подвергаются действию гидролаз (третий класс ферментов), а именно пептидаз – они, как правило, вырабатываются в неактивной форме, а затем активируются путем частичного протеолиза.

Переваривание сложных белков и их катаболизм
1. Гликопротеины гидролизуются с помощью гликозидаз (амилолитических ферментов). 2. Липопротеины – с помощью липолитических ферментов. 3. Гемсодержащие хромопроте

Гниение белков и обезвреживание его продуктов
Гниение белков – это бактериальный распад белковых веществ и АК под действием микрофлоры кишечника. Идет в толстой кишке, однако может наблюдаться и в желудке – при снижении кислотнос

Метаболизм аминокислот
Фонд АК организма пополняется за счет процессов: 1) гидролиза белков пищи, 2) гидролиза тканевых белков (под действием катепсинов лизосом). Расходуется АК-фонд на процесс

Общие пути обмена веществ
1. Переаминирование (открыто в 1937 г. Браунштейном и Крицмом).

Временное обезвреживание аммиака
Аммиак токсичен (50 мг аммиака убивает кролика, при этом =0,4-0,7 мг/л). Поэтому в тканях аммиак обезвреживается временными путями: 1) в основном – образов

Орнитиновый цикл мочевинообразования
Мочевина содержит 80-90% всего азота мочи. В сутки образуется 25-30 г мочевины NH2-CO-NH2. 1. NH3 + CO

Синтез и распад нуклеотидов
Особенности обмена нуклеотидов: 1. Ни сами нуклеотиды, ни азотистые основания, поступающие с пищей, не включаются в синтез нуклеиновых кислот и нуклеотидов организма. Т.е., нуклеотиды пищи

Окисление пуриновых нуклеозидов
Аденозин® (аденозиндезаминаза, +Н2О, –NH4+) инозин® (пуриннуклеозидфосфорилаза, +Фн –рибозил-1-Ф) гипоксантин (6-оксопурин) ® (ксантинокси

Функционирование ДЦ
Субстрат·Н2 → НАД → ФМН → КоQ → 2b → 2c1→ 2c → 2a → 2a3 → O

Репликация (самоудвоение, биосинтез) ДНК
В 1953 г. Уотсон и Крик открыли принцип комплементарности (взаимодополняемости). Так, А=Т, а ГºЦ. Условия, необходимые для репликации: 1. стр

Транскрипция (передача информации с ДНК на РНК) или биосинтез РНК
При транскрипции, в отличие от репликации, информации передается с небольшого участка ДНК. Элементарной единицей транскрипции является оперон (транскриптон)- участок ДНК, подвергающийся тран

Регуляция биосинтеза белка
Клетки многоклеточного организма содержат одинаковый набор ДНК, но белки синтезируются разные. Например, соединительная ткань активно синтезирует коллаген, а в мышечных клетках такого белка нет. В

Механизмы развития раковой опухоли
Рак – генетическое заболевание, т.е. повреждение генов. Виды повреждений генов: 1) потеря гена, 2) собственно повреждение гена, 3) активация гена,

Переваривание липидов
Поступая с пищей, липиды в ротовой полости подвергаются только механической обработке. Липолитические ферменты в ротовой полости не образуются. Переваривание липидов будет происходить в тех отделах

Механизм ресинтеза жира
Ресинтез жира в стенке кишечника происходит следующим образом: 1. сначала продукты гидролиза (глицерин, ВЖК) активируются с использованием АТФ. Далее происходит последовательное ацилирован

Транспортные формы липидов в организме
Липиды являются нерастворимыми в воде соединениями, поэтому для их переноса кровью необходимы специальные переносчики, растворимые в воде. Такими транспортными формами являются липопротеины плазмы

Превращение липидов в тканях
В тканях постоянно идут процессы распада и синтеза липидов. Основную массу липидов организма человека составляют ТГ, которые в клетке имеются в виде включений. Период обновления ТГ в разных тканях

Биосинтез глицерина и ВЖК в тканях
Биосинтез глицерина в тканях тесно связан с метаболизмом глюкозы, которая в результате катаболизма проходит стадии образования триоз. Глицеральдегид–3–фосфат в цитоплазме по

Патология липидного обмена
На этапе поступления с пищей. Обильная жирная пища на фоне гиподинамии ведёт к развитию алиментарного ожирения. Нарушение обмена может быть связано с недостаточным поступлением жир

Ионы Са2+
Образуют соединение с белком - кальмодулин. Комплекс Са2+-кальмодулин активирует ферменты (аденилатциклазу, фосфодиэстеразу, Са2+-зависимую протеинкиназу). Есть группа

Гормоны паращитовидных желез
Парат-гормон, состоит из 84 АК, регулирует уровень Са2+, стимулирует выход кальция (и фосфора) из костей в кровь; Повышают реабсорбцию кальция в почках, но стимулируется выход фосфора; С

Роль витаминов в обмене веществ
1.(!) витамины – предшественники коферментов и простетических групп ферментов. Напр., В1 – тиамин – входит в состав кофермента декарбоксилаз кетокислот в виде ТПФ (ТДФ), В2 – рибофлавин –

Понятие о гиповитаминозах, авитаминозах и гипервитаминозах
Гиповитаминоз – патологическое состояние, связанное с недостатком витамина в организме. Авитаминоз – патологическое состояние, вызванное отсутствием витамина в организме.

Причины гиповитаминозов
1. Первичные: недостаток витамина в пище. 2. Вторичные: а) снижение аппетита; б) повышенный расход витаминов; в) нарушения всасывания и утилизации, напр., энтеро

Витамин А
Витамеры: А1 – ретинол и А2 – ретиналь. Клиническое название: антиксерофтальмический витамин. По химической природе: циклический непредельный одноатомный спирт на основе кольца b-

Витамин D
Антирахитический витамин. Существуют два витамера: D2 – эргокальциферол и D3 – холекальциферол. Витамин D2 содержится в грибах. Витамин D3 синтезируется в орг

Витамин Е
Устар.: антистерильный витамин, антиоксидантный энзим. В химическом плане это альфа-, бета-, гамма- и дельта-токоферолы, но преобладающим является альфа-токоферол. Витамин Е устой

Витамин К
Антигеморрагический витамин. Витамеры: К1 – филлохинон и К2 – менахинон. Роль витамина К в обмене веществ Это кофактор карбоксилирования глутамино

Витамин С
Аскорбиновая кислота, антискорбутный витамин (скорбут = цинга). Является лактоном. Легко окисляется: О=С─┐ О=С─┐ | │ | │ НО-С

Витамин В1
Тиамин, антиневритный витамин. Тиамин устойчив в кислой среде (до 140ºС), а в щелочной среде бы

Витамин В2
Рибофлавин Устойчив в кислой среде, но разрушается в нейтральной и щелочной. Легко окисляется по дво

Витамин РР
Антипеллагрический витамин. Витамеры: никотиновая к-та, никотинамид, ниацин.

Витамин В6
Антидерматитный витамин. Пиридоксин → пиридоксаль → пиридоксамин [нарисовать формулы]

Витамин В12
Кобаламин. Антианемический витамин. Имеет красный цвет. На свету разлагается. Роль кобаламина в обмене веществ - транспорт метильных групп; - участвует в

Витамин В3
Пантотеновая кислота. [рис. формулы НОСН2-С((СН3)2)-СН(ОН)-СО-NH-СН2-СН2-СООН] Состоит из масляной кислоты с b-аланином.

Гидроксилирование ксенобиотиков с участием микросомальной монооксигеназной системы
1. бензола: [рис. бензол+ О2 +НАДФН2®(гидроксилаза, цитохром Р450) фенол + НАДФ+ Н2О] 2. индола: [рис. индол+ О2 +Н

Роль печени в пигментном обмене
Пигментный обмен представляет собой совокупность сложных взаимопревращений окрашенных веществ тканей и жидкостей организма человека. К пигментам относятся 4 группы веществ: 1. гем

Биосинтез гема
Биосинтез гема идет в большинстве тканей, за исключением эритроцитов, которые не имеют митохондрий. В организме человека гем синтезируется из глицина и сукцинил-КоА, образованного в результате мета

Распад гема
Большая часть гемхромагенных пигментов в организме человека образуется при распаде гема. Главным источником гема является гемоглобин. В эритроцитах содержание гемоглобина составляет 80%, время жизн

Патология пигментного обмена
Как правило, связана с нарушением процессов катаболизма гема и выражается гипербилирубинемией и проявляется в желтушечности кожи и видимых слизистых оболочек. Накапливаясь в ЦНС, билирубин вызывает

Типы изменения биохимического состава крови
I. Абсолютные и относительные. Абсолютные обусловлены нарушением синтеза, распада, выведения того или иного соединения. Относительные обусловлены изменением объема ц

Белковый состав крови
Функции белков крови: 1. поддерживают онкотическое давление (в основном за счет альбуминов); 2. определяют вязкость плазмы крови (в основном за счет альбуминов);

Общий белок
В норме общий белок крови 65-85 г/л. Общий белок – это сумма всех белковых веществ крови. Гипопротеинемия – снижение альбуминов. Причины:

Глобулины в норме 20-30 г/л
I. α1 -глобулины α-антитрипсин – ингибирует трипсин, пепсин, эластазу, некоторые другие протеазы крови. Выполняет антивоспалитель

Остаточный азот
Остаточный азот – это сумма азота всех небелковых азотсодержащих веществ крови. В норме 14-28 ммоль/л. 1. Метаболиты: 1.1. аминокислоты (25%); 1.2. креат

Углеводный обмен
Глюкоза в капиллярной крови натощак 3,3-5,5 ммоль/л. 1. Гипергликемия (повышение глюкозы): 1.1. панкреатическая гипергликемия – при отсутствии инсул

Липидный обмен
Холестерин в норме 3-5,2 ммоль/л. В плазме находится в составе ЛПНП, ЛПОНП (атерогенные фракции) и ЛПВП (антиатерогенная фракция). Вероятность развития атеросклероза

Минеральный обмен
Натрий – это основной внеклеточный ион. На уровень Na+ в крови влияют минералокортикоиды (альдостерон задерживает натрий в почках). Уровень натрия увеличивается за счет гем

Ферменты плазмы крови
Классифицируются: 1. Функционирующие ферменты (собственно плазменные). Напр., ренин (повышает АД через ангиотензин II), холинестераза (расщепляет ацетилхолин). Их активность выше в

Физические свойства мочи здорового человека, их изменения при патологии
I. Количество мочи в норме 1,2-1,5 л. Полиурия – увеличение количества мочи из-за: 1) увеличения фильтрации (под действием адреналина увеличивается фи

Показатели химического состава мочи
Общий азот – это совокупность азота всех азотсодержащих веществ в моче. В норме – 10-16 г/сутки. При патологиях общий азот может: ü увеличиваться – гиперазотурия

Особенности обмена веществ в нервной ткани
Энергетический обмен. В ткани головного мозга увеличено клеточное дыхание (преобладают аэробные процессы). Мозг потребляет большее количество кислорода, чем постоянно работающее сер

Химическая передача нервного возбуждения
Передача возбуждения с одной клетки на другую происходит с помощью нейромедиаторов: - нейропептидов; - АК; - ацетилхолина; - биогенных аминов (адреналин,

Ферменты: определение понятия, химическая природа, физико-химические свойства и биологическая роль ферментов.

Ферменты - это белки, которые действуют как катализаторы в биологических системах.

Химическая природа: белки.

Физико-химические свойства:

1) являются амфотерными соединениями;

2) вступают в те же качественные реакции, что и белки (биуретовую, ксантопротеиновую, фолина и др.);

3) подобно белкам растворяются в воде с образованием коллоидных растворов;

4) обладают электрофоретической активностью;

5) гидролизуются до аминокислот;

6) склонны к денатурации под влиянием тех же факторов: температуры, изменениях рН, действием солей тяжелых металлов, действием физических факторов (ультразвук, ионизирующее излучение и др.);

7) имеют несколько уровней организации макромолекул, что подтверждено данными рентгеноструктурного анализа, ЯМР, ЭПР

Биологическая роль: Ферменты катализируют контролируемое протекание всех метаболических процессов в организме.

Изоферменты. Строение, биологическая роль, диагностическое значение определения, изменение в онтогенезе и при патологии органа, диагностическое значение.

Изоферменты – это множественные формы одного фермента, катализирующие одну и ту же реакцию, но отличающие по физическим и химическим свойствам.

Строение: Четвертичная структура, образованная четным количеством субъединиц (2, 4, 6 и т.д.). Изоформы фермента образуются в результате различных комбинаций субъединиц.

Биологическая роль: Существование изоформ повышает адаптационную возможность тканей, органов, организма в целом к меняющимся условиям.

Диагностическое значение определения: По изменению изоферментного состава оценивают метаболическое состояние органов и тканей.

Изменение в онтогенезе: На примере ЛДГ (окисляет лактат до ПВК). В процессе индивидуального развития организма в тканях происходит изменение содержания кислорода и изоформ ЛДГ. У зародыша преобладают ЛДГ 4 , ЛДГ 5 . После рождения в некоторых тканях происходит увеличение содержания ЛДГ 1 , ЛДГ 2.

Изменения при патологии органа: На примере ЛДГ. ЛДГ 1,2 работают в миокарде. Если в миокард не будет поступать кислород, там увеличится количество анаэробных субъединиц – ЛДГ 4,5 , что свидетельствует о патологии органа.

Диагностическое значение:

ЛДГ – при увеличении активности ЛДГ в плазме крови можно предположить повреждение одной из тканей организма (сердце, мышцы, печень). (В норме 170-520 ЕД/л)

КК – (катализируют превращение кретина в креатинфосфат); определяют активность КК в плазме крови. В норме – 90 МЕ/л. Повышение ММ – травма мышц, ВВ – в крови не определяется даже при инсультах, т.к. не может проникнуть в кровь.

Максимальной скорости катализируемой (), электрофоретической подвижности или регуляторным свойствам.

Рис. 4.5. Модели строения некоторых олигомерных .

Следует указать на отсутствие ковалентных, главновалентных связей между субъединицами. Связи в основном являются нековалентными, поэтому такие довольно легко диссоциируют на протомеры. Удивительной особенностью таких является зависимость всего комплекса от способа упаковки между собой отдельных субъединиц. Если генетически различимые субъединицы могут существовать более чем в одной форме, то соответственно и , образованный из двух или нескольких типов субъединиц, сочетающихся в разных количественных пропорциях, может существовать в нескольких сходных, но не одинаковых формах. Подобные разновидности получили название (изоэнзимов или, реже, изозимов). В частности, если состоит из 4 субъединиц двух разных типов – Н и М (сердечный и мышечный), то активный может представлять собой одну из следующих комбинаций: НННН, НННМ, ННММ, НМММ, ММММ, или Н 4 , Н 3 М, Н 2 М 2 , НМ 3 , М 4 , соответствующую ЛДГ 1 , ЛДГ 2 , ЛДГ 3 , ЛДГ 4 и ЛДГ 5 . При этом синтез Н- и М-типов осуществляется различными и в разных органах экспрессируется по-разному.

В одних случаях субъединицы имеют почти идентичную структуру и каждая содержит каталитически активный участок (например, β-галакто-зидаза, состоящая из 4 субъединиц). В других случаях субъединицы оказываются неидентичными. Примером последних может служить трипто-фансинтаза, состоящая из 2 субъединиц, каждая из которых наделена собственной (но не основной) энзиматической , однако, только будучи объединенными в макромолекулярную структуру, обе субъединицы проявляют триптофансинтазную .

Термин «множественные формы » применим к , катализирующим одну и ту же и встречающимся в природе в одного вида. Термин « » применим только к тем множественным формам , которые появляются вследствие генетически обусловленных различий в (но не к формам, образовавшимся в результате модификации одной первичной последовательности).

Одним из наиболее изученных 4 , множественность форм которого детально изучена методом гель-электрофореза, является ЛДГ, катализирующая обратимое превращение в молочную. Пять ЛДГ образуются из 4 субъединиц примерно одинакового размера, но двух разных типов. Поскольку Н-протомеры несут более выраженный отрицательный заряд при рН 7,0–9,0, чем М-про-томеры, состоящий из 4 субъединиц Н-типа (Н 4), при будет мигрировать с наибольшей скоростью в электрическом поле к положительному (). С наименьшей скоростью будет продвигаться к М 4 , в то время как остальные изо-ферменты будут занимать промежуточные позиции. Следует подчеркнуть, что



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта